
@lizthegrey at #YOW2022

Better
Observability
with
OpenTelemetry

18 March 2024 for SREcon24 Americas
Liz Fong-Jones (@lizthegrey), Field CTO, honeycomb.io

@lizthegrey at #YOW2022

17 hours per developer-week,
or $300B per year globally, are
lost to technical debt & bad
code.

The Developer Coefficient, Stripe, 2018

@lizthegrey at #YOW2022

Developers have a lot on our plates.

We want devs to:

● Ship features faster

● Scale to demand

● Decrease downtime

@lizthegrey at #YOW2022

Working in production is challenging.

We're afraid we'll break
things.

We've forgotten what we've
built by the time it ships.

We can't figure out what's
wrong and fix it.

@lizthegrey at #YOW2022

But some organizations have solved it!

SRE & Progressive Delivery
culture have the answers to
some of these problems.

And a growing fraction of
our industry is moving
faster and safer!

@lizthegrey at #YOW2022

What do we still still struggle with?

● Microservices create complex interactions.
● Failures don't exactly repeat.
● Debugging multi-tenancy is painful.
● Monitoring no longer can help us.

V6-21

© 2021 Hound Technology, Inc. All Rights Reserved.

Liz Fong-Jones
Field CTO at Honeycomb.io
Fmr OTel Governance Committee (2020-2022)

Joined by some awesome TAs as well!

V6-21

● Housekeeping & Intros
● What is Observability?

Pre-break agenda

● Q&A

● Get some data in!

● Answer questions with the data!

● Improve the data

● Solve some puzzles

● Do more stuff with it

● Quickest route to data in
You
are
here

@lizthegrey at #YOW2022@lizthegrey at #YOW2022

Observability Basics

@lizthegrey at #YOW2022

How does observability help?

● We need to answer questions about our systems.

What characteristics did the queries that timed out at 500ms
share in common? Service versions? Browser plugins?

● Instrumentation produces data.
● Querying data answers our questions.

@lizthegrey at #YOW2022

 Accelerate: State of DevOps 2021, Google

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved. 12

Change failure rate

Lead time for changes

Deployment frequency

Time to restore service

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved. 13

Change failure rate

Lead time for changes

Deployment frequency

Time to restore service

Small, fast
changes

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved. 14

safe
changes

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Your software and tools are on your team.

The running software, plus the tools, plus the
people on our team form a system,

a symmathesy: a learning system made of
learning parts.

Our software and tools learn from us, because
we change them.

Make the software teach you about itself and
the world!

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

so adapt your culture, not just the tools.

We need a culture of curiosity, not of fear.

We need to accelerate feedback cycles.

@lizthegrey at #YOW2022

INSTRUMENT QUERY

Observability isn't just the data

OPERATIONAL
RESILIENCE

MANAGED

TECH DEBT

QUALITY
CODE

PREDICTABLE
RELEASE

USER INSIGHT

DATA

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

How does observability work?

instrumentation code

telemetry data

backend datastore

High-level graphs
Detailed traces
Paths in between

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

How does observability work?

instrumentation code

telemetry data

backend datastore

High-level graphs
Detailed traces
Paths in between

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

How does observability work?

instrumentation code

telemetry data

backend datastore

High-level graphs
Detailed traces
Paths in between

@lizthegrey at #YOW2022

Metrics, logs, and traces, oh my!

● Metrics
○ Aggregated summary statistics.

● Logs
○ Detailed debugging information emitted by processes.

● Distributed Tracing
○ Provides insights into the full lifecycles, aka traces of requests to a

system, allowing you to pinpoint failures and performance issues.
Unlimited cardinality!

Structured data can be transmuted into any of these!

@lizthegrey at #YOW2022

Emerging signals

Continuous profiling

System change events

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Telemetry feeds graphs

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Telemetry feeds heatmaps

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Telemetry feeds traces

@lizthegrey at #YOW2022@lizthegrey at #YOW2022

About OpenTelemetry

@lizthegrey at #YOW2022
27

Vendor-neutral instrumentation

OpenCensus + OpenTracing
= OpenTelemetry

OTel replaces need for
vendor-specific SDKs

Supports tracing and
context propagation, as well
as metrics (and soon logs!)

@lizthegrey at #YOW2022
28

Timeline

2016 - OpenTracing founded

2017 - OpenCensus founded

2018 - OpenTelemetry formed

2019 - OpenTelemetry alpha

2020 - OpenTelemetry beta

2021 - OpenTelemetry GA

@lizthegrey at #YOW2022
29

Components of OpenTelemetry

Cross-language
specification

OTel Collector

Per-language API & SDK

Auto-instrumentation
libraries

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

This is OpenTelemetry

OpenTelemetry is a
vendor-neutral standard for
instrumentation.

