
How your open loop control planes are causing outages

Dude, you forgot the feedback

Laura de Vesine
silverrose@datadoghq.com

What’s is it we do here?

2

Good morning SREcon! Since I’m lucky enough to start us off, I’m going to be the first
to ask a question you’ll probably find folks thinking about a lot this week: What would
you say ya do here? That is, what does it mean to be an SRE? This is a question I’ve
seen us asking ourselves quite a bit over the last few years. There’s a lot of answers
here, but one answer, and the one I’d like to focus on for this talk, is that SREs are the
people who specialize in building and using control planes in complex systems. And
y’all, I have some bad news: we suck at it. Building good control planes is hard, and
using bad ones is also very hard. I’m going to use this time in front of you to share
one of the ways I see us building control planes that could be so much better: we
forget to design in feedback, and set ourselves and others up for failure.

Image: "The Bobs," Office Space (1999)

What’s a control plane?

3

Since it’s kind of central to my point here, let’s make sure we’re on the same page
about what a “control plane” is (whether the idea of a control plane is already familiar
to you or not). As a general rule, what software does is take requests from users, and
give answers back, right? Software that we think of as having that primary job is a
“data plane”.
And then we have <click> all the many, many things we use to configure and operate
that data plane software – everything from configuration of the software itself, to
setting up (and configuring!) the machines it runs on and its network. All of that
management stuff is our “control plane”. It’s the things we use to make sure our
software is operating well, also known as “all the stuff SREs build and interact with”.
This is our bread and butter; the main thing we do and interact with in the typical
“SRE” job.

Server in cloud Image by https://www.vectorportal.com
User Image by https://icon-icons.com/icon/girl-person-woman-people/51109
Seafile UX image from
https://en.wikipedia.org/wiki/File:Seafile_6.0_web_interface.png
Gear icon from
https://icon-icons.com/icon/tool-tools-setting-configuration-preferences-options-setting
s-gear-cog/221263
Server image https://reserve.freesvg.org/server-icon-vector-image
YML file image
https://icon-icons.com/icon/yml-document-black-interface-symbol/57616
Firewall configuration image https://www.flickr.com/photos/xmodulo/15628237745

https://www.vectorportal.com
https://icon-icons.com/icon/girl-person-woman-people/51109
https://en.wikipedia.org/wiki/File:Seafile_6.0_web_interface.png
https://icon-icons.com/icon/tool-tools-setting-configuration-preferences-options-settings-gear-cog/221263
https://icon-icons.com/icon/tool-tools-setting-configuration-preferences-options-settings-gear-cog/221263
https://reserve.freesvg.org/server-icon-vector-image
https://icon-icons.com/icon/yml-document-black-interface-symbol/57616
https://www.flickr.com/photos/xmodulo/15628237745

UX feedback is important

4

And given that we build and interact a lot with this control plane stuff, let’s look at the
user experience we’re building for ourselves
A metaphor UX designers (and others) sometimes use is that it's easier to aim a
garden hose than an arrow. The reason is that a garden hose comes with continuous
feedback about your aim, allowing you to make small adjustments with good
information instead of guessing or overshooting. Shooting targets with an arrow is a
literal olympic sport; shooting targets with a hose is something virtually anyone can
do. Yet we routinely design the control planes in our systems to be an "arrow style"
UX: send a command, maybe get an ack that the command was received, then no
feedback about what's actually happening in production. We can (and do) learn to
work around this, but it doesn’t set us up for success. That’s especially relevant when
not everyone interacting with our control planes is a paranoid, grizzled SRE.

Archery image: https://www.wannapik.com/vectors/16697
Hose emoji AI generated

https://www.wannapik.com/vectors/16697

Patterns in postmortems

● Accidentally <action>ed
● <Action> unexpectedly resulted in <system change>
● Did not realize that…
● Intended to take <action>, but instead…

Looking for
● Surprise
● Misfired intent
● Lack of situational awareness

5

<slide appears by para>
Let me be clear – When I say we’re not setting ourselves up for success, I mean
we’re causing outages. In the spirit of true blamelessness – if the person working with
the control plane took the “wrong” action and caused (or worsened) an outage, the
problem is the control plane and its UX, not the operator. If you’re looking for it, you
can spot this when it’s happened in a postmortem with phrases like (slide). What
you’re looking for is comments that indicate an operator did not expect that the action
they took would have the effect on the system that it did. "How did our control plane
lead you astray" is a very useful question to ask as part of a blameless postmortem to
help find these cases!

