ThousandEyes<>

=2 F Kubernetes
Odyssey

: Lessons from Early Adoption and
Sustained Modernization

Raul Benencia

Site Reliability Engineer

Agent

All agents

£ Views

Metric

Loss

24h 7d 14d

Path Visualization

Target Server

Showing data from Thu, Jan 26 15:40 - 15:50 CST

www.adpwebdesking.com:443

Path Visualization

Showing:
Grouping:
Highlighting:

Selecting:

10f1Test ~ 8of 38 Agents v (Show All) 1 of 1 Server ~ Hide IP Address labels

Agents by Agent Interfaces by IP Address Destinations by Domain

Forwarding Loss > 10 % (8 nodes) ~ Link Delay > 100 ms (1 link) ~

Info (2) ~

Montreal, Canada .— 4 ——

Miami, FL .— — —< >—
N e — _<

Winnipeg, Canada (s e _< 7

N T —
r,Canada (e
Toronto, Canada .—

Portland, OR

Network intelligence

About ThousandEyes

16:00

o
tge2-4.fr3.1as.linw.net

W Average Loss

18:00

Latest-1

0 hops
@

69.28.172.85

69.28.128.0/118

Limelight Networks, Inc. (AS 22822)
Las Vegas, Nevada, US

10 Gigabit Ethernet

AF 32 (DSCP 28)

67% (22 of 33 packets)
163.1 ms

Show only agents using this node

adpwebdesking.com

L3 IIIIIIl|lHlllllll})}}}}»/{.l{l‘l{llIHIIIHIIHHHHHIH.2 =S M
'////////IIIIIIIHIIIIIHIII

platform

Early infrastructure

« First servers were scavenged from recycling bins
« Running from a garage in Mountain View
« Moved to a data center shortly after

« Growing at a faster pace than what we could scale
« Kubernetes comes into the picture. The year, 2015
« We didn't know if it would live up to the hype

.

l“""l"l"'

S
———————

ThousandEyes&

part of Cisco

The journey begins

We start our research

« The year, 2015

« First cluster:
= Kubernetes version 1.1.2 (not even Deployment existed)
= CoreOS
= Ansible

« Named it... k8s'

« We hosted absolutely everything in our data center

« Each Kubernetes worker was a bare-metal server

« Control plane and etcd, VMs

From VMs to Containers

« Software footprint was small enough
« All teams collaborated in getting their workloads containerized.

« Containeraizing everything was a daunting but doable effort

Homegrown tool for automation

« Automation using Shoelaces
« Server bootstrapping automation tool, open sourced in 2018
« Uses DHCP attributes and supports hands-offs installations

Home Mappings Events

Select a server

le:a7:de:ad:be:ef - 192.168.25.20 - www.example.com
aa:bb:cc:dd:ee:fl - 192.168.25.30

debian.ipxe

release hostname

Boot!

Brought to you with ¥ by ThousandEyes

github.com/thousandeyes/shoelaces

S
S
o

The first challenge

e

e
e

part of Cisco

ThousandEyes&

Challenges with CoreOS

« We scaled. From 4 racks we went to 10 racks.

« Container optimized OS for a container orchestration system such as
Kubernetes

« Not compatible with parts of our infrastructure

« Killer feature, rebooting on security upgrades, not in use

« The rest of our fleet was using Ubuntu, configured with Puppet

« CoreOS was not the right fit for us.

The first Kubernetes migration

« We decided to switch the OS, keeping the cluster
. We went for a modern infrastructure (at that time)
« We aligned with the rest of our servers and went back to Ubuntu

- Prepared Puppet modules, rounded a few sharp edges

10

Manual steps

« Remove CoreOS worker from load balancer, and from k8s cluster
« Use Shoelaces to re-bootstrap server with our new Ubuntu recipe
« Add Ubuntu worker to k8s cluster and to load balancer

« Repeat

11

Successful migration

<&

whipped the tablecloth out from under our infra dinnerware and our
developers barely felt it

12

Jumping ships

part of Cisco

ThousandEyes&

13

Challenges

« Neglected version updates
« Stuck on Kubernetes 1.5 while 1.13 was out

o Internal tool used for Kubernetes manifest deployments

= Triggered by Jenkins with changes in the k8s directory of a git
repo

= Needed robustness and flexibility

= Drift detection was challenging

14

Trade-off: upgrading vs migrating

« Do we upgrade?
« Do we start from scratch in a new cluster?

15

A New Cluster Emerges

« Kubernetes 1.15.3 on Ubuntu
« Managed by Puppet
« We named it... k8s2

16

GitOps and ArgoCD

Staging - Applications / Q srebot-us-east-1-obs

@ & DIFF & SYNC © SYNC STATUS *D HISTORY AND ROLLBACK DELETE w

APPLICATION DETAILS TRH

APP HEALTH SYNC STATUS LAST SYNC

@ Health @ Synced to main (9dsbfbb) @ Sync OK to 9dsbibb

Auto sync is enabled Succeeded 6 days ago (Thu 17:04:26 GN)
@thousandeyes.com> - Author;
Comment: Jpdate Prod SREBot

Author: . @thousandeyes.com> -
Comment: Update Prod SREBot

EI‘+ —|@ @ |00

ndoff-bot-test-cm

amonth

srebot-configuration :
) :

5 months oncall-handoff-bot .
oncall-handoff-bot

Yo :

5 months

5 months

oncall-handoff-bot-sjd7s

5 months
oncall-handoff-bot-test
oncall-handoff-bot-test

(] B HELP ME, EE TEAM!

