

Evaluating the Usability of Differential Privacy Tools with Data Practitioners

Ivoline Ngong, Brad Stenger , Joseph Near , Yuanyuan Feng

SOUPS – August 2024

GOALS

- Understand usability issues in differential privacy.
- Make recommendations for improving usability

Let's see a chart of the number of people who smoke versus the number of people with cancer

Sensitive Query Result Smoking Causes Cancer

Cancer

Smoking Causes Cancer

DP is Challenging to Implement and Error Prone

- It's hard to understand DP terms and concepts especially for non-experts.
- There are many tools out there; it's hard to choose the right one.
- Even after using a tool, it's easy to make mistakes & interpreting results is hard. Are the results correct? what do they mean? how do you use them?
- Existing tool effectiveness and ease of use are unclear, possibly slowing DP adoption.

Goal: Compare usability of open-source DP tools for data scientist"

Research Questions

RQ1: How effectively can DP tools help data practitioners understand DP concepts? (DP Understanding)

RQ2: How effectively can DP tools help data practitioners implement DP solutions? (DP Implementation)

RQ3: How satisfied are data practitioners with DP tools for their DP implementation? (User Satisfaction)

Selected DP Tools

Tumult Analytics

Diffprivlib: The IBM Differential Privacy Library

A 11 G 113 G 743 ¥ 194 Centributors Used by Stars Forks

0

DiffPrivLib

PipelineDP

OpenDP

Selected DP Tools

OpenDP

- Distributed eligibility survey alongside recruitment ads.
- Assessed Python and **DP knowledge**.
- **24 data practitioners**, including 12 DP novices & 12 experts
- Between-subjects design each participant to one of the four DP tools
- **DP Experts -** answered 3/4 DP questions correctly

DP Questions

from Eligibility Survey

- (6) Have you heard of the term differential privacy (DP) before?
 - (a) No
 - (b) Yes
- (7) Have you ever written code to implement differential privacy (DP) in any capacity?
 - (a) No
 - (b) Yes
- (8) In differential privacy, which value of the privacy parameter ϵ provides stronger privacy?
 - (a) $\epsilon = 0.1$
 - (b) $\epsilon = 1.0$
 - (c) I don't know
- (9) Releasing two differentially private statistics, one with $\epsilon_1 = 0.1$ and the other with $\epsilon_2 = 0.5$, results in a total privacy loss of:
 - (a) $\epsilon = 0.1$
 - (b) $\epsilon = 0.5$
 - (c) $\epsilon = 0.6$
 - (d) $\epsilon = 0.05$
 - (e) I don't know
- (10) If the mechanism M returns a number and satisfies differential privacy with $\epsilon = 0.1$, does abs(M(x)) satisfy differential privacy, where abs is the absolute value function?
 - (a) No, not necessarily
 - (b) Yes, for $\epsilon = 0.1$
 - (c) Yes, for some $\epsilon > 0.1$
 - (d) I don't know
- (11) Which of the following is an advantage of using Differential Privacy?
 - (a) It guarantees complete anonymity of the data subjects
 - (b) It ensures that the data is completely accurate
 - (c) It provides a tradeoff between privacy and utility of the data
 - (d) It is a computationally simple method for preserving privacy in large datasets
 - (e) I don't know

- Invited qualified respondents to usability study on Microsoft Teams.
- Participants **shared screens** and learned about think-aloud methodology.
- Reviewed DP fundamentals and tool requirements via handout and tutorial.
- Given access to tool documentation and permitted to use Google search (but not StackOverflow).

DP Tool Tutorial

About this Tutorial

This tutorial describes basic usage of the Tumult Analytics platform to calculate differentially private statistics from a sensitive dataset.

Tumult Analytics is a library for conducting differentially private analyses. It's designed to be similar to existing tools for data analytics, like Spark and Pandas.