Let’s talk about some examples!

6

So… this matters because stuff breaks, and everyone loves a good outage story.
Let’s talk about some!

7

First off, let’s talk about my very favorite example of a terrible control plane with bad
feedback (wait for hopefully laughing)

Okay well really “intent based” systems

8

Set
Production

Intent

Controller
Receives

Production
Actually
Changes

???

Valid Config

Okay, really I have this complaint about all intent-based control plane systems. These
are systems where you tell the control plane what you want (say, “I want 200 pods
with this binary and size running”), <click> it accepts your desire and you get
feedback <click> about whether that’s valid and well-formed configuration. Then
<click> the controller changes production to match your intent…….. <click> well,
probably. How do you know production actually changed? Where is that feedback
loop? What if there’s a problem (like there aren’t enough nodes to run the pods on, or
they’re failing to start up, or they never become healthy, or…). <click> Certainly you
can find out about those problems, but you have to go ask in another place
deliberately, or build that monitoring on top of the as-designed control plane and add
your own feedback.

How it goes wrong

9

I’ve already given an example of how this goes wrong – you try to scale up to prevent
or mitigate an outage, and something goes wrong with that scale-up. Watching this
happen in real outages, what I see responders do is to watch the graph looking for
CPU load to come down. At some point, they’ve been waiting for long enough without
a fix that they realize something must be wrong. At that point they go check the graph
for number of healthy pods running, or query the k8s API for the state of pods starting
up (or both). But because they have to actively seek out the information about the
actual state of production and anything blocking it from reaching the intended state,
there’s a delay in the response to the incident. I will definitely bet money that most of
the folks in this room have seen a version of this incident.

How to fix it

10

Set
Production

Intent

Controller
Receives

Production
Actually
Changes

Production Has Changed
(or not)

Valid Config

And the fix for this is obvious – build our tooling so that even if it’s intent-based, after a
change to production is requested, there’s automated polling and direct feedback
about whether that state has been realized, and notifications when there’s a problem.
The most trivially simple version of this is something like having the CLI give a “watch
your pods start up at this link” message in response to a command, but more active
feedback (while being careful of noise) is usually better here.

Fire-at-production

11

In a similar vein, we have what I think of as the “fire-at-production” control pattern. It’s
similar to “intent based” with the relatively subtle difference being that you’re
specifying a particular action, not an end state… but you’re still not getting any
feedback on the results of your action. This pattern is really common in release
systems in my experience – you (or automation) specify “deploy x build”, the release
system kicks off, and then…. is it on the machines yet? Are those machines behaving
differently based on your change? (not just “have they broken”, but “did the change
have an effect”).

Dart image from https://openclipart.org/detail/228817/blindfolded-darts-player

https://openclipart.org/detail/228817/blindfolded-darts-player

Outage: unexpected out-of-sequence deployments

...

12

V1

V1

V1

V1

V2

...

V1

V1

V1

V1

V2

V2

V2

V2

...

And it matters what the direct effect is of the deployment and where it’s at!
We have a service that has implemented blue/green deployments. The particular
order for this service’s deployment is:
(1) scale down the green/”canary” instance to a small number of pods, roll out the

new version to it, and send it a small % of traffic <click>
(2) gradually scale the green instance up, sending progressively more traffic, until

it is receiving 100% of traffic <click “animation”>

traffic photo from https://www.flickr.com/photos/edrost88/6279776820

https://www.flickr.com/photos/edrost88/6279776820

Outage: unexpected out-of-sequence deployments

13

...

V2

V2

V2

V2

V2

V2

V2

V2

...
...

V2

V2

V2

V2

V2

V2

V2

V2

...

(3) roll out the new version to the “blue” instance at full scale <click>
(4) send 100% of traffic to the blue instance

You might already see where this is going. <click>

traffic photo from https://www.flickr.com/photos/edrost88/6279776820

https://www.flickr.com/photos/edrost88/6279776820

Outage: unexpected out-of-sequence deployments

...

14

V2

V2

V2

V2

V2

...

V2

V2

V2

V2

V2

V2

V2

V2

...

