
Gray Failure: The Achilles' Heel of Cloud-Scale Systems

Ryan Huang1, Ze Li2

University of Michigan1 Microsoft Azure2

SREcon24 Americas

March 20th 2024

Outline

Principles + Practices

System + Data-Driven Approaches

Open Challenges

2

Large systems are built with clean abstractions

leader

follower

follower
a distributed service

pid2

pid3

pid1

1. Abstract away the messy code
into uniform “nodes”/processes

2. Model assorted
interactions as

clean messages

3

pid1

But software in practice is not “clean”

pid1

Background tasks

I/O workers

Protocol related workers

Local operators

Request workers

233 live threads

4
What appears “alive” may be experiencing serious issues

Rise of gray failures

A component appears to be working but is broken
- Occur across software and hardware stack

- A wide variety of subtle symptoms and root causes
• e.g., exception, zombie thread, thrashing, flaky I/O, random packet loss, silent corruption

Huang et al., HotOS ‘17

Gunawi et al., FAST ‘18

Hochschild et al., HotOS ‘21

5

Case 1: Distributed storage service

Extent Nodes (EN)

Stream
Manager

EN1 EN2 EN3 EN4 EN5 …

Front End Front End Front End

low free blocks

EN1,EN2,EN3
healthy
EN3 is
down

EN2,EN3,EN4
healthy
EN3 is
down
EN3 is

broken

crash

write

reboot
remove

re-replication,
fragmentation

6

Case 2: Distributed coordination service

Follower Follower Follower FollowerLeader

Heartbeat Heartbeat

Propose

Ack

Commit

Propose

Ack

Commit

CREATE

CREATE

WRITE

READ

[zk: leader(CONNECTED)] ruok

ZooKeeper cluster

No leader re-election was triggered!

imok

client

7

Failure root cause

Leader

Request
Processor Serialize Heartbeat

Stuck due to transient network issue
synchronized (node) {

output.writeString(path, "path");
output.writeRecord(node, "node");

}

8

https://www.usenix.org/conference/srecon16/program/presentation/nadolny

https://www.usenix.org/conference/srecon16/program/presentation/nadolny

The many faces of gray failure

A performance issue.

A Heisenbug, sometimes it occurs and sometimes it does not.

The system is failing slowly, e.g., memory leak.

An increasing number of transient errors in the system, which
results in reduced system capacity.

……

9

System Core

System

An abstract model

Observer

Reactor

App1 App2 App3

probe

report

• distributed storage system
• IaaS platform
• data center network
• search engine
• …

web app analytics user/operator

…Appn

system2

Note: these are logical entities

Fault-tolerant

10

Key trait of gray failure: differential observability

observations

System Core

System

Observer

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

A Fault-tolerant

[HotOS ‘17]
different entities come into different conclusions

about whether a system is working or not

All apps deem
system good

Appi deems
system bad

observer deems
system good
observer deems
system bad

gray
failure!

❷❶

❸ ❹

crash
healthy or w/

latent fault

fault tolerance at play

observations
≠

11

Take-away principles:

1. Close the observation gap
• Nines/heartbeats are not enough
• Multi-dimensional signals

observations

System CoreObserver

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

observations

12

Take-away principles:

1. Close the observation gap
2. Approximate application view

• Infeasible to eliminate differential observability
due to multi-tenancy and modularity constraints

• Use approximate measurements
observations

System CoreObserver

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

observations

13

Take-away principles:

1. Close the observation gap
2. Approximate application view
3. Leverage the power of scale

• Individual component only has a partial view
• Break isolated observations
• Address “blame game” observations

System CoreObserver

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

observations

14

Take-away principles:

1. Close the observation gap
2. Approximate application view
3. Leverage the power of scale
4. Harness the temporal patterns

• Evolution of gray failures over time
observations

System CoreObserver

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

observations

15

System approach to address
gray failures

16

Provider

Manager

Failure
Detector

Requester

Control Path

Data Path

Insight: detect what the requesters see

Requester

Requester

Monitoring
Service

heartb
eat

process_id

CPU usage

Mem Usage

Max Latency

…

17

A new approach: in-situ observers

Any system component can directly act
as an in-situ observer

- during its execution, gather evidence about
other components in situ

void syncWithLeader(long newLeaderZxid) {
 try {
 deserializeSnapshot(leaderIs);
 String sig = leaderIs.read("signature");
 if (!sig.equals("BenWasHere"))
 throw new IOException("Bad signature");
 } else {
 LOG.error("Unexpected leader packet.");
 System.exit(13);
 }
 catch (IOException e) {
 LOG.warn("Exception sync with leader", e);
 sock.close();
 }
}

FollowerLeader

Challenge: modularity principle
- a component has incentives to handle

others’ errors, but may not for reporting

- need automated method to capture
observations from existing code

18

Panorama: capturing system observability
...
void func() {

try {
sync(t);

} catch (RemoteError e) {
LOG.error(e);
retry();

}
}
...

