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Large systems are built with clean abstractions

1. Abstract away the messy code
into uniform “nodes”/processes

) 4

datanode. .createTemporary(storageType, storageld, block
{
(stage) {

= datanode. .createRbw(storageType, storageId
block, allowLazyPersist)
datanode.notifyNamenodeReceivingBlock(
block .getReplica().getStorageUuid())

= datanode. .recoverRbw(
block, newGs, minBytesRcvd, maxBytesRcvd)
block.setGenerationStamp(newGs)

= datanode. .append(block, newGs, minBytesRcvd)
block.setGenerationStamp(newGs)
datanode.notifyNamenodeReceivingBlock(
block .getReplica().getStorageUuid())

= datanode. .recoverAppend(block, newGs, minBytesRcvd)
block.setGenerationStamp(newGs)
datanode.notifyNamenodeReceivingBlock(
block .getReplica().getStorageUuid())

= datanode. .createTemporary(storageType, storageld

)

I0Exception( + stage +
+ block + + inAddr)

.getReplica()

= (cachingStrategy.getDropBehind() ==

leader

a distributed service

follower

pid3

follower

2. Model assorted
interactions as
clean messages



But software in practice is not “clean”
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OptionalTasks:1
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Protocol related workers

1/0 workers

Background tas

What appears “alive” may be experiencing serious issues




Rise of gray failures

A component appears to be working but is broken
- Occur across software and hardware stack
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- Awide variety of subtle symptoms and root causes
e e.g., exception, zombie thread, thrashing, flaky I/0O, random packet loss, silent corruption
5



Case 1: Distributed storage service

| Front End Front End —— .
EN 31S

> broken

Stream
Manager

ook " re-replication,
lowfreeblocks

cigsh fragmentation
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Extent Nodes (EN)



Case 2: Distributed coordination service

client

wire @) Q) cren

xezp @) @) creare No leader re-election was triggered!

Heartbeat == Heartbeat

Propose

»

Ack

9 APACHE

& ZooKeeper

P
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Commit

Follower Follower Leader Follower Follower

ZooKeeper cluster

)
v v




Failure root cause

r;
synchronized (node) {

output.writeString(path,
output.writeRecord (node,

"path"); % Stuck due to transient network issue
"node") ;

}
L Serialize Heartbeat
Processor
—
4 N—
Q

Leader

https://www.usenix.org/conference/srecon16/program/presentation/nadolny



https://www.usenix.org/conference/srecon16/program/presentation/nadolny

The many faces of gray failure

66 A performance issue. ’ ,

“ A Heisenbug, sometimes it occurs and sometimes it does not. ”

(44 The system is failing slowly, e.g., memory leak.”

“ An increasing number of transient errors in the system, which
results in reduced system capacity. 99



An abstract model

web app analytics system?2

= &

probe

Observer

>
‘

report

Fault-tolerant System

Note: these are logical entities

user/operator

distributed storage system
laaS platform

data center network
search engine
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Key trait of gray failure: differential observability

[HotOS ‘17]

different entities come into different conclusions
about whether a system is working or not

web app analytics system2  operator

observatlons
observer deems

Allapps deem  App; deems

systemgood system bad

observatlons systemgood
probe observer deems
Observer systembad
report

healthy or w/ gray

latent fault eof el crash
A Fault-tolerant System

fault tolerance at play
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Take-away principles:

1. Close the observation gap
* Nines/heartbeats are not enough
* Multi-dimensional signals

web app analytics system2  operator

observations
probe
{ Observer
. report

1 ,’/
| Pid
| Reactor -
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Take-away principles:

1. Close the observation gap

2. Approximate application view

* Infeasible to eliminate differential observability
due to multi-tenancy and modularity constraints

° Use approximate measurements web app analytics system2  operator

observations
probe
{ Observer
. report

1 ,’,
| Pid
| Reactor -
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Take-away principles:

1. Close the observation gap
2. Approximate application view

3. Leverage the power of scale

* Individual component only has a partial view
 Breakisolated observations webapp  analytics system2  operator

observations A
* Address “blame game” ? %
observations
| Observer
, report

14



Take-away principles:

1. Close the observation gap

2. Approximate application view
3. Leverage the power of scale

4. Harness the temporal patterns

Evolution of gray failures over time

web app analytics system?2

observations
probe
| Observer
. reportz
1 P
1 e
I/’

operator
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System approach to address
gray failures



Monitoring
Service

Requester q‘\\
| >

Requester <""’“""""'>

50 >

Vs°

S ‘a\_e
)
Requester é// Provider %
Q

| co% |
NS
Failure

Detector

Insight: detect what the requesters see
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A new approach: in-situ observers

Any system component can directly act

as an In-situ observer

- during its execution, gather evidence about

other components in situ

Challenge: modularity principle

- a component has incentives to handle
others’ errors, but may not for reporting

- need automated method to capture
observations from existing code

e 2

Leader Follower

/¥

void syncWithLeader (long newlLeaderZxid) {
try A
deserializeSnapshot (leaderlIs) ;
String sig = leaderIs.read("signature");
if (!sig.equals ("BenWasHere"))
throw new IOException ("Bad signature");
} else {
LOG.error ("Unexpected leader packet.");
System.exit (13) ;
}
catch (IOException e) {
LOG.warn ("Exception sync with leader", e);
sock.close () ;
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Panorama: capturing system observability

void func () {

try {
sync (t);

} catch (RemoteError e)
LOG.error (e) ;
retry();

}

}

\\

{

Software

Static analysis

—

instrumentation

+

void func () {
try {
sync (t) ;
} catch

LOG.error (e);
retry () ;

(RemoteError e) {
report observation(t, e);

AN

Context

N

In-situ observer

A tool to convert a program into an observer

= Uniform observation abstractions

= Ageneric failure detection service for any
component to participate

~_ Observer

Component A

rpc

T
e

_—~> Panorama instance

observation,

A

exchange
observations

—

™\

Online

>

\
SubmitReportld(subject,
context)

[OSDI 18]

Subject

Component B
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Convert component into in-situ observer

Goal: find instructions in a program that can potentially

provide error evidence about other programs

Challenge: such instructions are scattered in the source code

Program analysis to systematically instrument observation hooks

4 Step 1 A

locate boundary-crossing
calls (ob-boundary)

- J

/

4 Step 2 A
identify the observer and
the subject
- /

Step 3

extract observation
point (ob-point)




Detecting the ZooKeeper gray failure

# of failure reports

O -
failure starts ——————fp . . . . . — e {gilure clears
02:37:002:37:387:38:08,.38:3¢,:39:08,:39:38,.40:0¢,.40:3¢;:41:00

S ——

| X timeout + success|

client view

3
qC)le()Z_
UEV :

02:37 "0%2'-37 “3%2'-38"0%2238:3%2‘.39‘0%2:3933%2;4020%2-_40:3%2._41:00
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Latency overhead to observers

local RPC library call RPC
A A A

4 N [ A\ 4

ReportAsync Judge Propagate

114.6 ys 0.36 us 109.0 ys 776.3 us

main overhead perceived
by the in-situ observer

ZK mZK+ Cassandra m Cassandra+
1600 875
1200 1489 700
w ) 677 680 -
= = 525 =
> > o
o 800 o c
o & 350 — %
© ©
— 400 s B
70
0 0
Read Write Read Write

Less than 3% latency overhead

70

HDFS

m HDFS+

52.5

35 —

17.5 —

51

Read

61

Write
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Case Studies: How Microsoft
Azure Core AlOps Applies the
Differential Observability Model

4 case studies to demonstrate the 4 principles in differential
observability model



AlOps for Azure Core Infra Quality & Customer

Experience

Services Customers

Engineering

Integrating Al into how we build
and operate Azure

Quality & Customer experience related AIOps projects in Compute

Al for Systems

VM Pre-provisioning: Prediction + optimization) WWW ’23, IJCAI ‘20

Host resilience [Deep Learning + Multi-bandit] OSDI '20

Disk/Memory Failure Prediction [Deep Learning + Assembly Tree] OSDI 22
Spot VM Harvest optimization [Prediction + optimization] AAAI ‘21