Some automation paused the rollout before the cut was made back to the blue
instance, and tried (in Slack) to tell a human there was an issue that needed approval
before completing. No human noticed the prompt, so the rollout timed out. The system
was working fine – all traffic was going to the green instance, which had the new
version, and was scaled up to handle the load.
And then a new rollout was started <click>… and the first thing the new rollout does is
scale the green instance to a single pod. <click> Oops.

traffic photo from https://www.flickr.com/photos/edrost88/6279776820
alert icon from https://icon-icons.com/icon/alert/14536
explosion from openclipart

https://www.flickr.com/photos/edrost88/6279776820
https://icon-icons.com/icon/alert/14536

Show me my production state!

15

You need to know the actual state of production in the same place where you’re about
to take an action on it. The rollout UI needs to show not just the progression of the
rollout, but how many instances are running each version, and how traffic is being
load balanced. It needs to be built into the scale down action to make sure a human
actually sees that traffic is going to the pods about to be scaled down, and how much.
And the next rollout shouldn’t be able to start without someone being aware the
previous one failed, why, how, and when.

Raise your hand if you send alerts to Slack

Now keep it up if you’re kind of embarrassed about that

16

Speaking of making sure someone knows the actual state of things… raise your hand
if you send alerts to Slack. <give a moment, comment on number> <click> Now, keep
it up if you’re kind of embarrassed about that. <comment on how many go down>
We know alerts to slack (or similar apps, or email) is an anti-pattern. There’s multiple
reasons for that, but one of the reasons that alerts to your chat are not a great option
is the lack of explicit feedback. You can’t tell for sure that anyone has seen the
notification, whether anyone has taken responsibility for responding to it, or whether
the problem has stopped.

You know how this goes wrong…

17

I’ve already given one kind of example on how alerts to Slack break the feedback loop
and cause an outage. Here’s another classic: we have a team who are responsible for
making sure that various SSL certificates get renewed. It doesn’t happen often so
they hadn’t gotten to automating it yet. One fairly important cert was about to expire,
and an alert was posted to the team’s slack channel reminding them to renew it.
Several folks saw the notice… and assumed someone else was taking care of it
(actually, in an especially classic version of this pattern, the person who usually did
that was on vacation). The certificate was allowed to expire, causing an outage.
Again, I have a specific example of this outage… but I bet you do too.

certificate expired image from
https://www.flickr.com/photos/danielbowen/6542901057

https://www.flickr.com/photos/danielbowen/6542901057

Fire-and-forget pages, too!
What if Email is Pages?

18

There’s other ways your alerting system can lead you astray with not enough
feedback. In my past life, I worked at a place where the standard way to page
someone manually was by emailing their pager alias. <click> This wasn’t “alerts to
email” – the email actually caused a real page in a paging system to be created, and
made a phone make noise. We were just using email as the UI.
But when there was an email outage, the mail system responded exactly as it should
(accepting emails to send later, once it was back up, without delivering them).... and
no one realized that pages weren’t actually being sent. Luckily the outage was during
our main business hours and teams were able to get ahold of each other on chat
once they realized there was an issue, but the lack of feedback in the UI was a
surprising challenge!

? photo from
https://www.pickpik.com/question-question-mark-survey-problem-test-solution-34684
Pager icon from Wannapik: https://www.wannapik.com/vectors/65890#!

https://www.pickpik.com/question-question-mark-survey-problem-test-solution-34684
https://www.wannapik.com/vectors/65890#

And the right way to do better

19

You know the right answer here – alerts go to a pager, or a ticket queueing system
that tracks them. And whatever UX you use to page people, it should come as close
as possible to telling you whether the page was actually delivered as part of the
sending function.

Configuration changes in absolutes

20

100 Pods

300 Pods

Run 200
Pods

Here’s another fun one – configuration systems that take values in absolutes or
values in delta and aren’t clear which one (or what you’re doing). Personally I’m
usually in situations where I intend to add N machines (or other resources) to a
system, but I have to give the “number of machines to run on” as a total number. That
means I have to do that simple arithmetic myself, and routinely the control system
doesn’t validate with me what the change I’ve made is (so it tells me “okay, I’m going
to run 200 instances” but not whether thats more or less than the previous
configuration). And this breaks in the obvious way – responders expect to upscale,
but instead accidentally downscale their service (or, occasionally vice versa).
Responders might get their arithmetic wrong (say they forget whether they’re affecting
a system replicated across multiple zones, or just they’re under stress), or they might
just not realize that the UI is in absolutes instead of a delta, accidentally downscaling
their system.

