
Towards a Unified Query Language
for Provenance and Versioning

Amit Chavan
University of Maryland
amitc@cs.umd.edu

Silu Huang
University of Illinois (UIUC)
shuang86@illinois.edu

Amol Deshpande
University of Maryland
amol@cs.umd.edu

Aaron J. Elmore
University of Chicago

aelmore@cs.uchicago.edu

Sam Madden
MIT

madden@csail.mit.edu

Aditya Parameswaran
University of Illinois (UIUC)
adityagp@illinois.edu

Abstract
Organizations and teams collect and acquire data from various
sources, such as social interactions, financial transactions, sensor
data, and genome sequencers. Different teams in an organization as
well as different data scientists within a team are interested in ex-
tracting a variety of insights which requires combining and collab-
oratively analyzing datasets in diverse ways. DataHub is a system
that aims to provide robust version control and provenance manage-
ment for such a scenario. To be truly useful for collaborative data
science, one also needs the ability to specify queries and analysis
tasks over the versioning and the provenance information in a uni-
fied manner. In this paper, we present an initial design of our query
language, called VQuel, that aims to support such unified querying
over both types of information, as well as the intermediate and fi-
nal results of analyses. We also discuss some of the key language
design and implementation challenges moving forward.

1. Introduction
Data science is becoming increasingly essential in all spheres of
existence, and there is a need for new data management tools to
facilitate and support data science and collaborative data analysis
in general. A key and sorely needed functionality is that of keeping
track of datasets at various stages of data analysis, enabling the
access, retrieval, and modification of specific dataset versions, and
sharing and distribution of datasets with other members of the data
analysis team. Often in a collaborative data science scenario, there
are hundreds or thousands of versions of collected, curated, and
derived datasets, at various degrees of structure (fully structured
and relational all the way to completely unstructured), each of
which can have millions to billions of records within them.

While git and svn have proved tremendously useful for collab-
orative source code management, they are inadequate for managing
datasets for several reasons [5]. First, they are based on a model
of either “checking out” the entire repository (git), or keeping two
copies of each file in the working directory (svn), which may not be
practical when dealing with large collections of large files. Second,
they employ Unix-diff-like differencing semantics when merging
changes. For text files, this means they identify overlapping ranges
of edits, and allow changes in non-overlapping regions. For rela-
tional datasets, this merge policy can be both too restrictive (e.g.,
in a dataset, if two edits both inserted records, there should not be
a conflict), and miss conflicts (e.g., a merge should not be allowed
if it results in a violation of a primary key constraint.) Third, the

underlying algorithms are not optimized for large files or reposito-
ries, and can be painfully slow in such settings. Finally, as we focus
on in this paper, their versioning API is based a notion of files, not
structured records, and as such, is not a good fit for a scenario with
a mix of structured and unstructured datasets; the versioning API
is also not capable of allowing data scientists to reason about data
contained within versions and the relationships between the ver-
sions in a holistic manner.

To address these challenges, we are building DataHub, a collab-
orative data analysis platform [5] aimed at being the “GitHub for
structured data”1. DataHub enables the compact storage and index-
ing of versioned datasets [5, 6], and at the same time enables the use
of popular data analysis tools such as R or Python via Thrift-based
APIs [21] and a hosted execution environment. What DataHub cur-
rently lacks is a query language that is capable of capturing all the
desired operations necessary to facilitate collaborative data analysis
— at the present moment, most of this querying is done tediously
via hand-written scripts.

In this paper, we present our initial proposal for a version-aware
query language, capable of querying dataset versions, dataset
provenance (e.g., which datasets a given dataset was derived from),
and record-level provenance (if available). While there has been
some work on temporal query languages [19], these languages do
not apply to our setting since they assume a linear chain of versions
— in our case, we could have an arbitrary branching structure of
versions as is common in collaborative data analysis. Extensions
have been proposed to SQL [16] to work with nested relational
model which allows for relation-valued attributes (as discussed in
the next section, we use a nested hierarchical data model); but
overall SQL is ill-suited to traversing a graph structure—one of
our key requirements, and further, it has a cumbersome aggrega-
tion syntax that results in unwieldy queries when comparing across
versions [9]. Similarly, while there has been substantial work on
query languages for provenance, ranging from adapting SQL [1],
Prolog [17, 18], SPARQL [15, 23] to specialized languages such as
QLP [2, 3], PQL [13], ProQL [14] ([7], [10] have additional ex-
amples), much of this work centers on well-defined workflows and
tuple-based provenance rather than collaborative settings where
multiple users interact through a derivation graph of versions in an
ad hoc manner. Furthermore, query languages are generally tied
to a particular method of recording provenance information, e.g.,
semiring annotations [12], COMAD [8], etc., and adapting them

