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Auto-instrumentation 
with eBPF



Context: agent-based instrumentation
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Agent-based/manual instrumentation: what if…?

● … my runtime is too old?

● … too much instrumentation overhead?

● … my application is a compiled binary?

● … I donʼt want to mess my up code?

● … I just want instant visibility?



Beyla native eBPF auto-instrumentation
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E… B… P… what?



eBPF

● Extended Berkeley Packet Filter
○ Virtual Machine built into the Linux Kernel
○ Event-driven programming: “hookˮ programs into kernel 

functions and user space programs.
● It requires how the memory is laid out (low-level)

○ Function call arguments
○ Local variables and return values



Example: track a new client TCP connection

int sys_connect(int fd, struct sockaddr *uservaddr…);

Linux Kernel User space

Your applicationsys_connect

A “probe” 
program

(C/Rust*)

Monitor program
(C, C++, Go, Rust, 

Python, etc…)

BPF 
binary

compile

https://elixir.bootlin.com/linux/latest/C/ident/sock
https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect


Example: track a new client TCP connection

int sys_connect(int fd, struct sockaddr *uservaddr…);

Linux Kernel User space

Your applicationsys_connect

BPF
probe

Monitor 
program

load

eBPF
data

data

https://elixir.bootlin.com/linux/latest/C/ident/sock
https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect


eBPF Pros and Cons

● Pros

○ Fast, JIT compiled probe programs.

○ Safe, all programs are verified at load time by the Kernel.

○ Easy cleanup, once the monitor terminates, all resources are automatically 

deallocated.

● Cons

○ Hard to debug and write.

○ Architecture dependent.

○ Depending on the used eBPF functions, it requires elevated permissions.



Instrumenting 
Kubernetes 

Applications with 
eBPF



Basic Idea
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Kubernetes cluster architecture
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What Beyla directly sees

Linux Kernel

Process Process
Process Process

Beyla Library

● Command name
● Process ID (e.g. 12145
● Host Name
● …



What users actually need
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The Journey from a 
PID to a Pod



Matching processes with Kubernetes metadata
⚠ No direct mapping 
between host:pid and 
K8s metadata
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Playing in god mode: PID namespaces

Kernel
PID NS 1

Container 
Runtime
PID NS X
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Matching all together

PIDs

⚿ local_pid_namespace

container_id

Pods

⚿ container_id
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other metadata…
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Getting the PID as seen by Beyla
● u64 bpf_get_current_pid_tgid()

○ Returns the PID as seen from the Kernel Namespace: 1 ! PID as seen from Beyla

● struct task_struct* bpf_get_current_task()

u32 tgid
struct nsproxy *nsproxy
struct task_struct
            *group_leader
struct pid *thread_pid
...

task_struct struct pid_namespace
    *pid_ns_for_children
...

nsproxy uint level
struct ns_common ns
...

pid_namespace

struct upid numbers[]
...

pid
nr: 1 ns*
nr: 234 ns*

nr: 323 ns*

[0]
[1]

[level]

Outmost 
namespace

Pod-level 
PID NS



The journey of an application trace

eBPF 
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Demo Time



Config (values.yml)

config:
  data:

attributes:
    kubernetes:
    enable: true

prometheus_export:
  port: 9090
  path: /metrics
discovery:

    services:
    - k8s_namespace: default
         k8s_deployment_name: .
    - k8s_namespace: default
        k8s_daemonset_name: .



OpenTelemetry demo



(near) Future



(near) Future

● Reduce privileges required to run Beyla
○ Currently depending on BPFS to mount maps
○ Working on required only few capabilities

● Improve performance of Kubernetes informers
○ Currently fetches all metadata all Pods in the node
○ Working on a centralised cache of objects 

metadata



Conclusions



Conclusions

● eBPF is a powerful tool

● But at same time hard to master

● Challenges to match Kubernetes abstractions

● Future work



Questions