It has an instrumentation API,
various SDKs, proxies, and
wire formats pre-standardized.

@lizthegrey at #YOW2022

INSTRUMENT QUERY

OpenTelemetry creates the needed data

OPERATIONAL
RESILIENCE

MANAGED

TECH DEBT

QUALITY
CODE

PREDICTABLE
RELEASE

USER INSIGHT

DATA

@lizthegrey at #YOW2022

Regardless of which language or tech you use

@lizthegrey at #YOW2022

APIs

● Data types for all tracing, metrics, and logging concepts
● Methods to append data from your code
import "go.opentelemetry.io/otel"

import "go.opentelemetry.io/otel/attribute"

var tracer = otel.Tracer("library_name")

func do_something(ctx, param):
 ctx, span := tracer.Start(ctx, "function_name")
 defer span.End()
 span.SetAttributes(attribute.Int("parameter", param))

@lizthegrey at #YOW2022

Context Propagation

● Distributed context is an abstract data type that
represents collection of entries.

● Each key is associated with exactly one value.
● It is serialized for propagation across process boundaries
● Passing around the context enables related spans to be

associated with a single trace.
● W3C TraceContext is the de-facto standard.

○ B3 is more broadly compatible with existing systems.

@lizthegrey at #YOW2022

Automatic Instrumentation

OpenTelemetry has wrappers around common frameworks to
propagate context and make it accessible.
import "go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp"

otelhttp.NewHandler(http.HandlerFunc(h), "h"))

func h(w ResponseWriter, req *Request) {
 ctx := req.Context()
 span := trace.SpanFromContext(ctx)
}

@lizthegrey at #YOW2022

SDKs, Exporters, and Collector Services, Oh My!

● OpenTelemetry's SDK implements trace & span creation.
● An exporter can be instantiated to send the data collected

by OpenTelemetry to the backend of your choice.
○ E.g. Jaeger, Lightstep, Honeycomb, Stackdriver, etc.
○ OpenTelemetry Protocol (OTLP) is the lingua franca.

● OpenTelemetry collector proxies data between
instrumented code and backend service(s). The exporters
can be reconfigured without changing instrumented code.

@lizthegrey at #YOW2022

Vendor-neutral exporters

● OTLP exporter
○ Exports in OTel's native protobuf or JSON format

● Jaeger exporter (now supported directly with OTLP)
○ Jaeger was created at Uber and is now an open-source CNCF project
○ Stores and visualizes traces.

● Prometheus exporter
○ Prometheus is a TSDB inspired by Google's Borgmon
○ Stores time-series metrics. Note: OTel metrics are not finalized

@lizthegrey at #YOW2022

The OpenTelemetry Collector

● Collectors are useful for more than just proxying
traces/metrics.
○ Receive multiple trace formats and marshal them into a new one.
○ Enhance trace/metric data with resources.
○ Perform sampling, filtering, or custom processors to modify attributes.
○ Much more - it’s customizable!

● Run them as agents or in standalone mode.
○ A Kubernetes operator exists to aid in deployment.
○ Builds are available for x86/ARM Linux, Darwin, and Windows.

@lizthegrey at #YOW2022@lizthegrey at #YOW2022

How to get started

@lizthegrey at #YOW2022

Start with auto-instrumentation

Measure a few tightly connected, req-resp services.

Get useful trace data out.

Gather traces & system metrics with OTel Collector

@lizthegrey at #YOW2022

Pick a telemetry backend with confidence

Start with Jaeger & Prometheus or a vendor free tier

Try out providers as your needs grow

Simple configuration to tee or reroute data

@lizthegrey at #YOW2022

Instrument manually to get the most value

Add custom attributes relevant to business

Create spans covering smaller units of work

Implement context propagation across Kafka, SQL, etc

@lizthegrey at #YOW2022

Use observability data to level up

Service Level Objectives at top level, debug all the way down

Find single points of failure, dependency cycles, etc

Take automatic remediation actions

Into the Fray!

Slides for today

● You will need to refer to material from the slides during
the interactive work period.

● Please find a copy of the slides here:

[QR code]

● Tracer
○ A Tracer is responsible for tracking the currently active span.

● Meter
○ A Meter is responsible for accumulating a collection of statistics.

You can have more than one. Why?

Ensures uniqueness of name prefixes.

OTel API - packages, methods, & when to call

Code examples: Providers (Go)

● A global provider can have a TraceProvider registered.
● Use the TraceProvider to create a named tracer.

