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An Exploration in
Storing Telemetry

in Cloud Object
Storage



Compound growth rate of data ~20-30% 

Cost is a persistent concern

Vendors have coupled storage and analysis

Hard to drive insights beyond operations

Observability Challenges
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31.56.96.51 [01-22-24:03:56:16] “GET /product/8284?utm_source=twitter” HTTP/1.1 390ms 200 “Mozilla/5.0 (Linux; Android 6.0)”

Expanding beyond operations



31.56.96.51 [01-22-24:03:56:16] “GET /product/8284?utm_source=twitter” HTTP/1.1 390ms 200 “Mozilla/5.0 (Linux; Android 6.0)”
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31.56.96.51 [01-22-24:03:56:16] “GET /product/8284?utm_source=twitter” HTTP/1.1 390ms 200 “Mozilla/5.0 (Linux; Android 6.0)”
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Fundamental changes in
technology and architectures
are needed to meet
tomorrow’s observability
challenges

State of Observability
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What are telemetry data lakes?

Naive Approach: JSON

File Formats: Parquet

Table Formats: Iceburg

Future Challenges

Outline



Telemetry data lakes
All of your telemetry, in one place



Separate storage from compute

Decouple telemetry ownership from vendors

Freely query and join telemetry data

Meet compliance requirements for long retention

The good



Requires careful planning and design

Lack of standardized query interfaces

Must consider UI and alerting

Security and data governance requirements

Not so good



How would we build this?



Web logs from ecommerce site

900k unique request paths

260k unique clients

28k unique user agents

98% GET, 1% POST, 0.5% HEAD

Dataset

Zaker, Farzin, 2019, "Online Shopping Store - Web Server Logs", https://doi.org/10.7910/DVN/3QBYB5, Harvard Dataverse, V1

https://doi.org/10.7910/DVN/3QBYB5


Select by time range1.

Filter where method is GET or POST2.

Group by (method, response status)3.

Count total requests4.

Query



Stage 1: JSON



10M web log entries 

NDJSON structured

4.4GB uncompressed

JSON
{
  "client_ip": "31.56.96.51",
  "method": "GET",
  "status_code": 200,
  "timestamp_nanos": 1548116776000000000,
  "resp_bytes": 5667,
  "path": "/image/60844/productModel/200x200",
  "http_version": "1.1",
  "referrer": "https://www.zanbil.ir/m/filter/b113",
  "agent": "Mozilla/5.0 (Linux; Android 6.0; ....)"
}



JSON

Go CLI tool using encoding/json

Read log entries logs.json{.gz}

Scan entries, matching time range and method

Record result in Go map

Use instrumented io.Reader to track bytes read



Uncompressed (4.4GB):
Query time: 57 secs
Analyzed 150MB, scanned 4.4GB - 3.3%

Compressed (285MB):
Query time: 71 secs
Analyzed 150MB, scanned 285MB - 50%

Result



Stage 2: Efficient File Formats



Released 2013 by Twitter and Cloudera

Open source and widely supported

File format based on PAX

Enables efficient use of CPU Cache

Optimized compression and encoding

Natassa Ailamaki, David DeWitt, Mark Hill, and Marios Skounakis 2001, "Weaving Relations for Cache Performance", https://www.vldb.org/conf/2001/P169.pdf

Parquet



Natassa Ailamaki, David DeWitt, Mark Hill, and Marios Skounakis 2001, "Weaving Relations for Cache Performance", https://www.vldb.org/conf/2001/P169.pdf

Parquet



Table partitioned into Row
Groups
Tuples of columns-by-column
or “chunks”
Chunks further divided into
pages (smallest unit), where
encoding and compression is
applied.
Row Group and Column Chunk
metadata and zone maps.
Bloom Filters and supports
predicate pushdown

Parquet Layout



Dictionary Encoding

Run Length Encoding (RLE)
Delta Encoding

https://dataninjago.com/2021/12/07/databricks-deep-dive-3-parquet-encoding/



JSON Parquet %

Uncompressed 4.4 GB 391 MB -91%

Compressed 285 MB 160 MB -43%

Parquet Conversion



Parquet / DuckDB results

Result

SELECT method, status_code, count(*) FROM logs WHERE
method IN ('GET', 'POST') and timestamp_nanos >= 1548176400
000000000 and timestamp_nanos <= 1548435600000000000 
     GROUP BY method, status_code;

Compressed:
Query time: 0.0337s

Demo



How do we manage many files
and petabytes or exabytes of
data in a higher level
abstraction like a “table”?

Scale



We need to analyze the data in
real-time.

Unbundling of the Cloud Data
Warehouse will change
everything

Lakes aren’t enough



Stage 3: Table Formats



File formats like Parquet help
you work efficiently with a
single file, i.e. pruning,
skipping, modifying etc.

Table formats do this for a
group or set of many files. 

File Formats vs Table Formats



Really old, ~3500 years, E.F. Codd: Relational
Model 1970
Logical abstraction and layer of indirection over
real files stored on disk, while providing a unified
two-dimensional tabular view of data
Traditionally bundled into RDBMS
Helps enable nice things like schema evolution,
hidden partitioning, and serializable isolation

Table Formats 



Organized into a directory tree
Additional metastore to track
partitions
Pros:

Simplicity, wide adoption,
de-facto standard
File-format agnostic,
Parquet, ORC, etc

Cons:
Too much directory listing
State in Metastore and FS
Atomicity only at partition, no
atomic file+metastore writes
Poor concurrent writer
support

Hive Table Format



Created in 2017 by engineers at Netflix
Developed to address limitations with Hive

Lack of atomic transactions
File granularity of operations
Schema evolution

Supports time travel
Logical vs physical partitioning abstraction

Iceberg



Key Insight: Tracks all files
in a table over time
Snapshots contain complete
list of files in table
Writes commit and produce
new snapshot
Readers use current
snapshot, Writers use OCC
to create new snapshots
and commit with serializable
isolation.

Apache Iceberg



Apache Iceberg



Apache Iceberg



Apache Iceberg



Apache Iceberg

Demo



Next: Future challenges



Traditional block-based
compression methods restrict
decoding speeds due to heavy
CPU dependency.

Storage I/O is fast



Variable run-length encoding
and poor file layout can limit
vector processing speed ups. 

Leverage the GPU



We need centralized metadata
storage designed for cloud
object storage and tuned for
telemetry data.

Metadata improvements
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