C chronosphere

Taking control of metrics growth

and cardinality: Tips for maximizing
your observability function

Rob Skillington, Co-Founder and CTO @ Chronosphere

About me

Rob Skillington, Co-Founder and CTO @

Chronosphere

¢

M3 Open Source Creator
OpenMetrics Contributor
Twitter: @roskilli

Microsoft

4

U
)
GROUPON

4
4

‘ chronosphere

chronosphere.io

Agenda
e Observability in a cloud-native
. world

« Taking control of metrics growth
. and cardinality

e Evaluating your observability
. function

. Key takeaways

C chronosphere.io

Cloud-native observability

Beyond metrics + logs + traces

Our mission: help customers get to remediation as
quickly as possible

02 | ! Howdolfind the |
01 ® - Howeasily . underlying cause |
. ,and quickly . solcan fix the !
:-lo(\:; gg;icfli(gédo . canltriage it . problem? !
wghen . toknow what : | P
something is E T:,,e Impact c‘a’gp':
wrong? v 6@*
Is it BEFORE a : 60
user/customer
has a bad

experience?

<Z

‘ e chronosphere.io

Growth in monitoring data at Uber ° s

@ 10X Cost Efficiency
@ 99.99% Reliability
e

C chronosphere

M3

Q-Prometheus °

°
.® Data Growth @ e
[

Metrics & Monitoring Team

- cassandra o Founded 2015
v
Nagios’
gZ graphite
... . C
1Product in 3 Cities 10s Products in 100 Cities 100s Products in 600 Cities
C 1 Monolith 200 Services 4,000 Microservices chronosphere.io

10s Hosts 1000s VMs 1,000,000s Containers

Taking control of metrics growth
and cardinality

High cardinality runs wild in cloud-native

environments

Virtual-machine based
environment

YMPOSE 10 HTTP routes

HTTP routes 5 services
)) 300 VMs

=150 thousand
possible unique time
series

Virtual Machine

Cloud-native environment

Service

HTTP routes

A

4

CNTR

CNTR

CNTR

CNTR

A o

CNTR

CNTR

CNTR

CNTR

Pod

CNTR

CNTR

CNTR

CNTR

CNTR

CNTR

CNTR

CNTR

10 HTTP routes

5 services

30,000 pods (10x VMs]
100 experiments

=150 million
possible unique tin
series

chronosphere.io

Scenarios for taming data growth and cardinality

Scenario 1: Scenario 2: Scenario 3:
Tensions between Cardinality of Ownership needed
too much and not metrics is too much beyond the

enough information to manage at micro Observability team
level - it's a team effort!

C chronosphere.io

Tips for how to reduce these

@ tensions:

e Remember that more data is not more better
e Create internal framework on how and which
Scenario 1: metrics will use tags or labels
e Find ways to control data flow (e.g. Rate and

Tensions between o
Query Limiters)

too much and not
enough information

c chronosphere.io

Tips for managing metrics at a

@ more macro level:

e “Monitor the monitor” - Metadata dashboards for
macro-level overview of your metrics

e Alert on your metrics system uptime and
availability, and deep dive only when needed

e Take a programmatic approach by utilizing your
platform’s aggregation functionality (e.g. roll up
rules)

Scenario 2:
Cardinality of
metrics is too much
to manage at micro
level

‘ chronosphere.io

Tips for how to make observability
a team effort:

e Set company or team wide parameters, and put
onus on respective teams to stay within them

e Get buy-in from leadership and automate where
possible

e Don't build if you don't have to!

e Encourage safe experimentation and iteration of
tools and processes

chronosphere.io

Evaluating your observability
function

i

How many FTEs on the

team?

Core function of SRE and
DevOps

Initially 2 in 100, then 5 in
500 and eventually grew
to 50 in 2500

Not a lot of good
benchmarks out there
At Uber it grew to 8%
of infrastructure cost
at its peak, then was
hyper optimized to 3%

Internal KPlIs and metrics - meta metrics

[,

How do you measure

success?

Are there reasonable
SLO/SLIs in place and
are they being met?
Internal and external
NPS

Error rate and speed of
mitigation

chronosphere.io

Key takeaways o ¢
© o ®e
With cardinality on the rise, your observability oo © 0O
practice should focus on: ®
How do | get notified when something is wrong? o [4 ‘ ¢
How easily and quickly can | triage it to know what ' N e
the impact is? o)
e How do | find the underlying cause so | can fix the ® PS (| P
problem? ° [} ’. ® ®
More data is not more better ® ® ‘ } o ©
®
[
Know when (and when not) to deep dive your ® .. \ / O ®
metrics " e PY
o ® o v *
Uplevel your function with automation, safe ° ® ‘ P ®
experimentation, and top-down support ® e o
@ o
Don't build if you don't have to! o0 @

c chronosphere.io

........
00000000
........
......

