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Abstract

Voice assistant systems (VAS), such as Google Assistant or
Amazon Alexa, provide convenient means for users to interact
verbally with online services and control smart home devices.
Voice commands contain highly-sensitive information about
individuals, and sharing such data with service providers must
be done in a carefully controlled and transparent manner in
order to prevent privacy breaches. We introduce a framework
named VPASS that supports the management of personalized
privacy requirements for VAS. Our mechanisms employ deep
transfer learning techniques for processing voice commands
and can accurately detect privacy-sensitive commands based
on an individual’s prior history of VAS interaction. VPASS
continuously analyzes the privacy risks and generates monthly
reports or immediate alerts based on user-defined policies.

1 Introduction

Voice Assistant Systems (VAS), such as Google Assistant and
Amazon Alexa, gained huge popularity in the past decade [5].
Despite their benefits, VAS devices raise significant privacy
concerns. As VAS continues to gain popularity and become
an integral part of various aspects of daily life, there is an in-
creased potential for malicious actors to gain access to voice
data, compromising user privacy [4]. These VAS devices rely
on Voice Service Providers (VSP) to process and interpret
user commands, which requires sending user data to remote
servers for analysis [3]. In this work, we investigate privacy
disclosure based on the voice commands’ contents and con-
text. We propose a framework VPASS that takes into account
two perspectives of privacy leakage, namely information dis-
closure and privacy sensitivity. VPASS measures the informa-
tion disclosure by checking whether the semantic information
of the current command has been disclosed to the VSP in
previous use. VPASS employs a customized deep transfer
learning [9] model to infer the privacy sensitivity of each
command. VPASS notifies users using either monthly reports
or immediate alerts, according to the user-defined policies on
the results of information disclosure and privacy sensitivity.
This work is funded by R0O1-AG067416 and IIS-1909806.

2 VPASS framework

VPASS can be a smartphone app set up by a user using the
same account and password that were used to register the VAS
device to the VSP. VPASS continuously downloads the voice
command transcripts from the VSP and monitors the privacy
risks of the voice commands. As shown in Figure 1, VPASS
has three components, information disclosure analysis, pri-
vacy sensitivity analysis, and user notification.
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Figure 1: VPASS overview

2.1 Information disclosure analysis

To determine how much new information a voice command
discloses to the VSP, VPASS calculates the uniqueness of
a given command compared to other commands previously
issued by the user. VPASS incorporates a semantic similarity
measure using BERT [6]. Specifically, two BERT embed-
ding vectors v;,v; of two voice commands ¢;,c;(1 <1i,j <
n+ 1) are used to calculate the cosine-similarity score [8]
sij=Sim(vi,vj) = m VPASS then calculates a unique-
ness score of command ¢, using the most similar com-
mand from all previous n commands C,: Uni(c,+1,G) =1—
maxc;cc, Sn+1,j- VPASS provides another option for calculat-
ing uniqueness score for time-sensitive commands; it derives
a subset of commands (G C (, that includes recent k-day com-

mands and calculates Uni(cyt1, Gk) = 1 —maxc;eq Sn+1,j-

2.2 Privacy sensitivity analysis

To determine whether voice commands contain sensitive in-
formation, we need to address two challenges: the sensitivity
of a voice command should be determined at both word-level



and context-level, and sensitivity is difficult to evaluate us-
ing common rules. We thus explore deep learning models to
evaluate the privacy sensitivity of voice commands.

We conducted an IRB-approved study to collect 14 months
(from January 2022 to February 2023) of in-home Alexa us-
age data from 15 older adults [1]. Each older adult received
$20 per session and was encouraged to use the device daily
with an incentive of $5 per month. We collected a total num-
ber of in-home voice commands (n=28,598). We employed
five human annotators to label commands with sensitive or
non-sensitive labels, and each was paid $100. We designed a
guideline to determine sensitive commands based on sensitive
topics [10], and then provided the guideline to the annotators
We realized the labeling effort is huge and needed them to
label overlapped commands to ensure reliability. Thus, we
removed the similar commands using a BERT-based simi-
larity threshold (s; ; > 0.88) to reduce the number of com-
mands to 3,667. These commands were labeled by each anno-
tator. Using majority voting, we obtained 794 sensitive and
2,873 non-sensitive commands. Finally, based on similarity,
we extend labels to the whole dataset (7,376 sensitive and
21,222 non-sensitive). To balance the sensitive/non-sensitive
classes, we synthesized sensitive commands [7] using the
SpaCy Toolkit [2] to identify the keywords and using BERT
to replace the keywords with new ones while maintaining the
commands’ integrity and ensuring the new commands highly
similar to the original command.