// Register your provider in your init code

tp, err := sdktrace.NewProvider(...)

global.SetTraceProvider(tp)

// Create the named tracer

tracer = global.TraceProvider().Tracer("workshop/main")

Code examples: Providers (Python)
trace.set_preferred_tracer_provider_implementation(lambda T: TracerProvider())

// initialize tracer for the process

tracer = trace.get_tracer(__name__)

● tracer.Start(ctx, name, options)
○ This method returns a child of the current span, and makes it current.

● tracer.WithSpan(name, func() {...})
○ Starts a new span, sets it to be active in the context, executes the

wrapped body and closes the span before returning the execution result.

● trace.SpanFromContext(ctx)
○ Used to access & add information to the current span

OTel API (Go) - Tracer methods, & when to call

● tracer.start_span(name, parent=, ...)
○ This method returns a child of the specified span.

● with tracer.start_as_current_span(name)
○ Starts a new span, sets it to be active. Optionally, can get a reference to

the span.

● tracer.get_current_span()
○ Used to access & add information to the current span

OTel API (Python) - Tracer methods, & when to call

● span.AddEvent(ctx, msg)
○ Adds structured annotations (e.g. "logs") about what is currently

happening.

● span.SetAttributes(core.Key(key).String(value)...)
○ Adds a structured, typed attribute to the current span. This may include a

user id, a build id, a user-agent, etc.

● span.End()
○ Often used with defer, fires when the unit of work is complete and the

span can be sent

OTel API (Go) - Span methods, & when to call

● span.add_event(name, attributes)
○ Adds structured annotations (e.g. "logs") about what is currently

happening.

● span.set_attribute(key, value)
○ Adds an attribute to the current span. This may include a user id, a build

id, a user-agent, etc.

● span.end()
○ Manually closes a span.

OTel API (Python) - Span methods, & when to call

Code examples (Go): Start/End

var tr = otel.Tracer("me")

func (m Model) persist(ctx context.Context) {
ctx, span := tr.Start(ctx, "persist")
defer span.End()

// Persist the model to the database...
[...]

}

Code examples (Python): Start/End

tracer = trace.get_tracer(__name__)

def persist(data):
tracer.start_as_current_span("persistData")

// do work…
return result

Takes a context, span name, and the function to be called.

ret, err := tracer.WithSpan(ctx, "operation",
func(ctx context.Context) (int, error) {

// Your function here
[...]
return 0, nil

}
)

Code examples (Go): WithSpan

Code examples (Go): CurrentSpan & Span

● Get the current span
○ sp := trace.SpanFromContext(ctx)

● Update the span status
○ sp.SetStatus(codes.OK)

● Add events
○ sp.AddEvent(ctx, "foo")

● Add attributes
○ sp.SetAttributes(

key.New("ex.com/foo").String("yes"))

Code examples (Python): Current Span & Span

● Get the current span
○ span = tracer.get_current_span()

● Update the span status
○ span.set_status(Status(StatusCanonicalCode.UNKNOWN,

error))
● Add events

○ span.add_event(“foo”, {“customer”: “bar”})
● Add attributes

○ span.set_attribute(“error”, True)

Context Propagation

● Distributed context is an abstract data type that
represents collection of entries.

● Each key is associated with exactly one value.
● It is serialized for propagation across process boundaries
● Passing around the context enables related spans to be

associated with a single trace.
● W3C TraceContext is the de-facto standard.

Automatic Instrumentation

OpenTelemetry has wrappers around common frameworks to
propagate context and make it accessible.

import "go.opentelemetry.io/otel/plugin/othttp"

othttp.NewHandler(http.HandlerFunc(h), "h"))

func h(w ResponseWriter, req *Request) {
 ctx := req.Context()
 span := trace.SpanFromContext(ctx)
}

Automatic Instrumentation (Python)
from opentelemetry.ext import http_requests
from opentelemetry.ext.flask import instrument_app

// instrument Requests library
http_requests.enable(trace.tracer_source())

// create flask app, then instrument
app = Flask(__name__)
instrument_app(app)

SDKs, Exporters, and Collector Services, Oh My!

● OpenTelemetry's SDK implements trace & span creation.
● An exporter can be instantiated to send the data collected

by OpenTelemetry to the backend of your choice.
○ E.g. Jaeger, Lightstep, Honeycomb, Stackdriver, etc.

● OpenTelemetry collector proxies data between
instrumented code and backend service(s). The exporters
can be reconfigured without changing instrumented code.

Vendor-neutral exporters

● Jaeger exporter
○ Jaeger was created at Uber and is now an open-source CNCF project
○ Stores and visualizes traces.
○ Deprecated (Jaeger uses OTLP now)

● Prometheus exporter
○ Prometheus is a TSDB inspired by Google's Borgmon

● stdout/stderr streaming export
○ Inspect what is actually being sent over the wire.
○ No external setup required!