1 GitHub is a widely used Web-based git repository hosting service

amitc@cs.umd.edu
shuang86@illinois.edu
amol@cs.umd.edu
aelmore@cs.uchicago.edu
madden@csail.mit.edu
adityagp@illinois.edu

to other provenance data and storage models is often clunky [11].
Finally, we note that although our proposed language is different
from the aforementioned ones, we might be able to build upon
some of their query execution strategies (e.g., [23]) and add user-
defined operators to aid in specific analysis tasks (e.g., [18]). This
is, however, ongoing work and is not the focus of this paper.

To the best of our knowledge, ours is the first query language
proposal tailored for an ad hoc derivation graph of versions of
structured records. Our proposal draws from constructs introduced
in the historical Quel [20] and GEM [24] languages, neither of
which had a temporal component.

To illustrate the features of our query language, we describe
an example collaborative data analysis scenario, and then present
examples of queries we would like to issue:

EXAMPLE 1. Genome assembly of a whole genome sequence
dataset is a complex task — apart from huge computational de-
mands, it is not always known a priori which tools and settings will
work best on the available sequence data for an organism [4]. The
process typically involves testing multiple tools, parameters and
approaches to produce the best possible assembly for downstream
analysis. The assemblies are evaluated on a host of metrics (e.g.,
the N50 statistic) and the choice of which assembly is the best one
is also not always clear. One potential sequence of steps might be:
Sequenced reads (FastQ files) → Error correction tools (Quake,
Sickle, etc.) → Input analysis, k-mer calculation (KmerGenie) →
Assembly tool (SOAPdenovo, ABySS) → Assembly analysis and
selection (QUAST).

A group of researchers may collaboratively try to analyze this
data in various ways, building upon the work done by the others in
the team, but also trying out different algorithms or tools. New data
is also likely to be ingested at various points, either as updates/cor-
rections to the existing data or as results of additional experiments.
As one can imagine, the ad hoc nature of this process and the desire
not to lose any intermediate synthesized result means that the re-
searchers will be left with a large number of datasets and analyses,
with large overlaps between them and complex derivational depen-
dencies. Similar collaborative workflows can be seen in many other
data science application domains.

Before moving forward, we describe our notion of the term
“version”. For us, a version consists of one or more datasets that
are semantically grouped together (in some sense, it is equivalent to
the notion of a “commit” in git/svn). A version, identified by an
ID, is immutable and any update to a version conceptually results
in a new version with a different version ID (note that the phys-
ical data structures are not necessarily immutable and we would
typically not want to copy all the data over, but rather maintain
differences [6]). New versions can also be created through the ap-
plication of transformation programs to one or more existing ver-
sions. The version-level provenance that captures these processes
is maintained as a “version graph”, that we discuss in more detail
later.

There is a wide range of queries that may be of interest in such
a setting as above. Simple queries include: (a) identifying versions
based on the metadata information (e.g., authors); (b) identifying
versions that were derived (directly or through a chain of deriva-
tions) from a specific outdated version; and (c) finding versions that
differ from their predecessor version by a large number of records.
More complex queries include: (d) finding versions where the data
within satisfies certain aggregation conditions; (e) finding the inter-
section of a set of versions (representing, e.g., the final synthesized
results of different pipelines); and (f) finding versions that contain
any records derived from a specific record in a version. We note
here that a key challenge that we face is identifying a useful set of

queries/tasks and abstracting language features from them, and we
hope to engage with a wide variety of users to accomplish that.

These examples illustrate some of the key requirements for a
query language, namely the ability to:

• Traverse the version graph (i.e., version-level provenance in-
formation) and query the metadata associated with the versions
and the derivation/update edges.

