The Most Graceful
Termination™

How Kubernetes Pods Terminate and
What Your Application Can Expect

ngrok Harrison Katz - SRE

Who is this guy?

e Harrison Katz
e He/Him Pronouns
e Automation Enthusiast

e 5+ Years Kubernetes Experience

e Enjoys Reading and Writing Docs | read the docs so
e hkatza@ngrok.com you don't have to!

ngrok

mailto:hkatz@ngrok.com

Overview

e Whatis a Pod?

e Pod/Container Lifecycles
e How Pods are Deleted

e kubectl delete --flags

e Dynamic Graceful Shutdown

ngrok

What is a Pod Anyway?

e APl representation stored in etcd
e Managed by kubelet through a

Container Runtime Interface (CRI)
e Pause container process

e App container process (pid: 1)

ngrok

J
"""""""" V"@

{Pause Container}

E/CGroup \i
App Container }
vy

~ PID1

Pod Lifecycle Container Lifecycle

[Pending J [Waiting }
’

{_aunch Containers ------------------------- > < postStart
v v
[Running J [Unknown } [Running J
v
{erminate o Al e R > preStop
Y l
[Succeeded J [Failed } [Terminated }

ngrok

When are Pods Terminated?

Pods are mortal:
e Liveness probe failure (container restart) they live and

e Node Failure (abruptly)

e Eviction (resource contention) must die.

e APIRequest (graceful) < Today

ngrok

How Pods are Deleted

.
default 30
terminationGracePeriodSeconds: 60

&l
9|.

ol Update Pod | GEEEEEEEE Update Pod

2|: |DELETE Pod deletionTimestamp: "2001-01-01T10:00:00Z" Remove Pod
'g . Metadata deleti onGracePer?odSeconds: 60 Status

© Grace Period Seconds x s

I | =

S f Updat F

3 pdate orce

2 WATCH Pod |-> R””H'fskswp Pl & c‘:‘?E‘;M S%G}QI?_L Container DELETE
= Status Pod

| L Each Container = v v v

E s Run preStop Receive = Stops PPS

£ . Hook SIGTERM Running -

8 ["echo", "preStop"]

ngrOk © ngrok. All rights reserved. Confidential Information of ngrok

kubectl delete --flags

--grace-period = .deletionGracePeriodSeconds

‘ ‘”Termindting"

= “use the Pod'’s configured value”
> 8 = “‘immediately kill the Pod”
= “shortest possible graceful delete”
> N+1 = “use this exact grace period”
--force = skip termination process &&

remove Pod from etcd immediately

Caveats:
e “Terminating” is a fake status
. . metadata:
PY Only fIrSt ——grace—period IS respected deletionTimestamp: "2001-01-01T10:00:00Z"

deletionGracePeriodSeconds: 60

ngl’ok © ngrok and/or its affiliates. All rights reserved. Confidential Information of ngrok - For Recipient’s Internal Use Only

Graceful Termination Full Example

kind: Pod

metadata:
name: graceful-terminator
set by apiserver => "Terminating"
deletionTimestamp: "2001-01-01T10:00:00Z"
deletionGracePeriodSeconds: 60

spec:
terminationGracePeriodSeconds: 60 # default 30

containers:
- name: graceful-terminator
image: hjkatz/graceful-terminator # pid 1 will receive SIGTERM
lifecycle:
preStop:
exec:
uses grace period before SIGTERM -> container pid 1
command: ["echo", "Received preStop hook"]

© ngrok. All rights reserved. Confidential Information of ngrok

Dynamic Graceful Shutdown

0. Expose envars SPOD_NAME and SPOD_NAMESPACE via the downward API
1. SIGTERM — poll for .m.deletionTimestamp & .m.deletionGracePeriodSeconds
2. deadline = deletionTimestamp + deletionGracePeriodSeconds - overhead

3. Enter State: isTerminating() -> true

4. os.Exit(0) before deadline expires (SIGKILL)

ngrok

Example: Server Status

func main() {

for range time.Tick(l * time.Second) {
printGlobalState()

switch _global.State {
case StateStartup:

_startupOnce.Do(func() { go startup() })
case StateRunning:

case StateShutdown:
_shutdownOnce.Do(func() { go shutdown() })

default:
panic("unknown state: " + _global.State)

sntial Information of ngrok

Example: Shutdown Handler

log(_c.shutdown, "Shutting down...")

deadline := calculateShutdownDeadline()
log(_c.warn, "Server must shutdown before deadline: ", deadline)

ctx, cancel := context.WithDeadline(context.Background(), deadline)

go drainConnections(ctx)
go stopWebserver (ctx)