Volcano icon from
https://iconscout.com/free-icon/volcano-eruption-mountain-natural-disaster-emoj-sym
bol

https://iconscout.com/free-icon/volcano-eruption-mountain-natural-disaster-emoj-symbol
https://iconscout.com/free-icon/volcano-eruption-mountain-natural-disaster-emoj-symbol

Simple feedback!

21

100 Pods

300 Pods

This will add
100 pods.
Okay?

This will
remove 100
pods. Okay?

Run 200
Pods

It’s so simple to fix! Have a confirmation that tell you the actual change being made –
just a message saying “you’re about to change from 200 instances to 300, is that
right?” before actually taking the action.

Volcano icon from
https://iconscout.com/free-icon/volcano-eruption-mountain-natural-disaster-emoj-sym
bol

https://iconscout.com/free-icon/volcano-eruption-mountain-natural-disaster-emoj-symbol
https://iconscout.com/free-icon/volcano-eruption-mountain-natural-disaster-emoj-symbol

Blind configuration

22

Really there’s a more general pattern here – any configuration change that doesn’t
show you the actual impact of that change before applying it. Many systems confirm
the change being made, but they do it by just re-describing the change as you’ve
already input it, rather than showing you the effect your change will have on
production.

Blindfold Image from https://www.wannapik.com/vectors/67423
Elephant image from https://commons.wikimedia.org/wiki/File:469-elephant.svg

https://www.wannapik.com/vectors/67423
https://commons.wikimedia.org/wiki/File:469-elephant.svg

You don’t n**d th* l*tt*r ‘e’, right?

● Product r*dacts logs bas*d on r*g*x

● Us*r adds patt*rn r*placing ‘e’ for all logs in
production

● No confirmation of numb*r of logs chang*d or
xampl of *ff*cts

23

This one is easiest to explain with an example. So, we have a product that is
designed to scrub sensitive data from logs, by matching patterns and redacting them
if found. A user accidentally added a pattern that redacted the letter ‘e’ (replaced with
‘*’) from all logs in production. They were allowed to do this by the UI without a
confirmation of how many logs were expected to be affected, or having to approve
some example message changes. Confirming “you want to turn on xyz redaction rule”
would have been better than nothing, but the right confirmation message to show
here is “you are about to affect xx thousand logs per hour; here are some example
impacted logs. Is this correct?”.
I’ll note that there’s other useful actions from this outage – certainly we should (and
have) restricted the number of users who have access to make global changes in this
part of the product, and implement better restrictions to prevent testing in production.
We prevent outages with defense in depth, not just single confirmation dialogs – but
feedback would have prevented this outage all on its own.

Show the results!

● You are about to affect 12345 pods, are you sure?
○ 7890 pods will have value foo changed to False

● This change is estimated to produce xxx more (or less) logs
per hour. Make change?

● Row update will alter 5678 rows. Proceed?

● This IAM change will remove the bar permission for 255
users, including you. Proceed?

24

In general, users need to know the impact of their change – how many machines, or
users, or logs, or database records are they about to affect? Above some reasonable
threshold, require a confirmation. Give direct diff examples in the confirmation prompt
if at all possible (old log vs. redacted log; user permission diff; etc). Some helpful tips:

- what values are changing
- avoid alert fatigue – don’t confirm “normal”, reasonable changes – only ones

you expect to be dangerous, for example because they’re especially large
- are you going to affect the current user?
- what about particularly important accounts (at DD, the production account for

our own monitoring would be important to check)
- yes, this requires thought and judgment

“Location dependent” control planes

> % kubectl config set-context --current
--cluster=the_production_cluster

Context "current-context" modified.

> % thing

> % stuff

> % other work

> % etc

25

I’m gonna rag on the k8s CLI again for a minute here. K8s has this “helpful” feature
where you can set the context, for instance the cluster that you’re taking operations
in. And the result here is that you take actions in that cluster without having it front
and center where you’re taking those actions. A lot of CLI tools have this property –
they set a “location” or a context, and then any action you take happens silently in that
context.

Which k8s cluster is in my context again?

> % foo

> % bar

> % baz

...