Al for DevOps: Regression prevention and monitoring

Safe Deployment and Change Management NSDI ’20, ICSE ‘23

Anomaly Detection + Correlation KDD ‘21

Host health governance [Anomaly Detection + Correlation] OSDI 22
Pre-production: Graph theory-based experiment design + A/B comparison

Al for Customers

LLM and Chatbot
Self-Help Recommendation Systems

24



Apply Differential Observability Model in Azure:
From Data to Actions

Data Insights Actions

* Service * Detect * Mitigate/Resolve

e System ¢ Diagnose e Avert future pain
* DevOps process ¢ Predict e Optimize resource allocation
e Optimize e Improve architecture & process

25












Heterogenous systems
in hyperscale bring
complexity in detection

* Microsoft Azure has 62 +
regions and 200+
datacenters globally

* Complexinteractions
between agents in
different cloud levels

* Need careful designon
applying differential
observability modelin
hyper-scale system

Workloads
Web services, 10T, ML,
Microservices, Serverless...

Azure Kubernetes Service Azure OpenAl Services Virtual Machines _

Global

1 NRP is pass-

through
. Compute resource Network resource Regional network
Reglonal provider —p provider manager
RNM gets info

zequesli RNM makes
etwor network object
Resources
fromTM

updates
Tenant Datacenter

Allocate Network

Regional Directory
Service

to RDS VIP ranges
from USLB

Cluster Directory
Service
SLBHP is
configured

Netwgrk X LBProgramming with SLB
Programming endboint

NMAgent pulls P

Send goal state from CDS

Load balancer

Agent

A-PA mappings ‘ SLB finds its

Nwk service
Manager

Send goal state

Tenant Manager Datacenter
Agent Manager Agent
Node

Network Agent

Host/Guest OS

29



Closing the Observation Gap

Case Study 1: Applying ClosinF Observation Gap Principle in
Guest and Host Insights Analysis



Closing the Observation Gap: Incorporating
Guest VM Insights into Host Infra Monitoring

* Traditional monitoring in cloud provider is usually
heavily focusing on infra side.

* Service Owner is responsible for service monitoring
(e.g. Cassandra service has long read/write delay)

* Blame game between service Issue and host Issue

O Time to mitigate for customer support tickets

O Time to recover SLI/SLO regressions

O Hard to ensure zero workload impacts on infra
changes

O Hard to meet the diverse workload SLI/SLO
requirements



Closing the Observation Gap: Incorporating Guest Insights into
Host Health Assessment and Diagnosis

* Empower workload owners to report the guest impacts: Azure Impact Reporting REST API | Microsoft Learn

* Run mission critical synthetics workload to understand the workload patterns

Customer Impact Reporting

' Data
s s e =
Report Impacts 1 TSend back Diagnosis
[ Impact enrichment and Cleanup J
o m e e e e m oo */_______________________________5‘ ___________________________________

. Detect and [ Host Failures Correlation Engines ] [ Change Correlation Management System J
' Insights

T — b oo

actions [ Node Issue Mitigations ] [ Stop bad rollouts ]



https://learn.microsoft.com/en-us/rest/api/impact/?view=rest-impact-2023-02-01-preview

Approximate
Application view

Case Study 2: Applying Approximate Application View
Principle to Approximate Guest Impacts with Host Impacts



Approximating Customer Impacts based on host impact
measurement.