Sensitive

FC layers
—[768 - 256 - 32
-2]

Figure 2: Sensitivity inference model
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We propose a sensitivity inference model that uses the
BERT embedding of a voice command as input and outputs
sensitive labels, as shown in Figure 2. The BERT backbone
is connected to the 1D convolution layer, a dropout layer,
a pooling layer, a flattening layer, and four fully-connected
layers. The final outputs are the labels, either sensitive or non-
sensitive. We trained this model with 80% of manually labeled
commands, extended commands, and synthesized commands,
and tested it with 20% of manually labeled commands. The
training and testing have been conducted for five independent
rounds, and the testing accuracy on the 20% manually labeled
commands is 93.87% and the balanced dataset with the syn-
thesized commands help achieve balanced results in F1-score,
precision and recall, as shown in Table 1.

2.3 User notification

VPASS notifies users of monthly reports or immediate alerts.
In the monthly report, the unique scores of the commands in
the past month are presented such that users can easily iden-
tify the commands that are significantly more unique than

Table 1: Five rounds of testing results

Accurac F1-score Precision Recall
y class 0 ‘ class 1 | class O ‘ class 1 | class 0 ‘ class 1
R 0.94 0.951 0915 | 0.966 | 0.891 0.937 | 0.941

Ry 0.95 0.965 | 0.888 | 0.971 | 0.871 | 0.960 | 0.905
R3 0.91 0.931 | 0.830 | 0.948 | 0.811 | 0.931 | 0.851
Ry 0.95 0.969 | 0.875 | 0.960 | 0.909 | 0978 | 0.843
Rs 0.95 0.967 | 0.881 | 0.974 | 0.858 | 0.595 | 0.907
Ave. | 0.9387 0.958 | 0.878 | 0.964 | 0.868 | 0.953 | 0.889

others. An example of monthly report from User 008 is shown
in Figure 3 where the uniqueness scores of 7 commands out
of 100 in May 2022 are larger than 0.4. We further incorpo-
rated sensitivity inference results into the monthly report. If a
command is sensitive, its bar color is red; otherwise, its bar
color is cyan. Uniqueness score 0 is replaced with -0.1 to en-
sure a bar for these commands. In this example, four sensitive
commands were inferred using our model. These commands
are highlighted in the figure for users to review easily. For
the privacy alert, users can define the alert policy according
to the uniqueness and sensitive inference: 1) if a command
has uniqueness score > th; ii) if a command is determined as
sensitive; or iii) if a command has uniqueness score > th and
is sensitive. In this example, the first policy triggers 7 alerts,
the second policy triggers 4 alerts, and the third policy trig-
gers 2 alerts. VPASS allows users to customize the policies
to balance privacy risks and management efforts.
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Figure 3: Monthly report of user 008 in May 2022: 30-day
history, th = 0.4. Boxed commands are sensitive commands.

3 Conclusion

We introduced a framework VPASS for users to manage per-
sonalized privacy requirements for VAS. VPASS evaluates
each voice command’s information disclosure and privacy
sensitivity, and notifies users with monthly reports or imme-
diate alerts to present critical information with an intuitive
interface. Through real-data evaluation, VPASS has shown
high accuracy of the uniqueness and sensitivity inference.
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A Similarity and uniqueness scores

To reduce the labeling effort, we asked annotators to label
non-semantic-similar commands only. In other words, if a
command is labeled, other semantically-similar commands
will not be manually labeled but assigned with the same label.
This approach works as we observed that many commands
of the same user or different users are the same or semanti-
cally similar because i) users tend to use the same functions
and ii) the language composition of commands is limited by
the functions. We use a similarity score threshold of 0.88 to
reduce the labeling effort. We observed that using thresholds
much smaller than 0.88 results in many inconsistent cases.
For example, in Table 2, two commands: “Alexa I have the
flu today when did I contract the flu virus”, and “Alexa when
is the flu virus discovered.” have similarity score at 0.8616
but should be labelled differently. When using 0.88, the num-
ber of to-be-labeled commands is reduced to 3,667, which is
considered an acceptable effort, and thus, we do not increase
the similarity score threshold even higher. As a future work,
an automatic approach to determine the threshold value ¢/ is
to evaluate samples (randomly selected from the real dataset
and labeled by humans) with a goal to keep minimum cases
in which two commands (similarity score > th) have different
labels.