Software

Static analysis

instrumentation

[OSDI ’18]

In-situ observer

...
void func() {
try {
sync(t);

} catch (RemoteError e) {
 report_observation(t, e);

LOG.error(e);
retry();

}
}
...

+

+

+

§ A tool to convert a program into an observer

§ Uniform observation abstractions

§ A generic failure detection service for any
component to participate

ObserverContext Subject

SubmitReport(subject,
observation, context)

Component A

Panorama instance

Component B

Online

exchange
observations

rpc

19

Convert component into in-situ observer

Goal: find instructions in a program that can potentially
provide error evidence about other programs

Challenge: such instructions are scattered in the source code

identify the observer and
the subject

Step 2
extract observation

point (ob-point)

Step 3Step 1
locate boundary-crossing

calls (ob-boundary)

Program analysis to systematically instrument observation hooks

20

Detecting the ZooKeeper gray failure

client view

failure starts failure clears

21

Latency overhead to observers

22

70

1,435

71

1,475

0

400

800

1200

1600

Read Write

La
te

nc
y

(u
s)

ZK ZK+

677 680695 689

0

175

350

525

700

875

Read Write

La
te

nc
y

(u
s)

Cassandra Cassandra+

51

61
53

62

0

17.5

35

52.5

70

Read Write

La
te

nc
y

(s
)

HDFS HDFS+

Less than 3% latency overhead

Report ReportAsync Judge Propagate

114.6 μs 0.36 μs 109.0 μs 776.3 μs

local RPC library call RPC

main overhead perceived
by the in-situ observer

Case Studies: How Microsoft
Azure Core AIOps Applies the

Differential Observability Model

4 case studies to demonstrate the 4 principles in differential
observability model

23

AIOps for Azure Core Infra Quality & Customer
Experience

Quality & Customer experience related AIOps projects in Compute

AI for Systems
- VM Pre-provisioning: Prediction + optimization) WWW ’23, IJCAI ‘20
- Host resilience [Deep Learning + Multi-bandit] OSDI '20
- Disk/Memory Failure Prediction [Deep Learning + Assembly Tree] OSDI ’22
- Spot VM Harvest optimization [Prediction + optimization] AAAI ‘21
- ….

AI for DevOps: Regression prevention and monitoring
- Safe Deployment and Change Management NSDI ’20, ICSE ‘23
- Anomaly Detection + Correlation KDD ‘21
- Host health governance [Anomaly Detection + Correlation] OSDI ’22
- Pre-production: Graph theory-based experiment design + A/B comparison
- ….

AI for Customers
- LLM and Chatbot
- Self-Help Recommendation Systems
- …

Customers

Engineering

Services

Integrating AI into how we build
and operate Azure

AI

24

Apply Differential Observability Model in Azure:
From Data to Actions

25

Data
• Service
• System
• DevOps process

Insights
• Detect
• Diagnose
• Predict
• Optimize

Actions
• Mitigate/Resolve
• Avert future pain
• Optimize resource allocation
• Improve architecture & process

26

27

28

Heterogenous systems
in hyperscale bring
complexity in detection

• Microsoft Azure has 62 +
regions and 200+
datacenters globally

• Complex interactions
between agents in
different cloud levels

• Need careful design on
applying differential
observability model in
hyper-scale system

29

Azure Resource manager

Compute resource
provider

Regional network
manager

USLB

Tenant
Manager

Datacenter
Manager

Nwk service
Manager

Cluster Directory

Service
SLB

Tenant Manager
Agent

Datacenter
Manager Agent Network Agent Load balancer

Agent

NRP is pass-
through

RNM gets info
from TM

RNM makes
network object
updates

NSM pushes
CA:PA mappings
to RDS

CDS pulls
from RDS

SLB finds its
VIP ranges
from USLB

SLBHP is
configured
with SLB
endpoint

LBProgrammingNetwork
Programming

NMAgent pulls
from CDS

Allocate Network
Resources

Send goal stateSend goal stateSend goal state

Global

Regional

Cluster

Node

Network resource
provider

Regional Directory
Service

Host/Guest OS

Azure Kubernetes Service Azure OpenAI Services Virtual Machines ….