Install dependencies and download data

This cell installs Tumult Analytics. Run it, then scroll down to the beginning of the tutorial below

1 #@markdown Install dependencies anc 2 import pandas as pd 3 import numpy as np 4 import matplotlib.pyplot as plt 5 from IPython.display import clear_c 6 import os 7 import sys 8 !pip install tmlt.analytics
Install dependencies and download data

Requirement already satisfied: tmlt.analytics in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: pandas<2.0.0,>=1.2.0 in /usr/local/lib/python3.10/d: Requirement already satisfied: pyspark[sql]<=3.3.2,>=3.0.0 in /usr/local/lib/pythor Requirement already satisfied: sympy<1.10.>=1.8 in /usr/local/lib/python3.10/dist-r

- Three tasks: perform differentially private data analysis using DP tools.
- Participants spent 60 minutes coding solutions with the tool.

Task	Description	
Task 1	How crowded is the restaurant on weekdays?	
	(total number of visits for each weekday)	
Task 2	Total amount of time spent by visitors on each	
	weekday (exclude weekends).	→ SUM
Task 3	Average amount of time spent by visitors on	
	each weekday (exclude weekends)	

- Participants completed a **post-task survey** and **interview**.
- Survey assessed <u>learning outcomes, experiences, and confidence</u>.
- Interview provided deeper insights into <u>participants' preferences</u>, <u>challenges</u>, and <u>suggestions</u>.

Results

• Novices scored higher on conceptual questions in post-task survey

Completion Rate: code executed without error and produced correctly formatted responses. **Correctness Rate**: code output satisfied DP and had comparable utility to our reference solutions.

DiffPrivLib users completed all tasks, but most were incorrect

- All 6 participants violated dp
- Incorrect sensitivity settings / No clipping
- No error warning

PipelineDP users completed most tasks, but some were incorrect

- Easy to make mistakes
- No way validate noisy results
- Confusion about privacy budget tracking

OpenDP users completed fewest tasks, and all were correct

Tumult Analytics users completed most tasks, and all were correct

API designs impacted completion rates.

- DiffPrivLib uses a minimal API and works well with popular data analytics libraries like Pandas.
- Tumult Analytics mimics the Spark data analytics API.
- OpenDP requires understanding complex differential privacy details.

Participants preferred APIs similar to tools they already knew.

Tumult Analytics to Spark. "*I think the fact that it was very similar to Spark was really helpful,*" one expert participant (*E006*)

Diffprivlib Leads in User Satisfaction but DP Tools Need Improvement

- Participants most satisfied with DiffPrivLib
- Participants least satisfied with OpenDP

RQ3: tools differ in user satisfaction

DP Violation vs Usability Tradeoff

API Design had an impact on all 3 parts we measured , and it is possible to do well on all 3.

ΤοοΙ	Prevented Violations?	Completion Rate	Satisfaction
OpenDP	Yes	Low	Low
DiffPrivLib	Νο	High	High
PipelineDP	Νο	Low	Low
Tumult	Yes	High	High

Make API Design Intuitive

• Leverage familiarity with mainstream APIs (e.g. Pandas, Spark) Participants appreciated tools that mimicked or used familiar APIs.

Improve Error Prevention & Recovery

• Warn users about DP violations

DiffPrivLib users did not realize they had violated DP.

• Provide clear, actionable error messages

OpenDP users were confused by Rust-related implementation details.

"I don't really know any Rust. Coming from a Python experience, [it] might be better to have error messages in Python that indicate the error in the line of Python." -OpenDP

Provide Usable Documentation and DP Foundations

• **Provide searchable documentation with lots of examples**

Users of all tools struggled with single-page documentation lacking examples. Provide advice on what to do, not just how to do it (e.g which mechanism would be the best choice?)

• Help users understand how to set privacy parameters

(e.g. total privacy budget, ϵ per query, upper bound on data values, etc)

Thank you!

API design impacts correctness, completion, and satisfaction.

Takeaways

- Mimic existing APIs
- Raise errors for DP violations
- Provide usable documentation
- Help users with DP foundations

Presenter: Ivoline Ngong

Email: kngongiv@uvm.edu

Paper: https://arxiv.org/pdf/2309.13506

Study Materials: https://osf.io/ag2fj/?view_only=29a9bc2a30574befa9f3d0643951b9c6

