
When Linux Memory
Accounting Goes Wrong
Minhaj Ahammed

October 12, 2021

Search at LinkedIn

Galene

Search-as-a-Service (SeaS) infrastructure
that powers search at LinkedIn.

Searcher

Ø Queries the search indices.
Ø Loads index files into memory.
Ø Use cgroups to limit CPU, Memory.

Host

Container-1

Searcher

Container-2

Another Application

A standard unit of
software that packages up

code and all its
dependencies so the

application runs quickly
and reliably from one

computing environment to
another.

01
Container

Kernel feature that limits,
accounts for, and isolates the

CPU, memory, disk I/O and
network usage of one or more

processes. This helps us co-host
multiple applications on the

same host while ensuring that
they don’t use more resources

than allocated to them

02

Control Groups
(cgroups)

System call that locks part
or all of the calling

process's virtual address
space into RAM,

preventing that memory
from being paged to the

swap area.

03
mlockall()

Ø Process that the Linux
kernel employs when the
system is critically low on

memory.
Ø Also called when cgroup

memory limits are
breached.

04

Out of Memory
Killer

(OOMKiller)

Concepts

Ø Portion of memory
occupied by a process

that is held in main
memory (RAM)

05
Resident Set Size

(RSS)

The Problem

Alert Received.
Search Down. Restart Application. Host not responding.

Hosts start going
down again. Restart Application. Reboot Host.

Initial Debugging and Resolution

Ø The hosts were low on memory.
Ø There was lots of swapping going on.
Ø No logs of any kind were generated on the host once it was unreachable.

Host Disk Read time Graph

Host Available memory graph

Initial Debugging and Resolution (contd)

Ø Did not find the real culprit hogging system memory.

Ø Resolution
o Optimized the searchers memory utilization
o Reduced the cgroup memory limit for the application

Issue recurrence

Ø Application requests big chunk of
memory before going down.

Ø Prime suspect = Linux’s cgroup Memory
Enforcement

Application cgroup memory_usage_in_bytes graph

Wrote C
program
to try and
simulate
the issue

Allocate
memory

greater than
cgroup limit

Mmap files
and mlockall()
greater than

cgroup
memory limit

Run alongside
searcher and
allocate more
memory after

searcher
starts up

Issue recurrence

Since replicating the problem had proved
unsuccessful we went back to take a deeper

look at cgroups.

Troubleshooting

Investigating the memory usage pattern on cgroup.

Application cgroup memory_usage_in_bytes
graph

Memory usage = RSS + page-cache.

Troubleshooting (contd)

Application cgroup RSS usage graph

Application cgroup cache usage graph

Adding memory usage for RSS and cache, 19.4 + 31.1 ≈ 51GB.

Troubleshooting (contd)

Adding index sizes. 32 + 12 = 44GB.
Adding RSS value to it, 44 + 19 = 63GB

So, the application is using 63GB.

Searcher Application base index size graph

Searcher Application middle index size graph

Troubleshooting (contd)

Actual page cache usage - 44GB
Usage reported by cgroup - 31 GB

Root cgroup

Application Parent cgroup

Application-2 cgroupApplication-1 cgroup

System cgroupHierarchy of
our cgroups

Troubleshooting (contd)

Let’s compare page cache with parent cgroup,

Parent cgroup page cache usage graph

Application cgroup page cache usage graph

Dip in cache usage by the application cgroup is due to a restart.

Troubleshooting

Here is how restarts or deploys work in our stack,

Stop application. Delete
Application cgroup.

Create
Application cgroup.

Start application.

Memory accounting in cgroups

Sum of RSS of all the
processes under that
cgroup.

Ø Shared pages are
accounted for on First
touch basis.

Ø If page exists in memory,
it will eventually get
accounted to the cgroup
accessing it
aggressively.

16

Cgroup 1

1 GB
file

Page cache
accounted = 1GB

RAM

Cgroup 2

Page cache
accounted = 0 GB

Cgroup 2 keeps aggressively
accessing the file

Page cache
accounted = 0 GB

Page cache
accounted = 1 GB

What happened in our Case

New Index
Deployed

Cgroup limit
reached

Automation restarts
application

Actual
Cgroup limit
reached

Host low on
memory

Host
unreachable

Application Cgroup
reports correct
memory usage.

OOMkiller invoked and
application is killed.

Application cgroup me
mory reported is
wrong.
New cgroup does not
account for indexes
already in memory.

The OOMkiller is not
invoked by

Application cgroup.

Searcher
uses mlockall() so

cannot be swapped.
Other system

applications get
swapped.

Validation

Did a small experiment to validate our findings.

Cgroup shows right amount of memory
after the steps.

Verified that the issue was because a
new application cgroup did not charge
pages to itself even if the application
inside it is the only one using it.

Stop
application

Start
application

inside
cgroup

Create
cgroup

Destroy
cgroup

Drop
Cache

Mitigation

Limit memory of
parent cgroup

Set up proper
monitoring01

v Use sum of index size and RSS to set up an alert.
v Gives us enough time to react in cases of index

growth

Limit memory of
parent cgroup02

v Total memory used shown for Parent cgroup is
correct.

v OOMkiller will be invoked when the parent is
breaching its limits.

Conclusion

Never Assume Anything03

Memory Accounting in
Cgroups01 Page Cache accounting is complicated

mlockall()02 Can lead to critical services being swapped out.

Thank You

Questions?
linkedin.com/in/minhajahammed94