17

How did we migrate?

« Leveraged the full engineering team for migration

« Teams would migrate their own workloads, at will

« Account for dependencies

« Coordinated effort due to manageable workload and team size

- Big L1ift and shift approach

18

"l

lOO"l'OI"'

eSS
RS

ThousandEyes&

part of Cisco

Sailing to the clouds

19

We keep scaling

« Our ten-rack data center was running small

« One region only, latency was high for oversea customers
« Single point of failure

« We needed to move. Our choice, AWS

20

AWS Choices

« US-west-1 as main region

« Direct Connect bridges to our data center
« Only 2 availability zones

« EKS was already a thing

. .. but not in the region we chose

21

Extending k8s2

« We did not have a clear timeline for EKS support in us-west-1

. Decided to extended k8s2 by adding new EC2 workers (running in
INWYS)

« k8s2 EC2 workers in AWS communicated with data center control
plane

Data Center

|
|
|
v
Beted | kubernetes control plane ||

kubernetes worker ||

22

« Taints applied on AWS nodes to repel non-migrated workloads

. taints
= Node repellents that prevent pods from landing unless they have

the right tolerations
- tolerations
= Pods tolerate node taints to be scheduled
= Prevents pod assignment to unsuitable nodes
« Pods without corresponding tolerations remained in the existing
cluster

$ kubectl describe no k8s2-1-a

Name: k8s2-1-a

<,..>

Taints: site=sfo02:NoSchedule

23

Kubernetes Control Plane Migration

« Added control plane nodes in AWS

« Maintained communication with the etcd cluster in the data center
« AWS workers connected to the new AWS control plane nodes

Data Center :

|
1 Region: us-west-1 |
Region: us-west-1 ' |

I
I
I
I

v

| (=
&)etcd Da— kubernetes control plane —l
“ “ N | (Commmmmn]

—|—| =
kubernetes worker 5 L

EC2 €3 kubernetes worker ||

24

etcd Cluster Migration

- AWS control plane nodes talked with etcd in data center
« Migrating etcd from data center to AWS was required

« Challenge: us-west-1 has only two availability zones

« Quorum and split-brain situation

25

Solution

« Add a node in us-west-2

« TWwoO nodes in each us-west-1 region

« k8s control plane pointed only to us-west -1 nodes

« Synchronization with the fifth node happened in the background

26

Workload Migrations to AWS

« Similar to the migration from k8s1 to k8s2

« Piggybacking modernization and ASGs

« Engineering team called upon to migrate their workloads
« Teams had strict timelines for their own projects

« Not an approach that we could keep using

27

Mid-Migration Fun

EKS enabled in us-west-1

- v.'-g"'ﬂc\ofp:n
nety W o uh‘w\f
jei 1y rLaec !
mnﬁ’; B
4’ My, LA pl

93 - UM M

“Q\.S) N\M\\ \{\':.\.‘LS "\ QUL

| F S (P A ‘.'j\:(

A vl P o
" (cI”n

=330 1) QICS.

T LA .*'«ra'r
(\ W . ob

28

Trade-off: Complete migration or start anew?

« SOometimes it makes sense to do throw-away work.

29

Testing new waters

T

‘ ——
T mTae e
RS

part of Cisco

ThousandEyes&

30

Expanding Horizons: Into Europe

« Growing customer base in Europe

« Addressing latency issues with a new AWS region

« Chose eu-central-1

« This time, we had three availability zones and full EKS support

31

Terraforming EKS Clusters

« Developed Terraform code for EKS cluster bootstrap
« Aimed for creating whole setup with single pull request
« Challenges required code layering

= Cluster bootstrap

= Core services installation

= | 0ad balancer setup

HashiCorp

Terraform

32

Launching eks1

. Established the new EKS cluster.

« We named it... eks1
« Engineers easily deployed services to EU cluster

« Began serving European customers with reduced latency

33

Demand for clusters

« Surge in requests for new EKS clusters post-initial launch
« Disaster recovery, team-specific, and tool-specific needs
« [terative improvement of our cluster bootstrapping process

34

However...