• Compare several versions to each other in a flexible manner.
• Run declarative queries over data contained in a version, to the

extent allowable by the structure in the data.
• Query the tuple-level provenance information, when available,

in conjunction with the version-level provenance information.

In the rest of this paper, we describe our proposal for a language,
called VQuel, that aims to provide these features. We emphasize
that VQuel is a work-in-progress; we fully expect our language to
evolve with feedback from end-users.

2. Preliminaries
Like GitHub, DataHub aims at enabling data scientists host, share,
and manage datasets with ease. Unlike GitHub, however, to support
end-user tasks directly inside DataHub, the platform also hosts
data-processing apps. This makes DataHub a platform for sharing
datasets, along with the computation on those datasets. Details
on DataHub are covered in a recent overview paper [5] and at
http://datahub.csail.mit.edu/).

DataHub enables users to keep track of datasets and their ver-
sions, by means of a version graph that encodes derivation rela-
tionships among them. As we discussed earlier, a version refers to
a collection of files or relations that are semantically grouped to-
gether. Figure 1(b) shows an example of a few versions along with
the version graph connecting them.

Figure 1(a) shows a portion of the conceptual data model that
we use to write queries against. The data model consists of four
essential tables: Version, Relation, File, and Record. Addi-
tional tables like Column and Author are required in DataHub but
not essential for the purpose of this discussion. The difference be-
tween Relation and File is that a relation has a fixed schema for
all its records (recorded in the Column table) while a file has no
such requirement. To that effect, we denote the records in a relation
as tuples.

The Version table maintains the information about the differ-
ent versions in the database, including the “commit_id” (unique
across the versions), and various attributes capturing metadata
about the version, such as the creation time and author, as well
as “commit_msg” and “creation_ts”, representing the commit mes-
sage and creation time respectively. There are four set-valued at-
tributes called “relations”, “files”, “parents” and “children”, record-
ing the relations and files contained in the version, and the direct
parents and children in version graph respectively. The last two
refer back to the Version table, whereas the first two refer to the
Relation and File tables respectively. A tuple in the Relation
table, in turn, records the information for a relation including its
schema; we view the tuples in the relation as a set-valued attribute
of this table itself — this allows us to locate a relation and then
query on the data inside it as we will see in the next section. The
Files table is analogous, but records information appropriate for
an unstructured file. Note that neither of these tables has a pri-
mary key but rather the attributes “name” and “full_path” serve
as discriminators, and must be combined with the version “id” to
construct primary keys. The “changed” attribute is a derived (re-
dundant) attribute that indicates whether the relation/file changed
from the parent version, and is very useful for version-oriented
queries.

http://datahub.csail.mit.edu/

(a) (b)

Figure 1. (a) Conceptual Data model of DataHub: the notation “{T}” denotes a set of values of T; fields in the Records entity can be
conceptually thought of as a union of all fields across records; other fields and entities (for instance Authors) are not shown to keep the
discussion brief; for each entity, entries in the left and right column denote the attribute name and type respectively. (b) An example version
graph where circles denote versions; version V1 has two Relations, Employee and Department, each having a set of records, {E1, E2,
E3} and {D1, D2} respectively; version V2 adds new records to both the Employee and Department relations and also adds a new
File, Forms.csv. Edge annotations (not shown) are used to capture information about the derivation process itself, including references to
transformation programs or scripts if needed.

Finally, Record is a virtual table that can be conceptually
thought of as a union of all tuples and records in all relations and
files across the versions. The one exception are the “parents” and
“children” attributes, which refer back to the Record table and
can be used to refer to fine-grained provenance information within
queries. This table is never directly referenced in the queries, but is
depicted here for completeness. The provenance information must
“obey” the version graph, e.g., in the example shown, records in
version V2 can only have records in version V1 as parents.

We note here that this data model is a high-level conceptual one
mainly intended for ease of querying and aims to maximize data
independence. For instance, although the fine-grained provenance
information is conceptually maintained in the Record table here
and can be queried using the “parents” and “children” attributes, the
implementation could maintain that information at schema-level
wherever feasible to minimize the storage requirements.

3. Overview of VQuel
VQuel is largely a generalization of the Quel language (while
also introducing certain syntactic conveniences that Quel does not
possess), and combines features from GEM and path-based query
languages. This means that VQuel is a full-fledged relational query
language, and in addition, it enables the seamless querying of
the nested data model described in the previous section, encoding
versioning derivation relationships, as well as versioning metadata.