Request
Network
Resources

Workloads
Web services, IOT, ML,

Microservices, Serverless…

Closing the Observation Gap

Case Study 1: Applying Closing Observation Gap Principle in
Guest and Host Insights Analysis

30

Closing the Observation Gap: Incorporating
Guest VM Insights into Host Infra Monitoring

• Traditional monitoring in cloud provider is usually
heavily focusing on infra side.

• Service Owner is responsible for service monitoring
(e.g. Cassandra service has long read/write delay)

• Blame game between service Issue and host Issue

q Time to mitigate for customer support tickets
q Time to recover SLI/SLO regressions
q Hard to ensure zero workload impacts on infra

changes
q Hard to meet the diverse workload SLI/SLO

requirements

Closing the Observation Gap: Incorporating Guest Insights into
Host Health Assessment and Diagnosis
• Empower workload owners to report the guest impacts: Azure Impact Reporting REST API | Microsoft Learn
• Run mission critical synthetics workload to understand the workload patterns

Host Failures Correlation Engines Change Correlation Management System

Node Issue Mitigations Stop bad rollouts

Data

Detect and
Insights

actions

Synthetics Internal External

Customer Impact Reporting

Impact enrichment and Cleanup

Report Impacts Send back Diagnosis

https://learn.microsoft.com/en-us/rest/api/impact/?view=rest-impact-2023-02-01-preview

Approximate
Application view

Case Study 2: Applying Approximate Application View
Principle to Approximate Guest Impacts with Host Impacts

33

Approximating Customer Impacts based on host impact
measurement.
Guest Insights data may not always be available
• Compliance and security issues
• High resource consumption for collection certain telemetries

Guest

Host

Host Impactful deployment
cause network freeze

[Measurable in dev team]

Service Read/write timeout

34

Approximating
Customer impacts from

host measurement

Harnessing temporal
patterns

Case Study 3: Applying Harnessing Temporal Patterns
Principle in Memory Leak Detection

35

Memory leak is notorious in cloud and cause gray failures

36

code
changes

OS kernel

…

…
service processes

device drivers

host software components

performance
degradation

host reboot

VM allocations
denied

Challenges of leak detection in cloud

Noisy signals from environment
- many different workloads in the cloud with dynamic characteristics
- easily incur false positives

Slow leaks in long-running services
- memory leaks often last over days or weeks
- need to identify gradual changes

Large profiling data volumes
- need to analyze >10 TB memory usage data daily

37

Why is leak detection still challenging in cloud?

Extensive work in memory leak detection

38

Practice 1: static approach
- statically analyze the source code
- no runtime overhead

Limitations
- inaccurate and not scalable to large

systems

Practice 2: dynamic approach
- instrument programs and track the

object lifetime at runtime
- more accurate

Limitations
- intrusive and high overhead

Hard trade-offs among accuracy, overhead, and scalability

RESIN: exploiting temporal patterns

Insight 1:
- separate detection and pinpointing

problems
- decompose detection to multi-stages

Insight 2:
- a centralized approach for all components
- leverage temporal patterns at scale to

improve accuracy

Achieve high accuracy, scalability, and
low overhead

39

[OSDI ‘22]

lightweight
detection

Zoom-in
+

in-depth
inspections

RESIN

Bucket-based pivot
analysis

Individual proc.
analysis Reference builder

Pattern-based
snapshot collector

Snapshot analysis

detection diagnosis mitigation

...

leaking alert

Impact-minimized
decision maker

diagnosis report

Overview of RESIN

40

Bucket-based pivot analysis

Each bucket is a collection of hosts with memory usage in a same range
- bucketization is done per component
- e.g., 50MB-bucket includes hosts running firewall services with usage 50MB-100MB

Insight: monitor trend of bucket size instead of individual component usage
- robust to tolerate noises due to workload effect (challenge 1)
- scalable to large clusters with massive hosts (challenge 3)

41

Time
stamp ImageName Cluster NodeId PID Private

Usage …

t1 firewall.exe NorthUS-1da 9das-sax1 254 2,334,720

t1 firewall.exe NorthUS-9lp 9das-yq0c 979 90,413,12
0

t1 firewall.exe Asia-b2 o1oz-bg75 1375 170,341,3
11

t1 … …

50 MB 100 MB 200 MB 2 GB

…t1

buckets of firewall.exe

Bucket-based pivot analysis

Run anomaly detection against time series of bucket size
- data points that exceed the μ + 3σ 1 of the baseline data are anomaly

42

…

… … … …

… … … …

…

…

alerting bucket!

[1] mean and standard deviation of the distribution

50 MB 100 MB 200 MB 2 GB

baseline

test μ μ+3σ
per-bucket normal
distribution
model

t1

t2

t3

outlier means the
component is leaking!