> % kubectl scale deployment --all --replicas=0

26

Stop me if you’ve heard this one! An engineer was doing some work in a personal
sandbox cluster, wrapped up that work, and scaled the cluster to 0… except the
cluster that they actually scaled to 0 was a production cluster (and then there was an
outage!). Another example in the same vein is deleting the “test” database instance…
except the engineer was actually logged into the production DB! This outage can
haunt us anywhere that lets you set a context, and then take actions (especially
destructive actions) without making sure you have situational awareness of that
context.
Again this is a case where there’s more than one solution worth applying! Reducing
the number of engineers with permissions to scale the production cluster to 0 is
certainly a Very Good Idea – but some folks will still need some level of control of
production, and accidents happen. We’re only human

Destruction requires situational awareness

27

We often include confirmation dialogs for destructive actions (“do you really want to
delete the database? if so, type “really delete the database”) but forget to include a
“situational awareness” check. Github actually does a fantastic job with this – to
delete a repository, you need to type out the name of the repository you’re trying to
delete. It’s valuable to go even further and include the “actual effect” of the change as
well – “this repository has N contributors and xyz lines of code”; “there are nnn nodes
and ppp pods currently running in this cluster that will be deleted”, “you are about to
delete tt tables containing rr rows”. It’s not necessary to show confirmations of scale
all the time, but it’s particularly a good idea past a threshold (users are generally less
likely to want to take an action when there’s more data/users/scale effected).

Unvalidated configuration

scaling:

 cpu:

 enabled: true

 crossClusterBalancing: true

 minReplicas: 1

 maxReplicas: 200 # should be fewer than total partitions

28

Validation is really valuable in general – and unvalidated configuration is one of the
most common ways we cause instant global outages as an industry. This can take a
couple of forms – configurations that are allowed to ship to production, but are
corrupted or unparseable, as well as configurations that shouldn’t parse – they fail to
define required fields, define fields that conflict with each other, or accidentally use a
default that isn’t safe for the system. A good warning sign <click> that you might have
dangerous configurations is comments in your code being the only enforcement
mechanism for not setting dangerous values, maybe that conflict with values
elsewhere in code, rather than having an actual parser for the configuration enforcing
that safety.

Crowdstrike

“On July 19, 2024, a Rapid Response Content update
was delivered to certain Windows hosts, evolving the
new capability first released in February 2024. The
sensor expected 20 input fields, while the update
provided 21 input fields.”
- Crowdstrike incident postmortem

29

I was originally going to talk about a different example outage with configuration
validation, but let’s talk about crowdstrike!
So for those of you who live under a rock, on July 19 of this year Crowdstrike
released a security rule (a kind of configuration) ~instantly globally that caused any
Windows machine running Crowdstrike to crash and stay broken until manually fixed.
They’ve released a full postmortem, but the short version is that the system validating
the new configuration file was doing so using different parsing code than the system
that actually read and used the configuration. This meant that the validator saw 21
“rule parameters” and marked it as valid, but when the interpreter on the customer
machine actually tried to access parameter 21, it read memory out of bounds because
it was only expecting 20 parameters.
This outage was quite bad for reasons besides the configuration parsing error – the
practice of instant global rollouts for new configuration (which by the way is generally
fairly standard in enterprise security products…) and the fact that the configuration
parsing was happening during kernel startup hugely expanded the blast radius and
impact of the issue.

Crowdstrike PM quote from
https://www.crowdstrike.com/falcon-content-update-remediation-and-guidance-hub/

https://www.crowdstrike.com/falcon-content-update-remediation-and-guidance-hub/

Validate your configurations against production

30

Prod

Parsing
Library v1

Test/Validation

Parsing
Library v2

Parsing
Library v1

Parsing
Library v2

Configurations need to be validated by the actual parsing code that runs in
production. If there are multiple versions of that parsing code (say because not every
service is using the latest version), you need to validate against every version
running. And because our configurations are frequently complex, with various layers
of definitions and overrides, that validation should once again give feedback to your
users – “hey, when I run this configuration vs. the previous one, here’s the delta of
what services are actually doing so that you can confirm you have the effect you
expect”.

Bad GUIs

31

GUIs are great for feedback, and I’m a huge fan of them – I can see a lot more
information about what I’m doing on the screen in front of me, and I can press buttons
instead of having to remember what the command is supposed to be to do whatever
operation I want. But y’all, we write some terrible GUIs for ourselves and our engineer
users. They can be misleading (confusing color coding or bad graph scales),
overwhelm us with unimportant information, and they can make production changes
that you don’t expect them to.