VQuel will be illustrated using example queries on the reposi-
tory shown in Figure 1(b), with certain deviations introduced when
necessary. We will introduce the constructs in VQuel incremen-
tally, starting from those present in Quel to the new ones designed
for the DataHub setting. For ease of understanding, we first present
a version that is clear and easy to understand, but results in longer
queries. In Section 3.2 we describe additional constructs to make
the queries concise.

3.1 Examples
We begin with some simple VQuel queries. Most of these queries
are also straightforward to write in SQL; the queries that cannot
be written in SQL easily begin in Section 3.3. Here, we gradually
introduce the constructs of VQuel as a prelude to the more complex
queries combining versioning and data.

QUERY 1. Who is the author of version with id “v01”?
range of V is Version
retrieve V.author.name
where V.id = "v01"

A VQuel query has two elements: iterator setup (range above) and
retrieval (retrieve above) of objects satisfying a predicate (where
above). Iterators in VQuel are similar to tuple variables in Quel,
but more powerful, in the sense that they can iterate over objects at
any level of our hierarchical data model. They are declared with a
statement of the form:

range of <iterator-variable> is <set>

The retrieve statement is used to select the object properties, and
is of the form:

retrieve [into <iterator>][unique]<target-list>
[where <predicate>]
[sort by <attribute> [asc/desc] {, <attribute> [asc/

desc]}]

The retrieve statement fetches all the object attributes specified
in the target-list for those objects satisfying the where clause.

QUERY 2. What commits did Alice make after January 01, 2015?
range of V is Version
retrieve V.all
where V.author.name = "Alice" and V.creation_ts >=

"01/01/2015"

In Queries 1 and 2, note the use of GEM-style tuple-reference
attributes, namely V.author, and the keyword all from Quel. The
comparators =, !=, <, <=, > and >= are allowed in comparisons,
and the logical connectives and, or, and not can be used to combine
comparisons.

Multiple iterators can be set up before a retrieval statement,
and their respective sets can be defined as a function of previously
declared iterators. The next example illustrates this idea. The first
range clause sets up an iterator V over all the versions. The second
range clause defines an iterator over all relations inside a version.

QUERY 3. List the commit timestamps of versions that contain the
Employee relation.
range of V is Version
range of R is V.Relations
retrieve V.commit_ts
where R.name = "Employee"

QUERY 4. Show the commit history of the Employee relation in
reverse chronological order.

range of V is Version
range of R is V.Relations
retrieve V.creation_ts, V.author.name, V.commit_message
where R.name = "Employee" and R.changed = true
sort by V.creation_ts desc

Similarly, we can set up a range clause over tuples inside a relation.
Analogous to a relational database, the user needs to be familiar
with the schema to be able to pose such a query.

QUERY 5. Show the history of the tuple with employee id “e01”
from Employee relation.

range of V is Version
range of R is V.Relations
range of E is R.Tuples
retrieve E.all, V.commit_id, V.creation_ts
where E.employee_id = "e01" and R.name = "Employee"
sort by V.creation_ts

3.2 Syntactic sweetenings
In this section, we introduce some shorthand constructs to keep
the size of the queries small. These constructs are meant only for
brevity, and each of them can be mapped to an equivalent query
without using shorthands.

The first one is analogous to a filter operation over a set declara-
tion: we can use predicates in the set declaration block of the range
statement. For instance, in the following example, both queries it-
erate over the same set of versions. Note that the retrieve into
clause in (b1) sets up a new iterator V over all the versions satisfy-
ing constraints in where clause.

(a1) range of V is Version(id = "v01")

(b1) range of T is Version
retrieve into V (T.all)
where T.id = "v01"

The next example shows the principle in action on a query that
would otherwise become quite long. Again, (a2) and (b2) below
show identical queries written using the short notation (a) and their
equivalent form (b).

QUERY 6. Find all Employee tuples in version “v01” that are
different in version “v02”.