Guest Insights data may not always be available
« Compliance and security issues

* High resource consumption for collection certain telemetries

/ Guest \

Service Read/write timeout-

\
Approximating ~
Customer impacts from
host measurement

Host Impactful deployment
cause network freeze -

K [Measurable in dev team] 3

H&
H&

i
H&

- - ———
N

\-————————




Harnessing temporal
patterns

Case Study 3: Applying Harnessing Temporal Patterns
Principle in Memory Leak Detection



Memory leak is notorious in cloud and cause gray failures

l l l l l l l l performance

serwce processes degradation

—'k—ﬁ—’—
I

=l Ghost reboot

VM allocations
®denied

@ i3

|

i‘! code
changes

host software components
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Challenges of leak detection in cloud

Noisy signals from environment
- many different workloads in the cloud with dynamic characteristics
- easily incur false positives

Slow leaks in long-running services
- memory leaks often last over days or weeks
- need to identify gradual changes

Large profiling data volumes
- need to analyze >10 TB memory usage data daily



Why is leak detection still challenging in cloud?

Extensive work in memory leak detection

Practice 1: static approach Practice 2: dynamic approach
- statically analyze the source code - Instrument programs and track the
- no runtime overhead object lifetime at runtime
Liraftizrfome - more accurate
_ inaccurate and not scalable to large ~ LIMitations
systems - intrusive and high overhead

Hard trade-offs among accuracy, overhead, and scalability



RESIN: exploiting temporal patterns

Insight 1:
- separate detection and pinpointing
problems
- decompose detection to multi-stages

Insight 2:
- a centralized approach for all components

- leverage temporal patterns at scale to
Improve accuracy

Achieve high accuracy, scalability, and
low overhead

lightweight . | Zoom-in in-depth
detection &, inspections

********

[OSDI ‘22]
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Overview of RESIN

detection

Bucket-bas ed pivot
analysis

Individual g roc.
analysis

diagnosis

Pattern-based
snapshot collector

mitigation
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Bucket-based pivot analysis

Each bucket is a collection of hosts with memory usage in a same range
- bucketization is done per component
- e.g., bOMB-bucket includes hosts running firewall services with usage 50MB-100MB

Insight: monitor trend of bucket size instead of individual component usage
- robust to tolerate noises due to workload effect (challenge 1)
- scalable to large clusters with massive hosts (challenge 3)

Time Private

ImageName Cluster Nodeld

stamp Usage

50 MB 100MB 200 MB 2GB

> - [o58% [5T Toe |

buckets of firewall.exe

firewall.exe |[NorthUS-1da [9das-sax1 2,334,720

90,413,12
0

170,341,3
11

11 firewall.exe |NorthUS-9lp [9das-yqOc 979

11 firewall.exe |Asia-b2 o1oz-bg75 1375

t1

41



Bucket-based pivot analysis

Run anomaly detection against time series of bucket size
- data points that exceed the p + 30 ' of the baseline data are anomaly

50MB  100MB 200 MB 2 GB
©_10 O )
nw | ©00lo 0 o Ol.| e -‘
i(®)] @) i H
baseline [ ICOINEANS tHE
O - dqomponentis leaking!
|83k ogme | | o ||
al e A
O b O >
ts - R o test
OJTY T IPRE] 4.2 - | g H+30
© O « 0 = >O . per-bucket normal
alerting bucket! distribution

model

[1] mean and standard deviation of the distribution



Second-stage detection: live heap snapshots

RESIN diagnoses leaks by capturing heap snapshot traces
- wait for leak allocation happens again to trigger completion
- differentiate snapshots before and after memory leak allocation

Alloc Stack

Alloc Stack Alloc Stack

Addr Id Size RefCount

Addr Id Size RefCount

Addr Id Size RefCount

0x80000 |1 64 2 0x80000 |1 64 2 0x80000 |1 64 2

0x90000 |1 128 |1

0x90000 |1 128 |1

tracing start leak




RESIN deployment status and scale

Running in Azure production since late 2018
- cover millions of hosts
detect leaks for 600+ host processes

detect leaks for 800+ kernel pool tags
the detection engine analyzes more than 10 TB memory usage data daily

the diagnosis module collects 56 traces on average daily



How effective is RESIN?

