
Navigating the
Kubernetes

Odyssey
Lessons from Early Adoption and

Sustained Modernization
Raúl Benencia

Site Reliability Engineer

1

About ThousandEyes

Network intelligence platform

2

Early infrastructure
First servers were scavenged from recycling bins
Running from a garage in Mountain View
Moved to a data center shortly after

Growing at a faster pace than what we could scale
Kubernetes comes into the picture. The year, 2015
We didn't know if it would live up to the hype

3

The journey begins

4

We start our research
The year, 2015
First cluster:

Kubernetes version 1.1.2 (not even Deployment existed)
CoreOS
Ansible

Named it… k8s1
We hosted absolutely everything in our data center
Each Kubernetes worker was a bare-metal server

Control plane and etcd, VMs

5

From VMs to Containers
Software footprint was small enough
All teams collaborated in getting their workloads containerized.

Containeraizing everything was a daunting but doable effort

6

Homegrown tool for automation
Automation using Shoelaces
Server bootstrapping automation tool, open sourced in 2018
Uses DHCP attributes and supports hands-offs installations

github.com/thousandeyes/shoelaces

7

The first challenge

8

Challenges with CoreOS
We scaled. From 4 racks we went to 10 racks.
Container optimized OS for a container orchestration system such as
Kubernetes
Not compatible with parts of our infrastructure
Killer feature, rebooting on security upgrades, not in use
The rest of our fleet was using Ubuntu, configured with Puppet

CoreOS was not the right fit for us.

9

The first Kubernetes migration
We decided to switch the OS, keeping the cluster
We went for a modern infrastructure (at that time)
We aligned with the rest of our servers and went back to Ubuntu

Prepared Puppet modules, rounded a few sharp edges

10

Manual steps
Remove CoreOS worker from load balancer, and from k8s cluster
Use Shoelaces to re-bootstrap server with our new Ubuntu recipe
Add Ubuntu worker to k8s cluster and to load balancer
Repeat

11

Successful migration

whipped the tablecloth out from under our infra dinnerware and our
developers barely felt it

12

Jumping ships

13

Challenges
Neglected version updates
Stuck on Kubernetes 1.5 while 1.13 was out

Internal tool used for Kubernetes manifest deployments

Triggered by Jenkins with changes in the k8s directory of a git
repo
Needed robustness and flexibility
Drift detection was challenging

14

Trade-off: upgrading vs migrating
Do we upgrade?
Do we start from scratch in a new cluster?

15

A New Cluster Emerges
Kubernetes 1.15.3 on Ubuntu
Managed by Puppet
We named it… k8s2

16

GitOps and ArgoCD

17

How did we migrate?
Leveraged the full engineering team for migration
Teams would migrate their own workloads, at will
Account for dependencies
Coordinated effort due to manageable workload and team size

Big Lift and shift approach

18

Sailing to the clouds

19

We keep scaling
Our ten-rack data center was running small
One region only, latency was high for oversea customers
Single point of failure
We needed to move. Our choice, AWS

20

AWS Choices
us-west-1 as main region
Direct Connect bridges to our data center
Only 2 availability zones
EKS was already a thing
… but not in the region we chose

21

Extending k8s2
We did not have a clear timeline for EKS support in us-west-1
Decided to extended k8s2 by adding new EC2 workers (running in
AWS)
k8s2 EC2 workers in AWS communicated with data center control
plane

22

Taints applied on AWS nodes to repel non-migrated workloads
taints

Node repellents that prevent pods from landing unless they have
the right tolerations

tolerations

Pods tolerate node taints to be scheduled
Prevents pod assignment to unsuitable nodes

Pods without corresponding tolerations remained in the existing
cluster
$ kubectl describe no k8s2-1-a

Name: k8s2-1-a

<...>

Taints: site=sfo2:NoSchedule

23

Kubernetes Control Plane Migration
Added control plane nodes in AWS
Maintained communication with the etcd cluster in the data center
AWS workers connected to the new AWS control plane nodes

24

etcd Cluster Migration
AWS control plane nodes talked with etcd in data center
Migrating etcd from data center to AWS was required
Challenge: us-west-1 has only two availability zones
Quorum and split-brain situation

25

Solution

Add a node in us-west-2
Two nodes in each us-west-1 region
k8s control plane pointed only to us-west-1 nodes
Synchronization with the fifth node happened in the background

26

Workload Migrations to AWS
Similar to the migration from k8s1 to k8s2
Piggybacking modernization and ASGs
Engineering team called upon to migrate their workloads
Teams had strict timelines for their own projects

Not an approach that we could keep using

27

Mid-Migration Fun
EKS enabled in us-west-1

28

Trade-off: Complete migration or start anew?
Sometimes it makes sense to do throw-away work.