(a2) range of E1 is Version(id = "v01").Relations(name
= "Employee").Tuples
range of E2 is Version(id = "v02").Relations(name

= "Employee").Tuples
retrieve E1.all
where E1.employee_id = E2.employee_id and E1.all

!= E2.all

(b2) range of V1 is Version
range of R1 is V1.Relations
range of E1 is R1.Tuples
range of V2 is Version
range of R2 is V2.Relations
range of E2 is R2.Tuples
retrieve E1.all
where V1.id="v01" and R1.name="Employee"
and V2.id="v02" and R2.name="Employee"
and E1.employee_id = E2.employee_id and E1.all !=

E2.all

3.3 Aggregate operators
The aggregate functions sum, avg, count, any, min and max are
also provided in VQuel. Any expression involving components
of iterated entity attributes, constants and arithmetic symbols can
be used as the argument of these functions. Due to the nested
nature of iterators, we introduce the _all version of these operators,
i.e. count_all, sum_all, etc. The general syntax of an aggregate
expression is:

agg_op([<agg-attribute>/<iterator-variable>] [group by
<grouping-attributes>] [where <predicate>])

This evaluates the agg_op on each group of <agg-attribute>
of objects that satisfy the <predicate>. We see two examples next.

QUERY 7. For each version, count the number of relations inside
it.

range of V is Version
range of R is V.Relations
retrieve V.id, count(R)

QUERY 8. Find all versions containing precisely 100 Employees
with last name “Smith”.

range of V is Version
range of E is V.Relations(name = "Employee").Tuples
retrieve V.commit_id
where count(E.employee_id where E.last_name = "Smith")

= 100

In both queries above, the aggregation is performed only over
objects at the innermost level of an iterator expression. In query 7,
R is an iterator over relations inside a version V, and count iterates
only over the innermost level of this iterator hierarchy, that is, R.
Similarly, in query 8, the count expression only iterates over the
tuples inside a relation inside a version.

Notice that the latter query is not very easy to express in vanilla
SQL: there is no easy way to use SQL to retrieve version num-
bers, which in a traditional non-versioned context would either be
considered as schema-level information, or involve multiple joins
depending on the level of normalization of the schema. VQuel, on
the other hand, allows us to set up the nested iterators that makes
such queries very easy to express.

The next two examples show the usage of count_all operator.
The difference from the count operator is that all the “parent”
iterators are evaluated, instead of only the innermost iterator, to
compute the value of the aggregate. Another way to reason about
this behavior is that count has an implicit grouping list of attributes
in its by clause: query 9 is identical to query 8.

QUERY 9. Find all versions containing precisely 100 employees
with last name “Smith”.

range of V is Version
range of R is V.Relations(name = "Employee")
range of E is R.Tuples
retrieve V.commit_id
where count_all(E.employee_id group by R, V where E.

last_name = "Smith") = 100

Aggregates having a group by clause can also be used in the
predicate to restrict the results of the query. In query 9, the result of
count_all for each group is compared against 100. Query 10 gives
another example.

QUERY 10. Find all versions containing precisely 100 tuples in all
relations put together inside a version.

range of V is Version
range of R is V.Relations
range of T is R.Tuples
retrieve V.all
where count_all(T group by V) = 100

The next few examples show how we can use aggregate operators
across a set of versions to answer a variety of questions about the
data.

QUERY 11. Among a group of versions, find the version containing
most tuples that satisfy a predicate. For instance, which version
contains the most number of employees above age 50?

range of V is Version
range of E is V.Relations(name = "Employee").Tuples
retrieve into T (V.id as id, count(E.id where E.age >

50) as c)
retrieve T.id
where T.c = max(T.c)

Up until now, for an iterator, we have been exploring “down” the
hierarchy. We also provide appropriate functions, depending on the
type of iterator, to refer to values of entities “up” in the hierarchy. In
the next query, Version(T) is used to refer to the version attributes
of tuples in T.

QUERY 12. Which versions are such that the natural join between
relations S and T has more than 100 tuples?

range of V is Version
range of S is V.Relations(name = "S").Tuples
range of T is V.Relations(name = "T").Tuples
retrieve into Q(V.id as id,

count_all(S.id group by V where S.id = T.s_id and
Version(S).id = Version(T).id) as c)

retrieve Q.id
where Q.c >= 100

3.4 Version graph traversal
VQuel has three constructs aimed at traversing the version graph.
Each of these operate on a version at a time, specified over an
iterator.