Maze image from open clipart https://openclipart.org/detail/303427/distorted-maze

https://openclipart.org/detail/303427/distorted-maze

An example from Github

32

So, here’s a section from Github’s admin UI. I know it’s a little hard to read, but this
lets you control whether and how Github Actions are enabled across your org. There’s
three elements you can interact with on this page <click> this dropdown letting you
select what repositories actions are enabled on, <click> these radio buttons
describing what kinds of actions are enabled, and <click> a save button. <click>. So
we had an engineer who was looking at our actions policies and opened up that
dropdown to see what control actions were available, reported back what they’d
learned, and went on with their day. Except that while they were doing that they’d
actually selected a different option from the dropdown. And here’s a really fun fact:
that dropdown takes effect immediately, whithout touching that save button. The save
button, it turns out, only applies to the radio buttons. And as a result, the engineer
accidentally and unknowingly turned off Github actions for the entire Github org.
Again, there’s more than one thing to fix here – after this incident we significantly
improved our monitoring on the current status and state of github actions, so
someone gets a page if they get turned off again. We already have very limited
access to this UI, so that doesn’t help in this case. Unfortunately we can’t fix the UI in
Github ourselves, but we’ve definitely raised the problem.

User testing and designers

“Hallway testing, also known as guerrilla usability, is
a quick and cheap method of usability testing in which
people — such as those passing by in the hallway —
are asked to try using the product or service.”
- Wikipedia (emphasis original)

33

Confirming “here’s the configuration change you’re making and the volume of things
you’re about to effect” help a lot in a UI. In addition, though, take the time, even for
your “very simple” UI, to get feedback from someone who didn’t write it on what their
expectations are for how it should work and be used. If you can, please work with an
actual designer – these folks have a ton of expertise on what leads to problems in a
UI, and we should be willing to take advantage of their knowledge.

Wikipedia quote: https://en.wikipedia.org/wiki/Usability_testing on 2024-10-23

https://en.wikipedia.org/wiki/Usability_testing

Spooky action at a distance

34

This final one is a little more subtle – it’s the result of the fact that all of our systems
are deeply interconnected. Because of that connectivity, it’s often the case that
making control plane changes to system A can cause serious issues for system B,
owned by a whole other team. If team A doesn’t have feedback on the state of system
B in their own control plane, we can have serious outages that are entirely
self-inflicted.

Spooky ghosts from https://pxhere.com/en/photo/791229

https://pxhere.com/en/photo/791229

You broke me (again)

35

Service A
Cell foo

Service A
Intake

Service A
Cell bar

Failover

Service B
MonitoringDouble Write

Here’s an example of how that can happen. Team A has a cell-based structure for
their system, where the intake normally writes to a single cell, let’s say foo. The intake
also <click> generates a kind of dialtone, which we use to monitor the progress of
data through the pipeline. These dialtones <click> are read by service B to make
action decisions. When the team operating service A does a failover between cells
<click>, they need to double-write <click> for a period of time to allow for continuity for
downstream readers. That double writing also includes generating duplicate dialtones.
<click> This means that during the failover, Service B will see twice as many dialtones
<click> (because of the duplicated data).
During an incident, team A needed to perform a cell failover, which led in this case to
a memory issue in Service B. Team B was paged and started scaling up, but ran into
an issue with the command in the runbook as they did. Unfortunately teams A and B
were not in communication about the failover, so team A continued scaling up the
double-writing, eventually causing user impact. This is a known problem with the
interactions between these two systems, so it’s not great to have it cause a
user-facing incident – but without feedback built into the scale-up for team A, we’re
relying on the two teams to remember to talk to each other if there’s a problem
instead of being able to rely on the right information being in front of operators in the
moment.

Release gates don’t care about the org chart

36

Service A
Cell foo

Service A
Intake

Service A
Cell bar

Failover

Service B
MonitoringDouble Write

Health check

We can address this issue making sure that your release/change monitoring doesn’t
care about the org chart. In this case, we updated automated release checks in team
A’s system to specifically gate on the health of team B’s system. That means that
team A will get direct feedback (and an automatic pause) to their failovers when team
B’s system isn’t healthy.