V6-21

Observability requires telemetry.
Let's get some data in!

V6-21

● Housekeeping & Intros
● What is Observability?

Pre-break agenda

● Q&A

● Get some data in!

● Answer questions with the data!

● Improve the data

● Solve some puzzles

● Do more stuff with it

● Quickest route to data in
You
are
here

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Section Overview

In this section, we will:

● Run a demo app instrumented with
OpenTelemetry

● Send telemetry from the demo app to
Jaeger

● Get a hosted service Account
● Send telemetry from the demo app to

hosted service

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Get the Demo App

● Java
● .NET
● Node.js
● Python
● Go

● Java
● .NET
● Node.js
● Python
● Go

https://github.com/orgs/honeycombio/repositories?q=intro
(clone & run locally)

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Choose the GitHub Repo for your language

Go to https://github.com/honeycombio

Find a repository…

“intro”

Choose the repository (repo)
for your language.

https://github.com/orgs/honeycombio/repositories?q=intro

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Choose the GitHub Repo for your language

Go to https://github.com/orgs/honeycombio/repositories?q=intro

Choose the repository
(repo) for your language.

Scroll down and
select the Gitpod button
in the repo's README.

https://github.com/orgs/honeycombio/repositories?q=intro

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Log in

A screen will appear and prompt you to
sign-in with GitHub.

Select Continue with GitHub

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Layout Reflects VSCode

Important areas include:

● Activity Bar
● File Explorer
● Tab Navigation
● Terminal

Select README.md in the
File Explorer to see
instructions.

File Explorer

Tab Navigation

TERMINAL

Activity Bar

Gitpod Appears

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Troubleshooting: Terminal not appearing

Go to the upper left corner to the

Hamburger Menu > View > Terminal

The terminal window will appear in the
bottom half of the screen

Shortcut: Ctrl+J (Cmd+J on Mac)

Type ./run or ./run.sh

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

How to Open an App Preview

In the Terminal area, a "Service is available on port xxxx" pop-up may appear.
Select Open Preview to open the app display in a new tab.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Troubleshooting: If you don't see the pop-up

Go to Remote Explorer.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Troubleshooting: If you don't see the pop-up

Go to Remote Explorer.

Expand Ports to see the listed port
number. For example, 3000

Choose the middle Open Preview icon
for the app to appear in a new tab.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Try out the app

Push Go!

Push Stop!

Let's review what's been done already*

(some is in wrappers/distros/launchers)

Add OTel imports and set up SDK

import "go.opentelemetry.io/otel/trace"
import "go.opentelemetry.io/otel"
import sdktrace "go.opentelemetry.io/otel/sdk/trace"

tp := sdktrace.NewTracerProvider(
sdktrace.WithSampler(sdktrace.AlwaysSample()))

otel.SetTracerProvider(tp)

Add trace spans to the logic

● mux.Handle("/", http.HandlerFunc(rootHandler))
○ Wrap rootHandler with HTTP plugin
○ Add dbHandler internal span.

● mux.Handle("/fib", http.HandlerFunc(fibHandler))
○ Returns /fib?i=n-1 + /fib?i=n-2

■ Wrap the handler
■ Add attributes for the parameters
■ Create spans for each parallel client call
■ Propagate the context to downstream calls.

othttp instrumentation of root handler
import "go.opentelemetry.io/otel/plugin/othttp"

func main() {
mux.Handle("/", othttp.NewHandler(

http.HandlerFunc(rootHandler), "root"))

func rootHandler([...]) {
ctx := req.Context()
trace.SpanFromContext(ctx).AddEvent(ctx, "Ran root

handler.")

func rootHandler([...]) {
ctx := req.Context()
dbHandler(ctx, "blue")

func dbHandler(ctx context.Context, color string) int {
tr := global.TraceProvider().Tracer("dbHandler")
ctx, span := tr.Start(ctx, "database")
defer span.End()

Internal spans & context propagation

TODO: Configure output to stdout
import "go.opentelemetry.io/otel/exporters/stdout/stdouttrace"

func main() {
std, err := stdouttrace.New(stdouttrace.WithPrettyPrint())
if err != nil {

log.Fatal(err)
}
sdktrace.NewProvider(...,

sdktrace.WithSyncer(std))

Python

Add OTel imports and set up SDK
server.py
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (

SimpleExportSpanProcessor,
ConsoleSpanExporter

)

from opentelemetry.instrumentation.requests import RequestsInstrumentor
from opentelemetry.instrumentation.flask import FlaskInstrumentor

Add OTel imports and set up SDK / stdout
trace.set_tracer_provider(TracerProvider())
trace.get_tracer_provider().add_span_processor(

SimpleExportSpanProcessor(
ConsoleSpanExporter()

)
)

tracer = trace.get_tracer(__name__)

app = Flask(__name__)

instrument_app(app)

RequestsInstrumentor().instrument(tracer_provider=trace.get_
tracer_provider())

Instrument Flask and Requests

What you should see...

