
31/10/2024

Embrace fleet reboots and
make them boring
Everton Didone Foscarini
SRE Edge - London
Cloudflare

Summary

● whoami
● Cloudflareʼs network
● Edge vs Core, Edge SRE team, Cloudflare Edge PoPs
● uptime
● Why we reboot servers
● How to reboot all Edge servers
● Tale of a kernel upgrade
● Automate ourselves
● How to reboot all Edge servers (the boring version)
● Another kernel upgrade
● Further improvements in Automation and processes
● Takeaways

Embrace fleet reboots and make them boring

whoami

● Working with GNU/Linux since 2003
○ Started with LTSP for 20 terminals in a Pentium 4 with 2GB of RAM

● 2008 2016 UFRGS IT on University in Brazil
○ Apache, nginx, LDAP, Xen, XenServer, dovecot, postfix and much

more

● 2017 Joined Cloudflare
○ Salt, nginx, consul, nomad, building, debugging and understanding

our Edge services and clusters

@foscarini@mastodon.social

Embrace fleet reboots and make them boring

Cloudflareʼs network

Embrace fleet reboots and make them boring

330
cities and 120 countries

158B
cyber threats blocked each day
in Q2ʼ24

60 million
HTTP requests per second on
average in Q2ʼ24

Approximate area inside
which Cloudflareʼs network
is reachable within 100ms
via the Internet

39 million
 DNS queries per second in Q2ʼ24

Cloudflare - Edge vs Core

● Hundreds of PoPs around the
world

● Close to eyeballs
● Each PoP is an independent

cluster
● Mostly stateless compute and

DNS/proxying/caching/magic
● PoPs vary from handful to

thousands of metals
● Bare metal

Embrace fleet reboots and make them boring

● Three PoPs in HA setup, with a
fourth for DR (search for
Cloudflare Code Orange for more
details)

● Control plane, customer
dashboard and analytics

● Hundreds of
services/microservices

● Postgres, K8S, Clickhouse, etc

Edge Core

Embrace fleet reboots and make them boring

Edge SRE team

● Follow the sun strategy, Edge SRE are working from 3 regions:
○ Europe
○ APJC
○ US

● Operation, automation and improvements of Edge platform and
services

● We manage servers and oversee the platform that runs the services
that eyeballs use

● Failures in Edge systems have high impact for customers
● Always looking for opportunities to improve automation and

reliability

Cloudflare Edge PoPs (servers perspective)

● Software required to operate the PoP
● Not in the direct request path of

customer traffic
● NetBoot
● Salt master
● Prometheus

Embrace fleet reboots and make them boring

● How we call our edge compute nodes
● Customer facing software
● Handles requests from eyeballs
● Every metal is configured as the same
● Attracts traffic via ECMP
● UNIMOG XDP load balancer for dynamic load

balancing
● Consul for service discovery, along with internal

APIs used by salt to configure services

Datacenter management DM Metal

High uptime used to be cool

● Back in 2005…
https://web.archive.org/web/20050404074539/http://www.kernel.org:80/

Embrace fleet reboots and make them boring

https://web.archive.org/web/20050404074539/http://www.kernel.org:80/

High uptime used to be cool

Embrace fleet reboots and make them boring

Why we reboot servers?
● Linux kernel updates

● Distribution upgrades
○ Debian Trixie is coming, get ready

● Delivering infrastructure updates and changes that would break a running system
○ Change disk layout
○ Port binding or IP addressing deployments
○ Reconfiguring ECMP parameters with router
○ Complex feature changes that could cause services to restart or drop eyeball requests

● Firmware upgrades

● Libraries sometimes are updated from Debian security, but not every service is restarted, so vulnerable code may be still
running

○ PCI DSS requires that organizations install critical or high-risk security patches within 30 days of release
○ Periodic reboots are a way of enforcing compliance

Embrace fleet reboots and make them boring

Why we reboot servers?
● Linux kernel updates

○ Each new kernel version comes
with dozens of bug fixes

○ Most minor releases fix CVEs too
○ Can also include performance

improvements

● Cloudflareʼs Linux team automated kernel
updates, so a newer kernel is always
available for next reboot

● Check Ignatʼs talk for more reasons: An
Engineerʼs Guide to Linux Kernel
Upgrades