Table 2: Extending labels using similarity score 0.88

Two commands
Alexa what time is the Gleneagle festi-

Similarity | Same

val today. 0.9891 v
Alexa what time is the Gleneagle belt

festival today

Alexa level four please 0.9658 v

Alexa level four
Alexa what is the weather in Bethesda.

Alexa what is the weather. 0.8846 v
Alexa I have the flu today when did I

. 0.8616
contract the flu virus.
Alexa when is the flu virus discovered
Alexa what is the best time of day to 0.6601 X

take a multivitamin.
Alexa is it better to take a multivitamin
with food or without food

In Table 3, we show an example of 10 commands and their
uniqueness scores. The uniqueness score of the first command
is defined as 1. Then, starting from the second command, the
uniqueness score is calculated based on the largest similarity
score between the new command and the previous commands.
For example, many “play music" commands are used here and
similar, and thus their uniqueness score drops to <0.4. The
4th and 7th commands’ uniqueness scores are high because
“checking weather" and “set level" commands are used for the
first time.
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Table 3: Uniqueness of commands

i ci max(sim) | uniqueness
¢ | Alexa play George gGershwin music - 1.0
¢y | Alexa play Leonard Bernstein music c 0.2100
c3 | Alexa play Carole King music c 0.3132
¢4 | Alexawhatis the weather in Friendship Heights c3 0.5154
¢s | Alexa play classical music and turn it off c3 0.3772
c¢ | Alexa play classical music 3 0.2613
c¢7 | Alexa level four 3 0.5265
cg | Alexa level four 7 0.0
c9 | Alexa play Hawaiian music cg 0.2901
c10 | Alexa play George Gershwin music c 0.0

B Discussion

Subjective opinions of privacy sensitivity. VPASS analyzes
the privacy sensitivity of commands subjectively using an-
notators’ knowledge and NLP models. Though we recruited
five annotators ($25 incentive to each annotator) and used the
majority votes, similar to the method in [10], the annotators’
knowledge may not reflect the opinions of the VAS users.
We realize that the annotators are young (about 20 years old)
while the VAS users generating our dataset are much older (>
65 years). It is impractical to request the VAS older adult users
to annotate their own commands or find similar age groups
to annotate the commands. To obtain general privacy knowl-
edge of the voice commands, we will consider recruiting a
larger number of annotators and more age-diverse groups to
annotate the commands, which may help our model to extract
accurate opinions on privacy sensitivity. Another direction is
to develop a personalized model, which would require more
training data and labels from the VAS users.

Linking to privacy surveys. In our project, we adminis-
tered a privacy survey with 15 older adults every three months.
We plan to correlate the usage of commands, the informa-
tion disclosure analysis results, the privacy-sensitive analysis
results, and the privacy survey results. This would help us
understand whether their privacy opinions in the privacy sur-
vey are related to their actual VAS usage. Specifically, if their
privacy concerns increase, they may have fewer VAS interac-
tions, or they may generate less privacy-sensitive commands.
Another interesting experiment is to have them finish a pri-
vacy survey after adopting VPASS. As VPASS allows users
to effectively review VAS usage, their privacy concerns may
be more accurate in the privacy survey.

Privacy intervention. VPASS passively monitors the com-
mands downloaded from the VSP and provides useful insight
back to the user via an intuitive interface. VPASS does not
interfere with the real-time interaction between the users and
the VAS. We envision VPASS may be more useful if it is
integrated into the VAS such that any alert can be played in
real-time to the users before the information is disclosed to
the voice service provider. The users, after being alerted, can
confirm the continued use of the privacy-sensitive commands.
However, such intervention is difficult to implement and may
affect the VAS use experience due to additional communi-
cation delay and effort, especially in a false positive case.
Currently, we believe the privacy management of VAS usage
is missing. VPASS is the first framework to enable users them-
selves to manage their privacy risks of VAS usage intuitively
and effectively.
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