
Sailing the Database Seas:
Applying SRE principles at scale

SRECon EMEA
Tuesday 29 October 2024, Dublin

martin.alderete@booking.com
ioannis.androulidakis@booking.com

mailto:martin.alderete@booking.com
mailto:ioannis.androulidakis@booking.com

 2

$ whoami

❏ Ioannis Androulidakis (@ioandr)

❏ Site Reliability Engineer at Booking.com

❏ Database Engineering Team, Application Data Services

❏ Diploma in Electrical & Computer Engineering, NTUA

❏ Operating Systems, Storage, Observability

❏ Linux enthusiast, OSS contributor

https://www.linkedin.com/in/ioandr
https://github.com/ioandr
https://x.com/ioandr_

 3

$ whoami

❏ Martin Alderete (@malderete)

❏ Principal Site Reliability Engineer at Booking.com

❏ Database Engineering Team, Application Data Services

❏ 15+ years of experience in Distributed Systems,

System-level Programming and Site Reliability

❏ Passionate about OSS (also contributor), member of

different technical groups

https://www.linkedin.com/in/alderetemartin
https://github.com/malderete
https://x.com/alderetemartin

 4

1. Database Reliability at Booking.com

2. SLIs and SLOs for Distributed Database Systems

3. Automating MySQL Capacity Planning

4. Postmortem Culture

5. Q/A

The Journey

 5

1. Database Reliability at Booking.com

2. SLIs and SLOs for Distributed Database Systems

3. Automating MySQL Capacity Planning

4. Postmortem Culture

5. Q/A

The Journey

 6

Databases at Booking .com

MySQL is our main relational datastore

Single primary for WRITEs, tens/hundreds of replicas for READs
In general, choose availability over consistency 1

Multi-cloud

Our fleet spans across different
platforms:

● Bare-Metal (ServerDB)
● Private Cloud (Openstack)
● Public Cloud (AWS)

○ Self-managed (EC2)
○ Managed (RDS)

Multi-region

MySQL
clusters
> 250

MySQL servers

> 10K

ServicesQPS

100M+

Ownership

Always deploy in > 2 regions
(typically 3 regions in Europe)

We do not own data
We do not own tables or schemas
We do own database infrastructure

1. https://en.wikipedia.org/wiki/CAP_theorem / https://en.wikipedia.org/wiki/PACELC_theorem

Transactions, Fintech,
Payments, Frontend,
Customer Support

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/PACELC_theorem

 7

Primary

Intermediate Primaries
Replicas (RO)

Topology of semi-sync MySQL cluster

 8

Database
Reliability
Engineering
(DBRE)

Provide database expertise
Promote best practices for databases, automate
database-related operations, provide self-service tools

Participate in on-call rotation
Support and debug database issues across services,
join firefighting calls, cooperate with peer SREs

Deliver database observability
Implement database monitoring, alert on SLOs,
measure performance

Set of tools and practices around
database systems to ensure they are
reliable, scalable and compliant
with regulations.

 9

Eliminating Toil
2

Database clusters are distributed
across clouds and locations.
Database primaries and replicas
are different by nature.

Monitoring
Distributed Systems 1

Outages WILL happen. Do not solve
the same problem twice. Educate
people and understand systems
better.

Running databases at scale comes
with a variety of repetitive
operational tasks that are common
across clusters. Aim for automation.

Postmortem culture
3

1. https://sre.google/sre-book/monitoring-distributed-systems
2. https://sre.google/sre-book/eliminating-toil
3. https://sre.google/sre-book/postmortem-culture

SRE Principles for Database Engineering

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/eliminating-toil/
https://sre.google/sre-book/postmortem-culture/

 10

1. Database Reliability at Booking.com

2. SLIs and SLOs for Distributed Database Systems

3. Automating MySQL Capacity Planning

4. Postmortem Culture

5. Q/A

The Journey

 11

● Full table scans → long-running processes

● Non-indexed, complex queries → slow, expensive

● Database-as-a-queue → locking issues, timeouts

● READ from primary instead of replicas → increased load on primary

● Bulk UPDATE/DELETE → replication delay

● Online Schema Changes (OSC) on huge tables → contention, I/O load

● Excessive number of client connections → hit max connections limit

● …

Database performance is sensitive to users

 12

Which SLIs we reject for database SLOs

Replication Delay

The amount of time a
MySQL replica is behind

its replication source

3

Throughput

The number of queries a
MySQL server can handle

per second

2

Query Latency

The time it takes for a
MySQL server to execute a

query and return result

1

“If you cannot measure it (correctly) you cannot improve
it”

Booking.com Presentation name

“Decide on the
right depth!