See Terminal/Debug Console in Gitpod
{

"SpanContext": {
"TraceID": "9850b11fa09d4b5fa4dd48dd37f3683b",
"SpanID": "1113d149cfffa942",
"TraceFlags": 1

},
"ParentSpanID": "e1e1624830d2378e",
"SpanKind": "internal",
"Name": "dbHandler/database",
"StartTime": "2019-11-03T10:52:56.903919262Z",
"EndTime": "2019-11-03T10:52:56.903923338Z",
"Attributes": [],
"MessageEvents": null,
"Links": null,
"Status": 0,
"HasRemoteParent": false,
…

}

Span(name="root", context=SpanContext(trace_id=0xe2b0888b60ef4828851aa290136d9978, span_id=0x960a301445cd7495,
trace_state={}), kind=SpanKind.SERVER, parent=SpanContext(trace_id=0xe2b0888b60ef4828851aa290136d9978,
span_id=0xa51ce1f847f9b967, trace_state={}), start_time=2020-03-03T00:17:03.789244Z,
end_time=2020-03-03T00:17:03.795240Z)

⬅ Golang

Python ⬇

Understanding the output

JSON formatted info, output in order End() was called.
"SpanContext": {

"TraceID": "9850b11fa09d4b5fa4dd48dd37f3683b",
"SpanID": "1113d149cfffa942",
"TraceFlags": 1

},
"ParentSpanID": "e1e1624830d2378e",
"SpanKind": "internal",
"Name": "dbHandler/database",
"StartTime": "2019-11-03T10:52:56.903919262Z",
"EndTime": "2019-11-03T10:52:56.903923338Z",
"Attributes": [],
"MessageEvents": null,
"Links": null,
"Status": 0,
"HasRemoteParent": false,
"DroppedAttributeCount": 0,
"DroppedMessageEventCount": 0,
"DroppedLinkCount": 0,
"ChildSpanCount": 0

Attributes & MessageEvents
"Attributes": [

{
"Key": "http.host",
"Value": {

"Type": "STRING",
"Value": "opentelemetry-instructor.glitch.me"

}
},
{

"Key": "http.status_code",
"Value": {

"Type": "INT64",
"Value": 200

}
}

],
"MessageEvents": [

{
"Message": "annotation within span",
"Attributes": null,
"Time": "2019-11-03T10:52:56.903914029Z"

}
],

● Hit the Go and Stop button!

Have you tested the fibonacci output yet?

Visualize using Jaeger
We've set up Jaeger to receive traces. First set in .env:
JAEGER_ENDPOINT=52.205.133.101:4317

jaegerEndpoint, _ := os.LookupEnv("JAEGER_ENDPOINT")

jaeger := otlpgrpc.NewClient(otlpgrpc.WithInsecure(),
otlpgrpc.WithEndpoint(jaegerEndpoint))

jExporter, _ := otlp.New(ctx, jaeger)

tp, err := sdktrace.NewProvider(
sdktrace.WithConfig([...]),
sdktrace.WithSyncer(std), sdktrace.WithBatcher(jExporter)

)

Having trouble?

stdr.SetVerbosity(8) should work in golang for
enabling SDK debug.

logging.basicConfig(level=10) should work for
python.

JS: uncomment opentelemetry.diag.setLogger(...)

Go look for your trace!

The Jaeger visualization URL is at (notice the port number):

http://52.205.133.101:16686/search

Put in your SERVICE_NAME value into the service name, and
search for your recent traces!

Ask your neighbor for their SERVICE_NAME and compare!

Plugging in your own exporter

● Initialize a custom exporter with an API key
○ examples: Stackdriver, Lightstep, Honeycomb, etc.
○ A current list of vendors working with OpenTelemetry can be found at

https://opentelemetry.io/registry/

https://opentelemetry.io/registry/

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

But can we use Jaeger to debug these?

How many times is /fib?index=1 inside a call
to /fib?index=5?

How much longer (P99) does it take to
evaluate /fib of 5 compared to of 4?

Why is this so slow as index increases?

V6-21

One possible vendor choice
Learn to use Honeycomb's product UI!