Embrace fleet reboots and make them boring

How to reboot all Edge servers? The exciting way until 2018
● Disable PoP (drain anycast)
● Execute a few tasks

○ sometimes in hosts
○ sometimes re-provisioning commands
○ sometimes using salt
○ sometimes a code change in git
○ sometimes multiple of above

● Reboot all servers
● Wait for servers to boot
● Review servers that failed to boot, try to debug them.
● Rush, eyeballs in the region are waking up and neighbor PoPs are

getting overloaded!
● Enable services
● Execute healthchecks
● Enable PoP
● Repeat for next PoP

Back in 2018, with a bit more than a hundred PoPs the process was taking
between 20 and 40 days to complete, depending on complexity of included
changes

Repeat 3x or 4x per year

Embrace fleet reboots and make them boring

Donʼt want to reboot servers? Kernel can crash too
● Release of Linux 4.14.58/59 (in 201807) along with a microcode update via BIOS caused a high rate of server crashes

○ Peaked at 20 crashes per 8h shift
○ Metal recovery still required manual actions

● Prompted for immediate automation of metal enable task
○ automation was already being developed and was deployed after 2 weeks, when crash rate increased

● Multiple kernel versions tested to identify the offending bug, probably something related to retpoline mitigations

● Impact reduced in Linux 4.19

Embrace fleet reboots and make them boring

Automate ourselves - metal-enabler-service.sh
● Servers rebooted always required manual actions to enable, due to multiple issues:

○ Technical debt due to software used for data replication
■ Prone to data corruption on crash
■ Unable to self heal
■ Quicksilver replaced it a few months before

(https://blog.cloudflare.com/moving-quicksilver-into-production/)

○ Lack of automated healthchecks
■ There was no previous need for creating them
■ Heavy reliance on alerts to expose failures

● Conjunction of factors allowed automation to be finally created and enabled
○ Servers rebooted or crashed now would self-enable
○ Exposed new failure modes that required tuning to enabling traffic slowly, to warm up internal

cache

● Also created script to drain traffic orderly and disable services

● Unlocked further automation of reboots

Embrace fleet reboots and make them boring

https://blog.cloudflare.com/moving-quicksilver-into-production/

Automate ourselves - rudimog (by Sami Kerola)

● Rudimentary release coordinator
○ Scheduled reboots over a 29 day window for every server
○ Reboots triggered in systemd timer per server

● Implemented method for deploying configuration changes over reboots
○ Server state is stored in UEFI variable, similar to a release version

○ Before reboot
■ changes applied from a known state, with customer-facing services stopped
■ Could wipe disks and partitioning as state was in UEFI
■ Move data between partitions

○ After reboot
■ Salt is aware of server state and can enable new code paths
■ Healthcheck can validate the expected changes were applied

* Name is a word play with UNIMOG, XDP based load balancer:
 https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/

Embrace fleet reboots and make them boring

https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/

boring-reboot mascot here

Automate ourselves - boring-reboot-server
● Create a reboot coordinator service per PoP

● Servers that need reboot join a queue and wait for
authorization

● Reboots are allowed on off-peak hours

● Servers disable services and reboot themselves

● Restricts how many metals can reboot concurrently

● Can check metrics and further limit reboots due to known
failure modes ECMP group size)

● Tracks server state, and report which ones are unable to
recover

● Too many reboot failures block reboots prompting for
investigation and restricting impact

Embrace fleet reboots and make them boring

How to reboot all Edge servers? The boring way by 2019
● Disable PoP (drain anycast) - not needed
● Execute a few tasks rudimog

○ sometimes in hosts
○ sometimes re-provisioning commands
○ sometimes using salt
○ sometimes a code change in git
○ sometimes multiple of above

● Reboot all servers boring-reboot-server
● Wait for servers to boot
● Review servers that failed to boot, try to debug them. reboot-rescuer
● Rush, eyeballs in the region are waking up and other PoPs are getting

overloaded!
● Enable services metal-enabler-service.sh
● Execute healthchecks
● Enable PoP
● Repeat for next PoP - every PoP is running in parallel, during

maintenance window

Edge Reboot Releases became a quarterly task, with dates defined in
advance, and teams and Edge SRE could include changes using rudimog to
be deployed automatically