Customers don’t care about
innodb_buffer_pool_pages_total
or cpu_usage_total

 14

Which SLIs we use for database SLOs

Read Availability

MySQL replicas respond to
read requests from clients

1

Replication Delay

The amount of time a
MySQL replica is behind

its replication source

3

Throughput

The number of queries a
MySQL server can handle

per second

2

Query Latency

The time it takes for a
MySQL server to execute a

query and return result

1

Write Availability

MySQL primaries respond
to write requests from

clients

2

Replication Running

MySQL replicas receive
changes from source and

apply them locally

3

 15

Target
99.99% ("four nines")

Schedule
The SLI is calculated 24/7 every 10 sec

Who
MySQL Availability Reporter (Golang). Runs with
multiple instances across all regions

How
Execute a read probe (SELECT) against two
random replicas of every MySQL cluster

Timeouts
Connect: 2 sec, Read: 5 sec

Read Availability SLO

ten_secondly.mysql.$cluster.read_availability.$region.ok
ten_secondly.mysql.$cluster.read_availability.$region.ko

If at least one successful read probe is achieved the
data point is a pass / OK, otherwise a miss / KO.

The individual measurements are composed over
time by taking the percentage of OK measurements
with respect to the total number of measurements.

http://uptime.is/99.99

 16

Target
99.97% ("three nines seven")

Schedule
The SLI is measured 24/7 every 1 sec

Who
MySQL Availability Reporter (Golang). Runs
with multiple instances across all regions

How
Execute a write probe (INSERT) against the
(single) primary of every MySQL cluster

Timeouts
Connect: 2 sec, Write: 8 sec

Write Availability SLO

If at least one successful write probe is achieved the
data point is a pass / OK, otherwise a miss / KO.

The individual measurements are composed over
time by taking the percentage of OK measurements
with respect to the total number of measurements.

secondly.mysql.$cluster.write_availability.$region.ok
secondly.mysql.$cluster.write_availability.$region.ko

http://uptime.is/99.97

 17

● In-house Golang project
● Runs on Kubernetes and works

across platforms
● Imitates MySQL’s consumers (apps)
● Knows about Service Discovery
● Monitors READ and WRITE

availability with probes
● Stores (aggregated) metrics in

remote Graphite instance

MySQL Availability
Reporter

 18

Target
99.95% ("three nines five")

Schedule
The SLI is measured 24/7 every 10 sec

Who
Badmin Agent (Python). Runs with a single
instance inside every MySQL server

How
Query the performance schema1 for replication
status2 of every replica of every MySQL cluster

Replication Running SLO

If replication is running between the replica and the
primary (source) the data point is considered pass /
OK, otherwise a miss / KO.

The individual measurements are composed over
time by taking the percentage of OK measurements
with respect to the total number of measurements.

1. https://dev.mysql.com/doc/refman/8.4/en/performance-schema.html
2. https://dev.mysql.com/doc/refman/8.4/en/show-replica-status.html

ten_secondly.mysql.$cluster.$region.replication_running.ok
ten_secondly.mysql.$cluster.$region.replication_running.ko

http://uptime.is/99.95
https://dev.mysql.com/doc/refman/8.4/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.4/en/show-replica-status.html

 19

● In-house Python project (10+ years old)
● Sits next to every MySQL server
● Provides functionality and automation

for DBA tasks
● Queries MySQL performance schema

for replication status
● Stores (aggregated) metrics in remote

Graphite instance

Badmin Agent

 20

MySQL SLIs/SLOs in action - Genius DB

 21

MySQL SLO
Violations

● Write Availability
SLO is violated
more often

● The number SLO
violations is small
given the number of
MySQL clusters

● Spikes can happen

 22

Who violates our MySQL SLOs?

 23

Who violates our MySQL SLOs?

 24

Choose SLIs that are 100% under your control
to define your database SLOs
This helps you avoid “false positives” and stay within your
SLO budget. Reduce “alert fatigue”

Decide where it makes sense to measure your
SLI
Depending on the metric, you might need to measure
close to the database server or mimic “how the application
sees it”

Don’t pursue much reliability than what’s
strictly necessary
Aiming at a 100% SLO is a bad decision. Use your SLO
budget and always educate developers

