
 From PIDs to Pods: the life cycle
of an eBPF-autoinstrumented
application

Marc Tuduri
Senior Software Engineer

About me

● Working as Software Engineer at
Grafana Labs on Beyla project

● Prometheus contributor and
OpenTelemetry member

● Currently based in Berlin
● Focused on drumming (but also

ex-guitarist and home brewer)

Overview

● Auto-instrumentation with eBPF
● Whatʼs eBPF?
● Instrumenting Kubernetes Applications with eBPF
● The Journey from a PID to a Pod
● Demo
● Future
● Conclusions

Auto-instrumentation
with eBPF

Context: agent-based instrumentation

Collector

Metrics / traces

Runtime JVM,
.NET…)

Agent

Your
application

Agent-based/manual instrumentation: what if…?

● … my runtime is too old?

● … too much instrumentation overhead?

● … my application is a compiled binary?

● … I donʼt want to mess my up code?

● … I just want instant visibility?

Beyla native eBPF auto-instrumentation

Grafana Cloud

Prometheus
Linux OS

Your
Application

Runtime & libs Grafana
BeylaeB

PF
OTEL Collector

Metrics & traces

E… B… P… what?

eBPF

● Extended Berkeley Packet Filter
○ Virtual Machine built into the Linux Kernel
○ Event-driven programming: “hookˮ programs into kernel

functions and user space programs.
● It requires how the memory is laid out (low-level)

○ Function call arguments
○ Local variables and return values

Example: track a new client TCP connection

int sys_connect(int fd, struct sockaddr *uservaddr…);

Linux Kernel User space

Your applicationsys_connect

A “probe”
program

(C/Rust*)

Monitor program
(C, C++, Go, Rust,

Python, etc…)

BPF
binary

compile

https://elixir.bootlin.com/linux/latest/C/ident/sock
https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect

Example: track a new client TCP connection

int sys_connect(int fd, struct sockaddr *uservaddr…);

Linux Kernel User space

Your applicationsys_connect

BPF
probe

Monitor
program

load

eBPF
data

data

https://elixir.bootlin.com/linux/latest/C/ident/sock
https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect

eBPF Pros and Cons

● Pros

○ Fast, JIT compiled probe programs.

○ Safe, all programs are verified at load time by the Kernel.

○ Easy cleanup, once the monitor terminates, all resources are automatically

deallocated.

● Cons

○ Hard to debug and write.

○ Architecture dependent.

○ Depending on the used eBPF functions, it requires elevated permissions.

Instrumenting
Kubernetes

Applications with
eBPF

Basic Idea
Api sererscheduler Pod

DaemonSet

Deployment
ReplicaSetYour

Application Grafana
BeylaeB

PF

GET /users

http_request_du
ration{path=”/u

sers”, method=”
GET”} 200ms

Kubernetes cluster architecture

Node

Kubelet kubeproxy

CRI
Linux Kernel

Pod

Pod
Pod

Node

Kubelet kubeproxy

CRI
Linux Kernel

Pod

Pod

Kubernetes control plane

Api serverscheduler

Controller manager

Deployment

DaemonSet

Deployment
ReplicaSet

DaemonSet

Beyla
DaemonSet

Beyla
Pod

Beyla
Pod

privileged: true
hostPid: true

What Beyla directly sees

Linux Kernel

Process Process
Process Process

Beyla Library

● Command name
● Process ID (e.g. 12145
● Host Name
● …

What users actually need

Linux Kernel

Process Process
Process Process

Beyla Library

Deployment

Pod

container Pod

proc

Daemonset

Pod

proc Pod

proc

Pod

proc

StatefulSet

Pod

proc

● Pod name & metadata
● Node name
● Deployment/DaemonSet/ReplicaSet name
● Kubernetes Namespace

container

container

container

container
container

The Journey from a
PID to a Pod

Matching processes with Kubernetes metadata
⚠ No direct mapping
between host:pid and
K8s metadata

Beyla/proc FS

eBPF
probes

Kube API

OS-level process
metadata &
runtime metrics

Application-level
runtime metrics

Pods metadata

Playing in god mode: PID namespaces

Kernel
PID NS 1

Container
Runtime
PID NS X

Pod

PID NS Y

Process

Same process,
different PIDs
depending on the
POV

PID 23945

PID 1245

PID 1

Beyla eBPF
probes

Beyla deployed
as DaemonSet
(hostPID: true)

Beyla deployed
as sidecar
container

(hostPID: false)

Matching all together

PIDs

⚿ local_pid_namespace

container_id

Pods

⚿ container_id

pod_name

pod_namespace

node_name

*owner

other metadata…

Beyla user-space
process discovery

/proc/<pid>
/proc/<pid>/ns/pid
/proc/<pid>/cgroup

Kubernetes API

Informers

Application span

⚿ pid_namespace??

protocol

client

server

method

response

size

etc…

eBPF
probes

Getting the PID as seen by Beyla
● u64 bpf_get_current_pid_tgid()

○ Returns the PID as seen from the Kernel Namespace: 1 ! PID as seen from Beyla

● struct task_struct* bpf_get_current_task()

u32 tgid
struct nsproxy *nsproxy
struct task_struct
 *group_leader
struct pid *thread_pid
...

task_struct struct pid_namespace
 *pid_ns_for_children
...

nsproxy uint level
struct ns_common ns
...

pid_namespace

struct upid numbers[]
...

pid
nr: 1 ns*
nr: 234 ns*

nr: 323 ns*

[0]
[1]

[level]

Outmost
namespace

Pod-level
PID NS

The journey of an application trace

eBPF
probes

host_pid
user_pid
user_pid_ns
prototype
request method
request response
request URL
etc...

host_pid
user_pid
user_pid_ns
prototype
request method
request response
request URL
server hostname
k8s_pod_name
k8s_owner_name
k8s_namespace
etc…

K8s
metadata
decorator

OTEL
metrics
export

OTEL
traces
export

Prom
metrics
export

… …

service
request

Demo Time

Config (values.yml)

config:
 data:

attributes:
 kubernetes:
 enable: true

prometheus_export:
 port: 9090
 path: /metrics
discovery:

 services:
 - k8s_namespace: default
 k8s_deployment_name: .
 - k8s_namespace: default
 k8s_daemonset_name: .

OpenTelemetry demo

(near) Future

(near) Future

● Reduce privileges required to run Beyla
○ Currently depending on BPFS to mount maps
○ Working on required only few capabilities

● Improve performance of Kubernetes informers
○ Currently fetches all metadata all Pods in the node
○ Working on a centralised cache of objects

metadata

Conclusions

Conclusions

● eBPF is a powerful tool

● But at same time hard to master

● Challenges to match Kubernetes abstractions

● Future work

Questions