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Some alternative choices

Signoz

https://signoz.io/teams/

Aspecto

https://app.aspecto.io/user/login

(during workshop we explored these first via
live screensharing, but without slides
corresponding, before moving onto
Honeycomb)

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

https://honeycomb.io/signup

Get a Honeycomb account

https://honeycomb.io/signup

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Create a team

Note to Existing Users:
Go to ui.honeycomb.io/teams
At the bottom, find “Create Team”

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

The first time you create a team as a new
user, it takes you directly to your API Key.

Get a Honeycomb API Key

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

If you already have an account:

1. Click the environment selector
at the top left

2. Choose Manage environments
at the bottom.

3. View API Keys.

Get a Honeycomb API Key

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Add credentials to send to Honeycomb

Provide your credential variables in the
.env file.

Using the File Explorer:

● Create a new file named .env
● Copy the contents of .env.example

into the .env file
● Replace the credential variables in the
.env file as needed

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Provide your credentials!

● HONEYCOMB_API_KEY identifies your
team and environment.

● Enter your API key from the
Honeycomb UI

● SERVICE_NAME groups your data
(name it after your username)

Add credentials to send to Honeycomb

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Re-run Your App

1)If your app is still running, stop it with
Ctrl+C

2) Save your .env file.

3) In the terminal, run the app with:

./run

Then, click “Go” and “Stop” in the app.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Use the Gitpod App again

Make the sequence of numbers appear.
Select Go!

… and then select Stop, after 5-7 numbers.

Repeat as needed to generate data.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Data should start flowing!

The blue box turns green

Click “Home”

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Get Data In

107107

Success!

A spike of requests
This is your goal

V6-21

● Housekeeping & Intros
● What is Observability?

Pre-break agenda

● Q&A

● Get some data in!

● Answer questions with the data!

● Improve the data

● Solve some puzzles

● Do more stuff with it

● Quickest route to data in
You
are
here

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Summary

In this section, we:

● Ran a demo app that is instrumented
with OpenTelemetry

● Sent data to Jaeger

● Got a hosted service account

● Sent telemetry from the demo app to a
hosted service

● Confirmed data ingestion from the
hosted service's home screen

V6-21

Using data to answer questions
Learn to use a tracing product UI!

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Section Overview

In this section, we will:

● Learn about tracing UIs and tools

● Find out what makes our sequence of
numbers app slow down

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Home

The basics:

Rate, error, duration graphs

You can always come to Home via
the Honeycomb logo at top left.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Let's find & examine a trace!

After using the app...

Look for the trace in Recent Traces
tab at the bottom of the Home
screen.

Use the View Trace button on the
row you want to examine further.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Parts of a trace

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Parts of a trace

span
span

span
span
span
...

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Parts of a trace

root span

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Parts of a trace
root span

span

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Raw data view

Also, the Recent Events tab at
bottom of Home view shows
raw JSON for events.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Raw data view

Sometimes you need to look at spans
 as wide events/structured logs!

Honeycomb supports showing a table
of spans and fields on those spans.

Go to the Raw Data tab.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Hello data

Click the house to get back to
Home

Click the first graph to zoom
into it.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Interactive Querying

Your service

A guess at “top-level spans”

Click and drag to zoom in on these

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Click into the
“where” clause
to change it

Click the X to
remove the
filter

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Find only the root spans (aka is_root)

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Push to run the
new query

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Add more visualizations!

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Now add a heatmap

Under VISUALIZE, add

HEATMAP(duration_ms)

then push Run Query.

It doesn’t look like much…

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Generating a little more data...

In your app, select Go! … and then make
it Stop after 5-7 numbers several times.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Run the query again

Change the timeframe back to
“Last 10 minutes”

Then zoom in again on the part of
the timeline with data.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

The higher the dot, the slower the request.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Heatmaps

The histogram's color shows the
density in that area: how many
requests took this long, at this time. (darker is
more of them)

Each area on the heatmap
corresponds to a time of day, and a
slowness of requests. (higher is
slower)

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

GROUP BY and HEATMAP

When in the Results tab...

You can hover over a group of
results to highlight just those
entries in the heatmap.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Click on the heatmap to see a trace

Click a dot

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

See an example!

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Examine a trace

To customize:

Select the Fields button in the upper
right corner and enter http.target.

NOTE: For Python and Go
implementations, use http.target
For others, use http.url

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Examine a trace

To customize:

Select the Fields button in the upper
right corner and enter http.target
(for Python and Go)

The display will update to show a
http.target column.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Search a trace

Search for spans that contain a
phrase anywhere in their fields

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Search a span

On the right, search all the fields in
the selected span.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Query by a value

After searching for a field (say, trace.trace_id)

Click the three dots next to the value to get a
handy menu

“Show only where field is value” gets you to a
query

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Try customizing with GROUP BY

Then scroll down to the table of results

Add “name” to the GROUP BY then Run Query

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Add visualizations to see more results

In VISUALIZE, add:

P99(duration_ms)

Then add that to the ORDER BY too.