Takeaways

 25

1. Database Reliability at Booking.com

2. SLIs and SLOs for Distributed Database Systems

3. Automating MySQL Capacity Planning

4. Postmortem Culture

5. Q/A

The Journey

 26

● Server provisioning, configuration, maintenance

● Schema splits, changes

● Password rotation, grants

● Switchover/failover of primaries

● Daily backups and restores of volumes

● MySQL upgrades

● Fleet sizing

● Connection management

● Heal broken replication

● …

Database tasks introduce TOIL

Booking.com Presentation name

“Our approach:
Relentless
Automation

Reliability is our top priority: alerts alone
are not enough

Choose proactive over reactive

Our fleet grows faster than our database
engineering teams

 28

Why we automated MySQL Capacity Planning

Capacity planning is critical for Keeping The Lights On (KTLO)

● Risk mitigation: undersized MySQL clusters are a risk for business (peak load)

● Cost control: oversized MySQL clusters increase our bill

● Scalability: time-consuming, repetitive task common for all MySQL clusters

● Continuous Learning: examine new hardware profiles and workloads, know your

tools and infrastructure better

● Analytics: vertical vs horizontal scaling, forecasting, reporting

 29

MySQL Capacity
Planning:
Design Decisions

Schedule at peak hour daily
We choose to run capacity tests on MySQL servers
at the time of peak traffic, every day

Run against our production fleet
We choose to run capacity tests on MySQL servers
serving production traffic

Ability to stop capacity test at any time
In case of emergency (e.g., outage) we want a
killswitch to stop a capacity test immediately

01

02

03

Prioritize business continuity over cost
efficiency
Introduce safety measures to ensure that MySQL pools
always have sufficient capacity to serve traffic

04

 30

Logical definition of READ query workload coming from specific services

→ Isolation, separation of concerns, solve “noisy neighbour” problem

Pools have multiple instances in different regions

The building block for capacity planning: MySQL
pools

Pool Instance
(LON)

Pool
Member

Pool
Member

Pool
Member

Pool Instance
(AMS)

Pool
Member

Pool
Member

Pool
Member

Pool Instance
(FRA)

Pool
Member

Pool
Member

Pool
Member

Pool

 31

MySQL Capacity Metrics

Retrieved from Prometheus mysqld_exporter 1

● mysql.capacity_planning.$cluster.$pool.$region.Com_select

irate()[2m] of the number of executed SELECT queries on the MySQL server

● mysql.capacity_planning.$cluster.$pool.$region.Threads_connected

The number of threads (clients) connected to the MySQL server

● mysql.capacity_planning.$cluster.$pool.$region.Threads_running

The number of database connections with an active query

1. https://github.com/prometheus/mysqld_exporter (Our fork, sorry!)

https://github.com/prometheus/mysqld_exporter

 32

Scale PhaseCalculate PhaseTest Phase

Phased Approach: Test, Calculate, Scale

1 2 5

Step 1

The primary of each
cluster randomly
selects and then

schedules a
capacity (stress)
test in every pool

instance

Step 2

The selected pooled
replica runs the

capacity test until
a termination condition

is met (saturation or
max trials)

Step 4

Target Size Calculator
(cron) reads capacity

metrics and
thresholds,

calculates and
pushes target sizes

Step 5

Pool Autosizer
(cron) reads target
sizes, calculates
delta, calls the

provisioning API and
grows or shrinks
pools as needed

43

Step 3

The selected pooled
replica pushes

threshold values
(expected max load

each MySQL replica is
expected to take)

 33

Increase traffic, monitor saturation

Every 15 min we increase the weight of the pool member until saturation point or MAX_TRIALS

Detect saturation: CPU utilization, disk read latency, MySQL max connections1

Monitor thread

Main thread

1. https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_max_user_connections

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_max_user_connections

 34

Target sizes for MySQL pools

ceil(metric_value/threshold)

metric value = p90 value in the last 24h
(emitted by mysqld exporter)
threshold = median over the last 7 days
(emitted by the capacity test)

Regional Target Size

Sum of regional target sizes for all N regions
divided by N-1 (over provisioning for redundancy)

Extra adjustments:

1) Minimum target size adjustment (business

critical clusters)

2) Additive adjustment (budget for maintenance,
hardware failures, etc.)

Global Target Size

Keep the maximum target size found after
checking all 3 capacity metrics

Respect empirical upper and lower thresholds to
prevent drastic changes in pool sizes

 35

Example

Let’s assume a pool with instances in 3 regions and

regional target sizes of 5, 5 and 2, respectively.