<-ctx.Done()

cancel ()

time.Sleep (200 * time.Millisecond)

log(_c.success, "Exiting gracefully")
O S . E X -i t (0) ntial Information of ngrok

Example: Calculate Deadline

fivePercentSeconds := int(gracePeriod.Seconds() * 0.05)

floorSeconds := 10

bufferSeconds := min(fivePercentSeconds, floorSeconds)

if time.Until(deletionTime).Seconds() < float64(bufferSeconds) {
log(_c.warn, "WARN: buffer time longer than remaining gracePeriod, defaulting to 0")
bufferSeconds = 0

}

log(_c.shutdown, "calculated buffer of ", bufferSeconds, "s")

deadline := deletionTime.Add(-(time.Duration(bufferSeconds) * time.Second))
return deadline

© ngrok. All rights reserved. Confidential Information of ngrok

Example: Drain Active Connections

deadline, _ := ctx.Deadline()
timeRemaining := time.Until(deadline)

activeConnections := 1000
batchSize := 1int(
float64 (activeConnections) /
math.Max (timeRemaining.Seconds()-1, 1.0)

)
maxBatchSize := 150

if batchSize > maxBatchSize {

log(_c.warn, "Calculated batchSize of ",
batchSize = maxBatchSize

log(_c.shutdown, "Draining ", activeConnecti

go func() {
<-ctx.Done()
if activeConnections > 0 {
log(_c.important, "Unable to safely
}
1O

for activeConnections > 0 {
activeConnections —-= batchSize

if activeConnections < 0 {
activeConnections = 0

}

if activeConnections <= 0 {
break

}

log(_c.shutdown, "Draining ", batchSize,

time.Sleep(1l * time.Second)

Example: Logs (running)

State: startup

Starting Lpns

Running inside kubernetes, setting up k8s client...
Setting state from 'startup' -> 'running'

Setting up shutdown signal handler...

Serving requests on :8080

State: running

State: running

State: running

State: running

Example: Logs (SIGTERM handler)

State: running

Received signal: terminated

Setting state from 'running' -> 'shutdown'

State: shutdown

Shutting down...

Running inside kubernetes, polling Pod metadata to calculate deadline
Pod is expected to be deleted in 1mO@s at 2024-03-17 18:10:18 +0000 UTC
calculated buffer of 3s

Server must shutdown before deadline: 2024-03-17 18:10:15 +0000 UTC
Draining 1000 connections in batches of 18 over 55s

Draining 18 connections, 982 left

State: shutdown

Draining 18 connections, 964 left

State: shutdown

© ngrok. All rights reserved. Confidential Information of ngrok

Example: Logs (shutdown)

Draining 144 connections, 136 left
State: shutdown
Successfully drained all connections

State: shutdown
State: shutdown
Exiting gracefully

ngrok

ngrOk © ngrok. All rights reserved. Confidential Information of ngrok

Things to Remember

“Terminating” is a fake status controlled by .metadata.deletionTimestamp
--grace-period overrides .spec.terminationGracePeriodSeconds
--grace-period=1 is the fastest way to gracefully shutdown a Pod
preStop hooks run before the SIGTERM signal is sent to PID 1

Please stop serving requests while your Pod is terminating

os.Exit (@) means success!

Complete this entire process before kubelet sends a SIGKILL

Tip your waiters & ¢ &

ngrok

Resources and References

e Slides and Demo: github.com/hjkatz/kubernetes-graceful-termination
e Me: hkatz@ngrok.com

e Kubernetes Pod Lifecycle
kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle

e Graceful exit mechanism for Pods in Kubernetes
www.sobyte.net/post/2022-06/k8s-pod-graceful

e PR: The second time a Pod is deleted the grace period does not take effect
github.com/kubernetes/kubernetes/pull /113883

e PR Comment: Table of grace period override behaviours
github.com/kubernetes/kubernetes/issues/115819

e How do you gracefully shut down Pods in kubernetes
tnext.io/how-do-you-gracefully-shut-down-pods-in-kubernetes-fb19f617cd67

e Graceful shutdown in kubernetes is not always trivial
blog.palark.com/graceful-shutdown-in-kubernetes-is-not-always-trivial/

https://github.com/hjkatz/kubernetes-graceful-termination
mailto:hkatz@ngrok.com
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-termination
https://www.sobyte.net/post/2022-06/k8s-pod-graceful/
https://github.com/kubernetes/kubernetes/pull/113883
https://github.com/kubernetes/kubernetes/issues/115819#issuecomment-1433201330
https://itnext.io/how-do-you-gracefully-shut-down-pods-in-kubernetes-fb19f617cd67
https://blog.palark.com/graceful-shutdown-in-kubernetes-is-not-always-trivial/

Questions
Comments
concerns? Siides, Demo

Resources

ngrok