Whoops too much configuration

37

Global
Config

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Global
Config

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

Staging
Pod

“Spooky action” can take other forms as well, like accidentally changing configuration
in unexpected ways. We had an experimenting with a live configuration system on our
staging instance capable of changing running services immediately. Because of the
work they were doing, they created a change that would (intentionally) crash any pods
it was installed on <click>. The intern created this poison pill change and rolled it out
to a couple of pods on staging, causing them to crash as expected. Unfortunately,
<click< the configuration system was built to track the latest configuration globally,
which meant that this change poisoned the global configuration as well <click> A bit
later, someone else made an innocuous change <click>, and rolled it out globally…
which also rolled out the crashing change globally <click>. And made our entire
staging instance crash.
Just like the other spooky-action case, the solution here is to add release qualification
gates in production that don’t care about the org chart. In addition to other config
system changes, we specifically added gates here so that a new rollout will stop if the
pods it’s installed on become unhealthy, regardless of who owns those pods or what
the error actually looks like. And yes, we loudly praised the intern for finding this
exciting outage in our config system! <click>

Intern image AI generated
Pill from openclipart (https://openclipart.org/)
Change image from
https://www.pickpik.com/money-coins-euro-coins-currency-euro-metal-34393

https://openclipart.org/
https://www.pickpik.com/money-coins-euro-coins-currency-euro-metal-34393

What have we learned?

38

Computers were a mistake

Sand was never meant to think

This is very cruel to rocks

So, what have we learned here? Aside from the fact that computers are very hard and
maybe forcing sand to think was a mistake, I think we can see that appropriate,
timely, integrated user feedback in our control planes can make a big difference in
preventing some of our outages. We’re failing at this as a discipline right now – the
fact that so many of us in this room have seen these exact same outages, or outages
that closely rhyme, and we haven’t fixed them yet has got to be a call to action. We
can do such simple things to fix these! <next slide>

Show the actual change to production

● What is the end delta from current state
○ Scale of effect
○ Specific examples

● Where am I making the change
○ Do I mean to destroy my current context?

● What is the current status of changes in flight
○ And the current state of production

● Show it all in places the user is already looking
39

First and I think most importantly, you want to build feedback mechanisms at the point
of use that show the actual change being made to production. <click> Show the user
how production will change, including the delta from the current state, <click> the
scope of the effect, <click> and examples of the change if appropriate and possible. If
the change is large in scope, be sure to confirm it with the user with that context.
<click> Make sure the user knows where they are, <click> particularly for anything
destructive (type the name of the repo!). <click> Report that production has changed,
and <click> the end results of that change as they happen (the upscale has
completed; the page has been delivered).
<click> and finally, don’t force your user to remember to look for this data – let’s
offload that to robots, where it belongs, not our own precious brain meat.

Validate changes

40

Secondly, think about validation for changes. Always be looking at the actual changes
made for validation – and always run the tests, have basic parsing and sanity checks
for your configurations before they can be applied, and make sure those checks are
the same as the actual parsing done in production (for goodness’ sake use the same
actual code!). Use a slow rollout and/or a canary with team agnostic release gates
and pause and investigate if there’s a problem.

Image public domain

Keep the user informed

41

Take control action(s)

Get feedback

Even for slow or delayed changes, you need notifications and current-state feedback
that is front and center for the user when they need it, without them asking for it
(telling users to always check xyz before making a change to production is just asking
humans to be better machines!). If there’s a problem holding up a rollout, send that
alert to somewhere it can’t be missed – just like any alert your system generates.

User icon from Font Awesome Free 5.2.0 by @fontawesome -
https://fontawesome.com
Server in cloud Image by https://www.vectorportal.com
hourglass icon from
https://davooda.com/basic-icons/basic-time-hourglass-sand-timer-icon

https://fontawesome.com
https://www.vectorportal.com
https://davooda.com/basic-icons/basic-time-hourglass-sand-timer-icon

Surprise is bad. Feedback is good.

42

Look for signs of surprise in your postmortems and incident follow ups, and think
about how you can build informative, active feedback mechanisms that can prevent
future outages. Even better, have a look at the tooling you’re using today, and think
about whether you’re getting feedback from your tools on the effect you’re actually
having. A little feedback can prevent a lot of pages – the next time you sit down to
write a control plane UX, even (or especially!) if it’s “just a quick CLI” or “temporary”,
take a few minutes to build in a feedback loop. Future you will thank you, and we’ll all
be better SREs.

Surprised cats from https://www.flickr.com/photos/54125007@N08/15634745431,
https://www.flickr.com/photos/gattomimmo/318700028

https://www.flickr.com/photos/54125007@N08/15634745431
https://www.flickr.com/photos/gattomimmo/318700028

Thank You!
Questions?

43