29

Testing new waters

30

Expanding Horizons: Into Europe
Growing customer base in Europe
Addressing latency issues with a new AWS region
Chose eu-central-1
This time, we had three availability zones and full EKS support

31

Terraforming EKS Clusters
Developed Terraform code for EKS cluster bootstrap
Aimed for creating whole setup with single pull request
Challenges required code layering

Cluster bootstrap
Core services installation
Load balancer setup

32

Launching eks1
Established the new EKS cluster.
We named it… eks1
Engineers easily deployed services to EU cluster

Began serving European customers with reduced latency

33

Demand for clusters
Surge in requests for new EKS clusters post-initial launch
Disaster recovery, team-specific, and tool-specific needs
Iterative improvement of our cluster bootstrapping process

34

However…

Despite uniformity, one cluster remained an exception

35

The sinking ship

36

Trade-off: Maintenance vs. Innovation
Main SaaS platform still hosted on legacy cluster k8s2
Small team focusing on developing EKS modules
k8s2 maintenance became secondary, leading to version lag
EKS clusters maintained with consistent update cadence
Strategic shift to plan for migration to EKS

37

Inconsistency Rains
Deprecated APIs and new features caused environment drift
Resorted to kustomize patches for temporary fixes

Example of using kustomize to patch Ingress API version
patchesJson6902:

 - target:

 group: networking.k8s.io

 version: v1

 kind: 'Ingress'

 name: '.*'

 patch: |-

 - op: replace

 path: "/apiVersion"

 value: networking.k8s.io/v1beta1

38

The Sinking Flagship
k8s2 facing a hard limit of 255 nodes, nearing capacity
We could have fixed this, but we wanted to avoid throw-away work.
Transition to EKS for uniformity and scalability

39

The gangway

40

A New Migration Challenge
Did we need to actively involve all teams in a new cluster-to-cluster
migration from k8s2 to eks1?
We've scaled to hundreds of services and dozens of teams

We needed a different approach to avoid a migration nightmare

41

Integrating a Service Mesh
We always lacked the right "excuse" to implement a service mesh
Seized the migration to implement it
Services to communicate with each other regardless of cluster
Istio chosen for its maturity and community support
Installed on k8s2
Bootstrapped new EKS cluster eks1 in the same AWS region

42

Bridging Clusters with Istio
Set up east-west gateway to connect k8s2 and eks1
Established a "gangway" for smooth service transition

apiVersion: networking.istio.io/v1beta1

kind: Gateway

metadata:

 name: istio-eastwestgateway

 namespace: istio-system

spec:

 selector:

 istio: eastwestgateway

 servers:

 - hosts:

 - '*.local'

 port:

 name: tls

 number: 15443

protocol: TLS

43

Enabling Istio Across Workloads
Istio installed and gateway established in clusters
Services integrated into the mesh namespace by namespace
Used scripts to enable Istio in nss and restart workloads

if ["$OP" == "enable"]; then

 kubectl label --overwrite ns "$NS" istio.io/rev=$ISTIO_REVISION

elif ["$OP" == "disable"]; then

 kubectl label ns "$NS" istio.io/rev-

fi

...

for i in $items; do

 sleep "$TIMER" &

 if [$objtype == 'rollout']; then

 kubectl argo rollouts restart "$i" -n "$NS"

 else

 kubectl rollout restart "$objtype" "$i" -n "$NS"

 fi

 wait

done

44

Traffic Control with Istio
Parallel workloads started in eks1
Subsets in DestinationRules for workloads in different networks
Controlled traffic distribution with VirtualServices

apiVersion: networking.istio.io/v1beta1

kind: DestinationRule

metadata:

 name: webapps-ing-ctrl.webapps.svc.cluster.local

spec:

 host: webapps-ing-ctrl.webapps.svc.cluster.local

 subsets:

 - labels:

 topology.istio.io/network: k8s2.prd.sfo2

 name: k8s2

 - labels:

 topology.istio.io/network: eks1.prd.sfo2

 name: eks1

apiVersion: networking istio io/v1beta1

45

Streamlined Migration Automation
Automated manifest generation for workload migration
Ensured smooth, programmatic transition of services

$./bin/generate-migration-manifests \

 --src-env-dir environments/staging/us-west-1/k8s2/ \

 --dst-env-dir environments/staging/us-west-1/eks1/ \

 --kube-ctx k8s2.stg.sfo2 \

 --ns agent --svc agent-service

[+] Generating yaml for agent-service.agent in environments/staging/us-west-1/k8s2/agent/ag

[+] Generating yaml for agent-service.agent in environments/staging/us-west-1/eks1/agent/ag

46

Collaborative yet Independent Migration
Executed migration over several weeks, one namespace at a time
Kept parity in staging and production migrations
Achieved migration of hundreds of workloads across dozen of teams
Limited engineering-wide involvement through efficient automation
Set the stage for final decommissioning of k8s2

47

Migration successful

k8s2 served us well until the end

48

Conclusion

49

Our Kubernetes journey
Presented a journey of growth and expansion in Kubernetes usage

k8s1: Early baremetal and CoreOS-based
k8s2: Modernized baremetal with Ubuntu, configured with Puppet
k8s2.aws: Modernized k8s2 in AWS with ASGs
eks1: Terraformed EKS
Myriad of EKS clusters

50

EKS Modernized with:
keda, paramount for event-based scaling
karpenter: bin-packing pods into nodes
gatekeeper: OPA policies

Our hopeful future:
Fine-tuned service mesh
One-click cluster provisioning

51

The Balancing Act
Challenges faced by a small team managing large-scale
infrastructure

Navigate operations with sustainable practices

52

Managed Clusters: Not a panacea
Managed clusters reduce overhead but are not a cure-all
Need for vigilance in keeping manifests up-to-date
In large environments, manifests automation is a must

53

Steady Progress
Adapt strategies to the organization's maturity and resources
Make decisions based on size and workload diversity
Embrace continuous learning and incremental improvements

Learn, improve, advance. Cluster by cluster

54

Thanks!

55