• P(<integer>): Return the set of ancestor version of this ver-
sion, until integer number of hops in the version graph. If the
number of hops is not specified, we go till the first version. Du-
plicates are removed.

• D(<integer>): Similar to P() except that it returns the descen-
dant/derived versions.

• N(<integer>): Similar to P() except that it returns the versions
that are <integer> number of hops away.

The next few queries illustrate these constructs. Notice once again
that queries of this type are not very easy to express in SQL, which
does not permit the easy traversal of graphs, or specification of path
queries. The constructs we introduce are reminiscent of constructs
in graph traversal languages [22]; these combined with the rest of
the power of VQuel enable some fairly challenging queries to be
expressed rather easily.

QUERY 13. Find all versions within 2 commits of “v01” which
have less than 100 employees.

range of V is Version(id = "v01")
range of N is V.N(2)
range of E is N.Relations(name = "Employee").Tuples
retrieve N.all
where count(E) < 100

QUERY 14. Find all versions where the delta from the previous
version is greater than 100 tuples.

range of V is Version
range of P is V.P(1)
retrieve unique V.all
where abs(count(V.Relations.Tuples) - count(P.Relations

.Tuples)) > 100

QUERY 15. For each tuple in Employee relation as of version
“v01”, find the parent version where it first appeared.

range of V is Version(id = "v01")
range of E is V.Relations(name = "Employee").Tuples
range of P is V.P()
range of PE is P.Relations(name = "Employee").Tuples
retrieve E.id, P.id
where E.employee_id = PE.employee_id and P.commit_ts =

min(P.commit_ts)

3.5 Extensions to fine-grained provenance
Finally, in some cases, we may have complete transparency into
the operations performed by data scientists. In such cases, we can
record, reason about, and access tuple-level provenance informa-
tion. Here is an example of a query that can refer to tuple-level
provenance:

QUERY 16. For tuples in version “v01” in relation S that satisfy
a predicate, say value of attribute attr = x, find all parent tuples
that they depend on.

range of E is Version(id = ‘‘v01’’).Relations(name = ‘‘
S’’).Tuples

range of P is E.parents
retrieve E.id, P.id
where E.attr = x

Similar queries can be used to “walk up” the derivation path of
given tuples, for example, to identify the origins of specific tuples.

4. Implementation Challenges
In addition to designing our high-level query language, VQuel, we
are, in parallel, building an execution and optimization engine for
efficiently processing such VQuel queries over large volumes of
versioned datasets. A key challenge here is that the data must be
stored in a compressed fashion, by exploiting the overlaps across
versions. In our recent work [6], we formally analyzed the tradeoff
between the storage needs and the recreation cost of reconstructing
specific versions. At one extreme, storing all the versions indepen-
dently of each other results in the lowest recreation cost but with
prohibitively high storage costs; on the other hand, trying to opti-
mize storage on its own by attempting to exploit the overlaps fully,
typically leads to unacceptably high recreation costs. In our work,
we presented algorithms to balance these two objectives in a prin-
cipled manner. In an independent line of work, we are also investi-
gating different options to maintain a large number of versions of a
relational database in a concise manner within the database through
customized storage engines.

A natural way to build upon that work for the query language
described here would be to: (a) execute a portion of the query on
the metadata and the version graph to identify the versions refer-
enced in the query, and (b) recreate those versions in their entirety,
and (c) execute the remainder of the query on those versions, via
iterative execution as directly specified in the query, without any
query rewriting. Even with this baseline approach, there are sev-
eral challenges that need to be addressed. For example, the version
graph could grow over time to be fairly large, especially in highly

dynamic environments where data is continuously being ingested
or analyzed (and resulting versions stored). It is also not obvious
how to execute some of the comparison functionality where the
user wants to reason about differences between large versions.

However a bigger implementation challenge is to develop query
execution techniques that can work directly on the compressed rep-
resentations. Consider, for instance, a query asking for the ver-
sion with the highest value of an aggregate. The naive approach
would be to compute the aggregate for each version separately,
which would likely have very high computational cost for reason-
able numbers of versions. If the versions are largely overlapping
(i.e., the differences between them are small), we must be able to
share the computation across them. Doing this in a principled fash-
ion for different types of storage mechanisms is a major research
challenge that we are presently pursuing.