Now see the slowest spans in the result table!

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Putting it all together: custom queries

VISUALIZE

WHERE

GROUP BY

ORDER BY

LIMIT

HAVING

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Find an especially slow trace

Go to the Traces tab now.

Click on the slowest trace in the
heatmap.

The next screen will be your
detailed Trace display.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Summary

In this section, we:

● Examined a trace for a specific
request

● Identified outliers using
Heatmaps and exemplars

● Customized our queries and
used multiple visualizations

● Inspected our raw data and
found the slowest traces

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Puzzles for the class

How many times is /fib?index=1 inside a call
to /fib?index=5?

How much longer (P99) does it take to
evaluate /fib of 5 compared to of 4?

Why is this so slow as index increases?

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Puzzles for the class

How many times is /fib?index=1 inside a call
to /fib?index=5?

Hint: Find an example trace.
Use “WHERE http.url CONTAINS index=5”
Then, choose “Traces” tab.

How much longer (P99) does it take to
evaluate /fib of 5 compared to of 4?

Hint: Use both
 VISUALIZE P99(duration_ms)
 GROUP BY http.url

Why is this so slow as index increases?

Don't forget to select the Run Query
button!

There is more than one method to
arrive at the answer.

V6-21

● Housekeeping & Intros
● What is Observability?

Pre-break agenda

● Q&A

● Get some data in!

● Answer questions with the data!

● Improve the data

● Solve some puzzles

● Do more stuff with it

● Quickest route to data in

You
are
here

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Puzzles for the class

How many times is /fib?index=1 inside a call
to /fib?index=5?

Hint: Find an example trace.
Use “WHERE http.url CONTAINS index=5”
Then, choose “Traces” tab.

In Query Builder, start with:
VISUALIZE COUNT

A Solution:
WHERE trace.parent_id does-not-exist
GROUP BY http.url
[For Python and Go apps, use http.target]

Focus on /fib?index=5.
Below the graph, select [∙∙∙] button in
http.url column in the /fib?index=5 row.
Choose "Show only where http.url =
http://intro-to-o11y-nodejs.glitch.me/fib?index=5

Select any point on graph to see the Trace Detail
View and count how many /fib?index=1 you see.

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Puzzles for the class

A Solution:
Return to your query builder display by
selecting the arrow next to the trace name in
the upper left corner.

Add to your query:
VISUALIZE P99(duration_ms)
GROUP BY http.url

Two graphs now appear.

In the table of results, sort and compare
duration_ms for /fib of 5 vs. /fib of 4.

How much longer (P99) does it take to
evaluate /fib of 5 compared to of 4?

Hint - Use Query Builder & add to your query:
VISUALIZE P99(duration_ms)
GROUP BY http.url

[For Python and Go apps, use http.target instead.]

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Puzzles for the class

Why is this so slow as index increases?

Examine a Trace in Trace Detail view.

Notice the double recursion and
no caching present...

V6-21

● Housekeeping & Intros
● What is Observability?

Pre-break agenda

● Q&A

● Get some data in!

● Answer questions with the data!

● Improve the data

● Solve some puzzles

● Do more stuff with it

● Quickest route to data in

You
are
here

V6-21

Post-break agenda

● Q&A

● Customize your demo application

● Power querying of observability data

● Add instrumentation to your own code

● Let's share out our results

You
are
here

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Add more fields and instrumentation

154154

Edit or add at least one attribute name
and one attribute value. (e.g.
"$firstName was here")

Look for, uncomment, and change the
key and value parameters to
SetAttributes()

Now, let's instrument /fib.
import "go.opentelemetry.io/otel/api/key"

func main() {
mux.Handle("/fib", othttp.NewHandler(

http.HandlerFunc(fibHandler), "fib"))
mux.Handle("/fibinternal", othttp.NewHandler(

http.HandlerFunc(fibHandler), "fibInternal"))

func fibHandler([...]) {
ctx := req.Context()
// Record the input value.
trace.SpanFromContext(ctx).SetAttribute(key.Int("input", i))
[...]
trace.SpanFromContext(ctx).SetAttribute(key.Int("result", ret))

We'll also want client info.
import "go.opentelemetry.io/otel/plugin/httptrace"
func fibHandler([...]) {

[...]
clientCall := func(ictx context.Context) {

trace.SpanFromContext(ictx).SetAttribute(key.Int("req", i))
req, _ := http.NewRequestWithContext(ictx, "GET", url, nil)
ictx, req = httptrace.W3C(ictx, req)
httptrace.Inject(ictx, req)
res, err := client.Do(req)