VM reboots reduced by 41x
- average number of reboots per 100,000 hosts per day due to low memory

VM allocation errors reduced by 10x
- ratio of erroneous VM allocation requests due to low memory

_, 100% - £ 100% -
S 80% A > 80% -
2 o
Y 60% - 5 60% -
S 40% A S 40% -
(O] i
5 20% - ;0 20% -
O% I I I ! I 1 1 | 1 I > 0% T T T T T T T T T T T T
09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09
Month (2020-2021) Month (2020-2021)

* data is normalized



Leveraging the power of
scale

Case Study 4: Safe Deployment



Why is safe deployment challenging?

Global
. Compute resource
Reglonal provider
Operation

failures/timeout

Cluster VT

OS Crash, Node
Reboot, Agent Crash

Tenant Manager
Agent

Node

Network resource
provider

Datacenter
Manager

Datacenter
Manager Agent

Azure Resource manager

Regional network
manager

Nework service
Manager

r

Regional Directory
Service

Cluster Directory
Service

Host/Guest OS

B= Microsoft

Load balancer
Agent
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Existing practice: pre-qualification test and safe WE \jicrosoft

deployment policy

Bake Time+
Health Signals

‘_l_\

Pilot/HW Light
Stage/Test == Canary _-‘ Dive/rsity _b{ Region >

Different Hardware SKU, HostOS

Medium Heavy
Region Region
version, BIOS, workload and etc.

e L HEHED -
T H-H - =

* Gradual rollout
* Manual go/nogo decision after baking at each step needed
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. .
Existing practice: local watchdog mu Microsoft

* Threshold-based anomaly detection model

 Cannot detect global issues that are minor in each cluster but severe across the
fleet

 Cannot detect latent failures

Cluster/Component Cluster/Component Cluster/Component
Level Watchdog Level Watchdog Level Watchdog

Rollout is stopped at cluster level with failures observed from over x nodes

49



. R
Existing practice: local watchdog mm Microsoft

Threshold-based anomaly detection at cluster level

Cannot detect issues that are minor in each cluster but severe across the fleet
Cannot detect latent failures

If multiple rollouts happened at the same time, it will randomly blame

Cluster/Component Cluster/Component Cluster/Component

Level Watchdog Level Watchdog Level Watchdog
= e BT e EE e E
— & & o g — BB % — B e %
P = e e @ = e e e
= & e o 8% % BE e e
® O ® € * @ & &8 @ @ o F

Pe
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Designh Goals

/\

Global and Intelligent
Watchdog

\
Local Watchdog

/ S

Safe Deployment
Policy

Pre-Qualification Test

M= Microsoft

* Take advantage of the differential observations
across large scale of the cloud system

* Adeployment of an agent take weeks to go over the
regions cluster by clusters

* Different agents landed on a cluster at different time

* Make go/nogo decision recommendations for
auto-stop and reduce the baking time
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M= Microsoft
[Gandalf: NSDI ‘20]

Overview of the Model

/ \

e J Correlation process: ldentiny

 All failure events

« All update events which rollouts are suspicious

¥

Anomgly I Ensemble I Spatial&Temporal - Exponeptial
k ction Voting Correlation D g /

\ /

/ = f dC 0 g N
/r amed Component ] Decision process: Assess the

* Fault Signature .
& customer impacts of the blamed
§ Feature extraction  components and failures

Binary decision +
supporting evidence

7
— ———

52



B® Microsoft

45%

Percentage of o 4
. . qc, 35%
Issues detected in 2
each 5 2"
. & 20%
environment. £ 15
§ 10%

& 5%

0%
Stage Canary Pilot Prod
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Open challenges: hyperscale

e Complex e |[dentify the right * Prevent gray ¢ |[dentify the noisy
dependencies telemetry for failures neighbors
across many layers logging e Risk management e Issue isolation

e Different VM types, e Large volume of and change
h/w SKUs, s/w data across management
versions, workloads, millions of VMs e Integrate
etc. > different e Various logging differential
baselines of normal conventions in observation model
behavior different h/w and in testing

s/w components



Conclusions

Key trait of gray failures is differential observability
No single silver bullet

Four principles
- Close the observation gap
- Approximate application view
- Leverage the power of scale
- Harness the temporal patterns

Contact:

Require both system and data-driven approaches ryanph@umich.edu
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