
chronosphere.io

Taking control of metrics growth
and cardinality: Tips for maximizing
your observability function

Rob Skillington, Co-Founder and CTO @ Chronosphere

chronosphere.io

Rob Skillington, Co-Founder and CTO @
Chronosphere

- M3 Open Source Creator
- OpenMetrics Contributor
- Twitter: @roskilli

About me

chronosphere.io

Agenda

Observability in a cloud-native
world

Taking control of metrics growth
and cardinality

Evaluating your observability
function

Key takeaways

Cloud-native observability

Beyond metrics + logs + traces

chronosphere.iochronosphere.io

Our mission: help customers get to remediation as
quickly as possible

How quickly do
I get notified
when
something is
wrong?
Is it BEFORE a
user/customer
has a bad
experience?

01 How easily
and quickly
can I triage it
to know what
the impact
is?

02 How do I find the
underlying cause
so I can fix the
problem?

03

chronosphere.io

1 Product in 3 Cities
1 Monolith
10s Hosts

10s Products in 100 Cities
200 Services
1000s VMs

100s Products in 600 Cities
4,000 Microservices
1,000,000s Containers

Data Growth @

1.5B datapoints/s

10X Cost Efficiency

99.99% Reliability

Growth in monitoring data at Uber

Metrics & Monitoring Team

● Founded 2015

Taking control of metrics growth
and cardinality

chronosphere.io

High cardinality runs wild in cloud-native
environments

Virtual Machine

CNTR CNTR CNTR CNTR

CNTR CNTR CNTR CNTR

CNTR CNTR CNTR CNTR

CNTR CNTR CNTR CNTR

Service

HTTP routes

VM host Service

HTTP routes

Pod

Experiment

Virtual-machine based
environment

Cloud-native environment

10 HTTP routes
5 services
30,000 pods (10x VMs)
100 experiments

= 150 million
possible unique time
series

10 HTTP routes
5 services
300 VMs

= 150 thousand
possible unique time
series

chronosphere.io

Scenarios for taming data growth and cardinality

Scenario 1:
Tensions between
too much and not

enough information

Scenario 2:
Cardinality of

metrics is too much
to manage at micro

level

Scenario 3:
Ownership needed

beyond the
Observability team
- it’s a team effort!

chronosphere.io

Scenario 1:
Tensions between
too much and not

enough information

● Remember that more data is not more better
● Create internal framework on how and which

metrics will use tags or labels
● Find ways to control data flow (e.g. Rate and

Query Limiters)

Tips for how to reduce these
tensions:

chronosphere.io

Scenario 2:
Cardinality of

metrics is too much
to manage at micro

level

Tips for managing metrics at a
more macro level:

● “Monitor the monitor” - Metadata dashboards for
macro-level overview of your metrics

● Alert on your metrics system uptime and
availability, and deep dive only when needed

● Take a programmatic approach by utilizing your
platform’s aggregation functionality (e.g. roll up
rules)

chronosphere.io

Scenario 3:
Ownership needed

beyond the
Observability team
- it’s a team effort!

Tips for how to make observability
a team effort:

● Set company or team wide parameters, and put
onus on respective teams to stay within them

● Get buy-in from leadership and automate where
possible

● Don’t build if you don’t have to!
● Encourage safe experimentation and iteration of

tools and processes

Evaluating your observability
function

chronosphere.io

● Core function of SRE and
DevOps

● Initially 2 in 100, then 5 in
500 and eventually grew
to 50 in 2500

● Not a lot of good
benchmarks out there

● At Uber it grew to 8%
of infrastructure cost
at its peak, then was
hyper optimized to 3%

Internal KPIs and metrics - meta metrics

● Are there reasonable
SLO/SLIs in place and
are they being met?

● Internal and external
NPS

● Error rate and speed of
mitigation

How many FTEs on the
team?

How much should we be
investing?

How do you measure
success?

chronosphere.io

With cardinality on the rise, your observability
practice should focus on:

● How do I get notified when something is wrong?
● How easily and quickly can I triage it to know what

the impact is?
● How do I find the underlying cause so I can fix the

problem?

More data is not more better

Know when (and when not) to deep dive your
metrics

Uplevel your function with automation, safe
experimentation, and top-down support

Don’t build if you don’t have to!

Key takeaways

Thank you