}
err := tr.WithSpan(ctx, "fibClient", clientCall)

Exercise for the reader: record error statuses and results.

with tracer.start_as_current_span(“getMinusOne”) as span:
span.set_attribute(“payloadValue”, value - 1)
respOne = requests.get(‘http://127.0.0.1:5000/fibInternal’,

minusOnePayload)

with tracer.start_as_current_span(“getMinusTwo”) as span:
span.set_attribute(“payloadValue”, value - 2)
respTwo = requests.get(‘http://127.0.0.1:5000/fibInternal’,

minusTwoPayload)

Python - Instrument Request Specifically

http://127.0.0.1:5000/fibInternal
http://127.0.0.1:5000/fibInternal

V6-21

Post-break agenda

● Q&A

● Customize your demo application

● Power querying of observability data

● Add instrumentation to your own code

● Let's share out our results

You
are
here

V6-21

About the Collector…

V6-21

© 2021 Hound Technology, Inc. All Rights Reserved.

This could be an entire talk…

http://3.236.120.251:55679/debug/servicez

I have a demo collector running… I'll live configure it to write to logz.io, honeycomb and the
jaeger instance.

You can repoint your apps to grpc://3.236.120.251:4317/ and use my routing.

Now only YAML needs updating to change routing.

http://3.236.120.251:55679/debug/servicez

161

Using OpenTelemetry with Logz.io
• You can export telemetry from OpenTelemetry Collector to the

Logz.io backend using the Logz.io exporter for OTel Collector:
https://github.com/open-telemetry/opentelemetry-collector-co
ntrib/tree/main/exporter/logzioexporter

• Here’s a guide on how to configure OTel Collector to send to
Logz.io and using the OTel community demo app reference:
https://logz.io/learn/how-to-run-opentelemetry-demo-with-log
z-io/

https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/exporter/logzioexporter
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/exporter/logzioexporter
https://logz.io/learn/how-to-run-opentelemetry-demo-with-logz-io/
https://logz.io/learn/how-to-run-opentelemetry-demo-with-logz-io/

162

Using OpenTelemetry with Logz.io
• Logz.io provides an OpenTelemetry distro you can use:

https://github.com/logzio/otel-collector-distro

• The easiest way to install it, is
with the wizard:
https://docs.logz.io/docs/user-
guide/telemetry-collector/

• Offers good telemetry
collection presets for various
self-hosted and managed
environments

https://github.com/logzio/otel-collector-distro
https://docs.logz.io/docs/user-guide/telemetry-collector/
https://docs.logz.io/docs/user-guide/telemetry-collector/

V6-21

Post-break agenda

● Q&A

● Customize your demo application

● Power querying of observability data

● Add instrumentation to your own code

● Let's share out our results
You
are
here

V6-21

Share with your colleagues

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Show and tell

165165

If you have a coworker here, you can
share with them!

Otherwise, add a coworker to your
team and show them!

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Bee a hero, make others heroes!

166166

Instrumenting with OTel is easy*

Auto-instrumentation is easier.

Sending small amounts data is free with
most providers!

Querying reveals insights

We're here to help you!

Feel free to add OTel to your own apps!

Instrument your own real applications

● OTel is GA right now.
○ Calling the API is safe to do.
○ SDKs for metrics change, but default to no-op.
○ OTel is in use by unicorns and publicly traded companies, and we do

promise stability now!

● We've applied for CNCF graduation!
● Your instructors and TAs are here to help!

V6-21

© 2022 Hound Technology, Inc. All Rights Reserved.

Here's what you learned today

168168

● Why observability matters

● How to add instrumentation and get
telemetry data flowing to Jaeger

● How to use Jaeger & hosted backends to
answer questions

● How to improve o11y & debugging
workflows

● How to share these lessons with your
team!

V6-21

Wrap-up

A meetup for people who use OTel

online

https://opentelemetryinpractice.net

Get the newsletter!

V6-21

Ways to get involved
CNCF Observability
Technical Advisory Group (TAG)

● CNCF Slack
#tag-observability channel

OpenTelemetry
● CNCF Slack #opentelemetry

channel
● OpenTelemetry.io
● github.com/open-telemetry

OpenSLO
● OpenSLO Slack
● OpenSLO.com

Schedule 30 minutes
● hny.co/meet/liz

Find us on Twitter
● twitter.com/lizthegrey
● twitter.com/opentelemetry

V6-21

Q&A / free instrumentation time

V6-21

Thank you!

hny.co/liz; @lizthegrey