Embrace fleet reboots and make them boring

Emergency kernel upgrade - 201906
● Edge Reboot Release was

automated for ~ 1 year

● Normal reboot cycle would take
29 days to complete

● CVE201911478 Linux SACK
vulnerabilities - gotta update fast

● Memories from 201807 crashes
are still vivid

Embrace fleet reboots and make them boring

Emergency kernel upgrade - 201906

Embrace fleet reboots and make them boring

● CVE201911478 Linux SACK
vulnerabilities - gotta update fast

● Memories from 201807 crashes
are still vivid

● Staggered release in first 40h for
validation

● 90% of Edge rebooted in 72h
window

boring-reboot-server improvements over time
● Inclusion of more server roles (by Thomas Lefebvre)

○ Storage nodes with persistent state
○ Deny reboots if may cause data loss or too many shards offline (by Rob Dinh)
○ Multiple reboot queues per role

● Resource constraints
○ Cannot reboot more than a certain % of node role at a time

● Non-deferrable reboots (by Sergei Klochkov)
○ Automated reboot for disk failures and other hard failures types

● Dynamic maintenance windows based on server load (by Opeyemi Onikute)
○ Maintenance window adjusted automatically based on historical CPU usage

● Reboot-Rescuer - (by Kasinath Kottukkal and Jaryl Chng)
○ Multiple attempts to bring metals back to life
○ Hardware will always disappoint you

Embrace fleet reboots and make them boring

Clustering improvements
● services-enable and service-disable scripts with preflight/healthchecks to increase confidence

● Improvements on how to signal that a node is being drained for other metals in the cluster
○ Consul maintenance status
○ Also exported via prometheus metric

● Implemented a separated systemd target for public-facing services
○ metal-public-services.target (by Nick Rhodes)
○ Idea of on/off switch for all services, instead of listing all in the script or service dependencies
○ Servers boot to multi-user.target, metal-public-services.target is enabled after healthchecks pass

● Culture shift from using Salt to start services, to enable services in target
○ Reduce chances of unhealthy servers to join a cluster

Embrace fleet reboots and make them boring

Processes improvements
● Edge Reboot Releases happen every 28 days

○ 20240618, 20240716, 20240813, 20240905, 20241008
○ Release start is staggered
○ Edge SRE can pause reboots and help to revert or debug issues
○ High level monitoring over grafana

● Servers in PoPs reserved for dogfooding reboot every 5 days to catch regressions
○ Dogfooding and canary PoPs auto-reboot for firmware and kernel upgrades as soon as available

for validation

● Edge Reboot Releases are automatically started and managed
○ Engineers are encouraged to self-serve on reboot changes, docs and validation methods available
○ No more need from approval from SRE to deploy something over reboots

● Alerts:
○ too many nodes fail to re-enable

■ Likely failure on building system state or services failing to start
○ too many nodes have uptime too high

■ Something is blocking the reboot queue, we investigate the regression

Embrace fleet reboots and make them boring

Embrace fleet reboots and make them boring

Takeaways
● Identify major toil tasks and invest to automate them as

soon as possible
○ Rough estimation that in 2018 manual reboots kept

busy 1 SRE per region for a month
○ 480h of work per reboot release
○ This time commitment had to be approved by SRE

director

● Reboot automation allows releasing difficult things with
reduced effort and risk

○ Always up to date with Linux kernel
○ Major distribution upgrades are as hard as validating

they work in dogfooding/canary PoPs
○ Reduced risk of impact as servers are drained during

impactful changes

Embrace fleet reboots and make them boring

Takeaways

Embrace fleet reboots and make them boring

● Create methods of gracefully draining services from clusters to avoid customer impact
○ Specially important when you reboot every host every month.

● Design systems prepared for eventual reboots
○ Then you are ready for random crashes too

● Create preflight/healthchecks and end-to-end tests
○ Allow self-healing when things go wrong on reboot
○ Broken server can disable itself automatically if healthchecks fail

● Reboot all the time to catch regressions
○ Regressions are frequent in systems that are always changing
○ Elect dogfooding/canary nodes that will get updates early and reboot them often

Thank you

Questions?

Embrace fleet reboots and make them boring

Everton Didone Foscarini
SRE Edge - London
Cloudflare

@foscarini@mastodon.social