Second-stage detection: live heap snapshots

RESIN diagnoses leaks by capturing heap snapshot traces
- wait for leak allocation happens again to trigger completion
- differentiate snapshots before and after memory leak allocation

43

tracing start

Alloc
Addr

Stack
Id Size RefCount

0x80000 1 64 2

Alloc
Addr

Stack
Id Size RefCount

0x80000 1 64 2
0x90000 1 128 1

Alloc
Addr

Stack
Id Size RefCount

0x80000 1 64 2

0x90000 1 128 1

0xf0000 2 32 2

leak

RESIN deployment status and scale

Running in Azure production since late 2018
- cover millions of hosts
- detect leaks for 600+ host processes
- detect leaks for 800+ kernel pool tags
- the detection engine analyzes more than 10 TB memory usage data daily
- the diagnosis module collects 56 traces on average daily

44

How effective is RESIN?

VM reboots reduced by 41x
- average number of reboots per 100,000 hosts per day due to low memory

VM allocation errors reduced by 10x
- ratio of erroneous VM allocation requests due to low memory

45* data is normalized

Leveraging the power of
scale

Case Study 4: Safe Deployment

46

Why is safe deployment challenging?

Azure Resource manager

Compute resource
provider

Regional network
manager USLB

Tenant
Manager

Datacenter
Manager

Nework service
Manager

Cluster Directory
Service SLB

Tenant Manager
Agent

Datacenter
Manager Agent Network Agent Load balancer

Agent

Global

Regional

Cluster

Node

Network resource
provider

Regional Directory
Service

Host/Guest OS

Operation
failures/timeout

OS Crash, Node
Reboot, Agent Crash

47

Existing practice: pre-qualification test and safe
deployment policy

• Gradual rollout
• Manual go/nogo decision after baking at each step needed

Stage/Test Pilot/HW
Diversity

Light
Region

Medium
Region

Heavy
Region

B1 B2 B3 Bn

Canary

A1 A2 A3 An

Different Hardware SKU, HostOS
version, BIOS, workload and etc.

48

Cluster/Component
Level Watchdog

Cluster/Component
Level Watchdog

Cluster/Component
Level Watchdog

Rollout is stopped at cluster level with failures observed from over x nodes

Existing practice: local watchdog

• Threshold-based anomaly detection model
• Cannot detect global issues that are minor in each cluster but severe across the

fleet
• Cannot detect latent failures

49

Cluster/Component
Level Watchdog

Cluster/Component
Level Watchdog

Cluster/Component
Level Watchdog

• Threshold-based anomaly detection at cluster level
• Cannot detect issues that are minor in each cluster but severe across the fleet
• Cannot detect latent failures
• If multiple rollouts happened at the same time, it will randomly blame

Existing practice: local watchdog

50

Design Goals

Pre-Qualification Test

Safe Deployment
Policy

• Take advantage of the differential observations
across large scale of the cloud system
• A deployment of an agent take weeks to go over the

regions cluster by clusters
• Different agents landed on a cluster at different time

• Make go/nogo decision recommendations for
auto-stop and reduce the baking time

Global and Intelligent
Watchdog

Local Watchdog

51

• Blamed Component
• Fault Signature

Binary decision +
supporting evidence

Feature extraction

Decision process: Assess the
customer impacts of the blamed
components and failures

Ensemble
Voting

Anomaly
Detection

Spatial & Temporal
Correlation

• All failure events
• All update events

Exponential
Decaying

Correlation process: Identify
which rollouts are suspicious

Overview of the Model

52

[Gandalf: NSDI ‘20]

Percentage of
issues detected in
each
environment.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Stage Canary Pilot Prod
Pe

rc
en

ta
ge

 o
f I

nc
id

en
ts

53

Open challenges: hyperscale

Cascading effect and
heterogeneity

• Complex
dependencies
across many layers

• Different VM types,
h/w SKUs, s/w
versions, workloads,
etc. à different
baselines of normal
behavior

Right logs at right
time

• Identify the right
telemetry for
logging

• Large volume of
data across
millions of VMs

• Various logging
conventions in
different h/w and
s/w components

Preventive
measure

• Prevent gray
failures

• Risk management
and change
management

• Integrate
differential
observation model
in testing

Noisy neighbors in
shared tenant

• Identify the noisy
neighbors

• Issue isolation

54

Conclusions

Key trait of gray failures is differential observability

No single silver bullet

Four principles
- Close the observation gap
- Approximate application view
- Leverage the power of scale
- Harness the temporal patterns

Require both system and data-driven approaches ryanph@umich.edu

55

Contact:

mailto:ryanph@umich.edu