« Despite uniformity, one cluster remained an exception

35

part of Cisco

ThousandEyes&

The sinking ship

36

Trade-off: Maintenance vs. Innovation

« Main SaaS platform still hosted on legacy cluster k8s2

« Small team focusing on developing EKS modules

« k8s2 maintenance became secondary, leading to version lag
« EKS clusters maintained with consistent update cadence

« Strategic shift to plan for migration to EKS

37

Inconsistency Rains

« Deprecated APIs and new features caused environment drift
« Resorted to kustomize patches for temporary fixes

Example of using kustomize to patch Ingress API version

patchesJson6902:
- target:

group: networking.k8s.io

version: vl

kind: 'Ingress'

name: '.*'

patch: |-

- op: replace
path: "/apiVersion"
value: networking.k8s.io/vlbetal

38

The Sinking Flagship

« k8s2 facing a hard limit of 255 nodes, nearing capacity
« \We could have fixed this, but we wanted to avoid throw-away work.
« Transition to EKS for uniformity and scalability

39

part of Cisco

ThousandEyes&

The gangway

40

A New Migration Challenge

« Did we need to actively involve all teams in a new cluster-to-cluster

migration from k8s2 to eks1?
. \We've scaled to hundreds of services and dozens of teams

« We needed a different approach to avoid a migration nightmare

41

Integrating a Service Mesh

« We always lacked the right "excuse"” to implement a service mesh
« Seized the migration to implement it

« Services to communicate with each other regardless of cluster

o IStio chosen for its maturity and community support

« Installed on k8s2

« Bootstrapped new EKS cluster eks1 in the same AWS region

42

Bridging Clusters with Istio

« Set up east-west gateway to connect k8s2 and eks1
« Established a "gangway" for smooth service transition

apiVersion: networking.istio.io/vlbetal
kind: Gateway
metadata:
name: istio-eastwestgateway
namespace: istio-system
spec:
selector:
istio: eastwestgateway
servers:
- hosts:
- "*.local’
port:
name: tls
number: 15443

nrntnenl s TI S

43

Enabling Istio Across Workloads

« Istio Installed and gateway established in clusters
« Services integrated into the mesh namespace by namespace
« Used scripts to enable Istio in nss and restart workloads

if ["$0P" == "enable"]; then

kubectl label --overwrite ns "$NS" istio.io/rev=$ISTIO REVISION
elif ["$0P" == "disable"]; then

kubectl label ns "$NS" istio.io/rev-
fi

for i in $items; do
sleep "$TIMER" &

if [$objtype == 'rollout']; then
kubectl argo rollouts restart "$i" -n "$NS"
else
kubectl rollout restart "$objtype” "$i" -n "$NS"
fi
wait

Adnne

44

Traffic Control with Istio

« Parallel workloads started in eks1

« Subsets in DestinationRules for workloads in different networks
« Controlled traffic distribution with VirtualServices

apiVersion: networking.istio.io/vlbetal
kind: DestinationRule
metadata:
name: webapps-ing-ctrl.webapps.svc.cluster.local
spec:
host: webapps-ing-ctrl.webapps.svc.cluster.local
subsets:
- labels:
topology.istio.io/network: k8s2.prd.sfo2
name: k8s2
- labels:
topology.istio.io/network: eksl.prd.sfo2
name: eksl

aniV/ercinn: netuwnrkinn ictin in/uvlheatal

Streamlined Migration Automation

« Automated manifest generation for workload migration
« Ensured smooth, programmatic transition of services

$./bin/generate-migration-manifests \

--src-env-dir environments/staging/us-west-1/k8s2/ \

--dst-env-dir environments/staging/us-west-1/eksl/ \

--kube-ctx k8s2.stg.sfo2 \

--ns agent --svc agent-service
[+] Generating yaml for agent-service.agent in environments/staging/us-west-1/k8s2/agent/a
[+] Generating yaml for agent-service.agent in environments/staging/us-west-1/eksl/agent/a

46

Collaborative yet Independent Migration

« Executed migration over several weeks, one namespace at a time

« Kept parity in staging and production migrations

« Achieved migration of hundreds of workloads across dozen of teams
« Limited engineering-wide involvement through efficient automation

« Set the stage for final decommissioning of k8s2

47

Migration successful

k8s2 served us well until the end

48

ThousandEyes&

part of Cisco

Conclusion

49

Our Kubernetes journey

Presented a journey of growth and expansion in Kubernetes usage

« k8s1: Early baremetal and CoreOS-based

« k8s2: Modernized baremetal with Ubuntu, configured with Puppet
« k8s2.aws: Modernized k8s2 in AWS with ASGs

. eks1: Terraformed EKS

« Myriad of EKS clusters

50

« EKS Modernized with:
= keda, paramount for event-based scaling
« karpenter: bin-packing pods into nodes
= gatekeeper: OPA policies

« Our hopeful future:
= Fine-tuned service mesh
= One-click cluster provisioning

51

The Balancing Act

« Challenges faced by a small team managing large-scale
infrastructure

« Navigate operations with sustainable practices

52

Managed Clusters: Not a panacea

« Managed clusters reduce overhead but are not a cure-all
« Need for vigilance in keeping manifests up-to-date
« In large environments, manifests automation is a must

53

Steady Progress

« Adapt strategies to the organization's maturity and resources
« Make decisions based on size and workload diversity
« Embrace continuous learning and incremental improvements

« Learn, improve, advance. Cluster by cluster

54

ThousandEyes&>

part of Cisco

55