Without over-provisioning we would get

12 / 3 = 4 replicas per region

With over-provisioning we get

12 / 2 = 6 replicas per region

Assuming a regional failure, each pool instance should be able to handle
1.5x times the traffic that it normally handles

 36

Pool Instance
(LON)

Pool Instance
(AMS)

Pool Instance
(FRA)scrape

capacity
metrics

Primary

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Test Phase

 37

Pool Instance
(LON)

Pool Instance
(AMS)

Pool Instance
(FRA)

schedule
capacity test

schedule
capacity test

schedule
capacity test

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Primary

scrape
capacity
metrics

Test Phase

 38

Pool Instance
(LON)

Pool Instance
(AMS)

Pool Instance
 (FRA)

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

run
capacity test

run
capacity test

run
capacity test

Primary

scrape
capacity
metrics

Test Phase

 39

Pool Instance
(LON)

Pool Instance
(AMS)

Pool Instance
(FRA)

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

push
threshold

values

push
threshold

values

push
threshold

values

Primary

scrape
capacity
metrics

Pool
Member

Pool
Member

Test Phase

 40

Pool Instance
(LON)

Pool Instance
(AMS)

Pool Instance
(FRA)

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Target Size
Calculator

(cron)

read threshold
values (7d)

push target sizes
calculate regional and

global target sizes

Primary

read capacity
metrics (24h)

scrapes
capacity
metrics

Calculate Phase

 41

Pool Instance
(LON)

Pool Instance
(AMS)

Pool Instance
(FRA)

Pool Autosizer
(cron)

read pool
target sizes

grow or shrink
pool (API)

Provisioning
Manager

calculate diff:
current vs target

pool size

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Primary

Scale Phase

 42

Pool Autosizer
(cron)

Provisioning
Manager

AWS EC2

Baremetal

Openstack

Pool Instance
(LON)

Pool Instance
(AMS)

Pool Instance
(FRA)

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Primary

Scale Phase

 43

Pool Instance
(LON)

Pool Instance
(AMS)

Pool Instance
(FRA)

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Pool
Member

Primary

Provisioning
Manager

AWS EC2

Baremetal

Openstack

Pool Autosizer
(cron)

Scale Phase

 44

MySQL Pool Autosizing in action

 45

● Explore new hardware profiles available in

private and public cloud

● Fine-tune capacity metric thresholds towards

cost efficiency

● Minimise errors (e.g., configure grants, database

locks)

● Use a single sink for metrics (Prometheus vs

Graphite)

Future Plans

 46

1. Database Reliability at Booking.com

2. SLIs and SLOs for Distributed Database Systems

3. Automating MySQL Capacity Planning

4. Postmortem Culture

5. Q/A

The Journey

Booking.com Presentation name

“
Systems break,
that is life!

Don’t Panic!
 stay calm…or try

 48

Service Health Review
Continuous process to reviews the statuses of services
we own.

Incident Management
Standard process to enable services to deliver on SLOs

Postmortems / RFO (Reason For Outage)
Continuous learning. Incidents are a NICE opportunity to
learn.

Network Drills
Keep our business running with the minimum impact.

Business Continuity
Automated checks of failure recovery aspects (capacity
planning, failovers, redundancy, backup, restore, etc).

Our Service Health Program

 49

● Drive Service quality and avoid repeated failures

● Understanding / Eliminating the root cause

● Improve our systems and processes

● Learning and continuous improvement

Postmortem - we embrace the
risk together!

Blameless
Blameless
Blameless

 50

RFO (Reason For Outage) - “RFOPedia”

 51

Some of our RFOs Follows-up

Contributions 🔨💙🎉

 52

We keep reading,
reviewing and learning

from past RFOs and
eventually come up with

“recommendation”,
“standard procedures”

and tools”

Publish the RFO making
it available for the whole

company.

Postmortem analysis
Write “RFO document”

Incident management
and “firefighting”

System breaks!

It isn’t just a DOCUMENT but a CULTURE !

Incident
starts

01

Response & Mitigation

02

Write RFO (Reason For
Outage)

03

RFO publish and
review

04

RFO Book Club
RFO Company Review

05

🔥
🔥

🧯
🧯

🧐
🧐

📚
📚

💡
💡

 53

Questions
?

 54

Thank you!

Booking .com

https://jobs.booking.com/booking/jobs

martin.alderete@booking.com
ioannis.androulidakis@booking.com

https://jobs.booking.com/booking/jobs
mailto:martin.alderete@booking.com
mailto:ioannis.androulidakis@booking.com

 55

● MySQL Keynote: Oracle OpenWorld 2018
● Booking.com: Reliable Operations and Rapid Development

with MySQL
● Running MySQL on Three Different Platforms at Booking.com

● and more…

Other presentations

https://www.youtube.com/watch?v=iNxqZSbaHYQ
https://www.youtube.com/watch?v=kBDL9B-HyEw
https://www.youtube.com/watch?v=kBDL9B-HyEw
https://www.youtube.com/watch?v=_vgar66kuNI