References
[1] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar,

T. Sugihara, and J. Widom. Trio: A system for data, uncertainty, and
lineage. In Proceedings of the 32nd International Conference on Very
Large Data Bases, VLDB ’06, pages 1151–1154, 2006.

[2] M. K. Anand, S. Bowers, and B. Ludäscher. Techniques for efficiently
querying scientific workflow provenance graphs. In EDBT, volume 10,
pages 287–298, 2010.

[3] M. K. Anand, S. Bowers, T. Mcphillips, and B. Ludäscher. Exploring
scientific workflow provenance using hybrid queries over nested data
and lineage graphs. In Scientific and Statistical Database Manage-
ment, pages 237–254. Springer, 2009.

[4] M. Baker. De novo genome assembly: what every biologist should
know. Nature methods, 9(4):333–337, 2012.

[5] A. P. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J.
Elmore, S. Madden, and A. G. Parameswaran. DataHub: collaborative
data science & dataset version management at scale. In CIDR, 2015.

[6] S. Bhattacherjee, A. Chavan, S. Huang, A. Deshpande, and A. G.
Parameswaran. Principles of dataset versioning: Exploring the recre-
ation/storage tradeoff. In PVLDB, 2015.

[7] S. Bowers. Scientific workflow, provenance, and data modeling chal-
lenges and approaches. Journal on Data Semantics, 1(1):19–30, 2012.

[8] S. Bowers, T. M. McPhillips, and B. Ludäscher. Provenance in
collection-oriented scientific workflows. Concurrency and Compu-
tation: Practice and Experience, 20(5):519–529, 2008.

[9] C. Date. A critique of the SQL database language. ACM SIGMOD
Record, 14(3):8–54, 1984.

[10] S. B. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data, pages 1345–
1350. ACM, 2008.

[11] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for com-
putational tasks: A survey. Computing in Science & Engineering,
10(3):11–21, 2008.

[12] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’07, pages 31–
40, New York, NY, USA, 2007. ACM.

[13] D. A. Holland, U. J. Braun, D. Maclean, K.-K. Muniswamy-Reddy,
and M. I. Seltzer. Choosing a data model and query language for
provenance. In The 2nd International Provenance and Annotation
Workshop. Springer, 2008.

[14] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data prove-
nance. In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of data, pages 951–962. ACM, 2010.

[15] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar. Provenance
trails in the Wings/Pegasus system. Concurrency and Computation:
Practice and Experience, 20(5):587–597, 2008.

[16] H. F. Korth and M. A. Roth. Query languages for nested relational
databases. Springer, 1989.

[17] A. Marinho, L. Murta, C. Werner, V. Braganholo, S. M. S. d. Cruz,
E. Ogasawara, and M. Mattoso. Provmanager: a provenance manage-
ment system for scientific workflows. Concurrency and Computation:
Practice and Experience, 24(13):1513–1530, 2012.

[18] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire. nowork-
flow: Capturing and analyzing provenance of scripts. In Provenance
and Annotation of Data and Processes, pages 71–83. Springer, 2014.

[19] R. Snodgrass. The temporal query language TQuel. ACM Transac-
tions on Database Systems (TODS), 12(2):247–298, 1987.

[20] M. Stonebraker, G. Held, E. Wong, and P. Kreps. The design and
implementation of INGRES. ACM Transactions on Database Systems
(TODS), 1(3):189–222, 1976.

[21] http://thrift.apache.org. Apache Thrift (retrieved June 1,
2014).

[22] P. T. Wood. Query languages for graph databases. SIGMOD Rec.,
41(1):50–60, Apr. 2012.

[23] M. Wylot, P. Cudre-Mauroux, and P. Groth. Executing provenance-
enabled queries over web data. In Proceedings of the 24th Inter-
national Conference on World Wide Web, pages 1275–1285. Interna-
tional World Wide Web Conferences Steering Committee, 2015.

[24] C. Zaniolo. The database language GEM. In ACM Sigmod Record,
volume 13(4), pages 207–218. ACM, 1983.

http://thrift.apache.org

	Introduction
	Preliminaries
	Overview of VQuel
	Examples
	Syntactic sweetenings
	Aggregate operators
	Version graph traversal
	Extensions to fine-grained provenance

	Implementation Challenges

