Interoperability for Provenance-aware
Databases using PROV and JSON

Xing Niu, Raghav Kapoor, Boris Glavic

Illinois Institute of Technology

{xniu7,rkapoor7}@hawk.iit.edu, bglavic@iit.edu

Abstract

Since its inception, the PROV standard has been widely adopted as
a standardized exchange format for provenance information. Sur-
prisingly, this standard is currently not supported by provenance-
aware database systems limiting their interoperability with other
provenance-aware systems. In this work we introduce techniques
for exporting database provenance as PROV documents, importing
PROV graphs alongside data, and linking outputs of an SQL oper-
ation to the imported provenance for its inputs. Our implementa-
tion in the GProM system offloads generation of PROV documents
to the backend database. This implementation enables provenance
tracking for applications that use a relational database for managing
(part of) their data, but also execute some non-database operations.

1. Introduction

The PROV standard [12] enables exchange of provenance informa-
tion between systems by providing a standardized, extensible rep-
resentation of provenance graphs. For the first time it is possible to
track the provenance of an entity during its entire lifecycle while it
(and its dependencies) are processed by multiple provenance-aware
systems. However, no relational database system supports tracking
of database provenance as well as import and export of provenance
in PROV. Thus, applications that load data into a relational database
to analyze it cannot benefit from available provenance information
for imported data. Furthermore, while a provenance-aware DBMS
supports computing the provenance of database operations, these
systems are currently not capable of exporting provenance into
standardized formats. Even if the system generating imported data
and the database are both provenance-aware, it is currently not pos-
sible to track the derivation of, e.g., a query output, back to the
non-database entities that influenced it indirectly.

We propose to make provenance-aware databases interopera-
ble with other provenance-aware systems through an approach for
importing provenance stored as PROV-JSON alongside with data
from a relational database, propagating of imported provenance
during query processing, and export of database provenance into
PROV. PROV-JSON is a JSON (JavaScript Object Notation, a light-
weight data-interchange format) serialization of the PROV data
model. Our technique uses the database backend (SQL) to con-
struct PROV graphs for database operations on demand. Further-
more, we support provenance tracking for JSON path expressions
embedded into SQL. In combination these techniques enable track-
ing and querying of provenance for the whole lifecycle of entities
that were created by a combination of database operations and pro-
cesses external to the database.

EXAMPLE 1. Consider an application that predicts demographic
information (age, gender, and location) for twitter users from

{dieter.gawlick,zhen.liu,
vasudha.krishnaswamy} @oracle.com

Dieter Gawlick, Zhen Hua Liu, Venkatesh
Vasudha Krishnaswamy Radhakrishnan
Oracle Corporation Facebook

rven©@fb.com

monthly logs of tweets. This application first extracts individual
tweets from files storing these monthly logs. Each tweet is passed to
a classifier that predicts the poster’s demographics and inserts this
information into a database relation user (state, age, gender).
The application then runs a query over the imported data to com-
pute the average age of twitter users per state. Figure [2| shows a
simplified PROV graph for this application with three input files
(Jan to Mar). The input file content, extracted tuples, result tuples,
and query for the application are shown in Figure[l| We use the fol-
lowing node and edge types defined by the PROV standard: entities
represent pieces of data and/or physical objects (e.g., a tuple or a
file), activities are actions or processes which consume and produce
entities (e.g., a query or a process), used edges connect entities to
the activities that generated or modified them (e.g., a query return-
ing a result tuple), wasGeneratedBy edges connect activities to the
entities they have consumed (e.g., read a process reading from a
file), wasDerivedFrom edges represent data flow between entities
(e.g., a query output tuple is produced from a query input tuple). In
our example, each input file is processed by an extractor task E;
which outputs tweets (tw to tws). These tweets are fed into three
classifiers (one per input file) that extract tuples t1 to te which are
inserted into a database. Query Q) then groups these tuples by state
to compute the average age per state (the output tuples t,1 and
toz in the example). Such a provenance graph is useful for, e.g.,
determining causes of erroneous outputs (by tracing them back to
erroneous inputs) or evaluating the quality of an output by under-
standing how it was derived. For instance, assume that tuple t,»
represents the query result tuple (Illinois, 75). The user, surprised
by the high average age of tweeter user, would like to know which
input tweets were used to compute this result (and in turn which
input files contained these tweets).

In the above example we have used a provenance graph that
covers entities (tuples) and activities (queries and updates) inside
the database as well as outside the database system (e.g., the in-
put files and classifiers). Even if we would use a workflow sys-
tem that tracks provenance to execute the extraction and classifi-
cation tasks, it would not be possible to create such a graph, be-
cause provenance-aware relational database systems have currently
no native support for imported provenance and do not enable ex-
port of the provenance they generate into PROV. That is while the
PROV standard addresses the problem of how to uniformly repre-
sent provenance generated by different systems, it does not solve
the problem of interoperability. When multiple systems, including
relational databases, are involved in the creation of an entity then
we need to be able to connect provenance generated by these sys-
tems. In addition to import and export support for PROV graphs
this also requires merging of multiple PROV graphs into one coher-
ent description. Provenance-aware database such as GProM (3| 4],

twy ...Chicago ...

twe Little rock ... great ...20s. ...

twy ... Arkansas senior ...
tws | ...Chicago...all life ... Mar
tws . Bulls ... tws Chicago school is horrible! ...

Q: SELECT state, avg(age) AS avghge

FROM user
GROUP BY state
user
state age gender query result
t1 Arkansas 80 male state avgAge
to Tllinois 50 female to1 ‘Arkansas 49
e to2 Illinois 50

te | Arkansas 18 male |

Figure 1: Running Example Data and Queries

Key:
M activities M tuple entities M file and tweet entities
— used and wasGeneratedBy assertions — wasDerivedFrom assertions

Figure 2: PROV Graph for the Running Example

Perm [9,10]], or others would be able to determine the wasDerived-
From dependencies between the output tuples of query @ and its
inputs. However, to create a provenance graph for the whole ap-
plication this information needs to be transformed into PROV and
connected to the provenance graph fragments associated with the
input tuples.

‘We demonstrate how to make databases interoperable with other
provenance systems by implementing export and import of prov-
enance in PROV-JSON and propagation of imported provenance.
Our approach translates between database provenance and PROV
using SQL. This translation is part of the query computing the
provenance. We have implemented our approach in GProM (3 4],
a provenance-aware database middleware which computes prove-
nance for queries and updates under transactional semantics. Our
PROV graph generation supports any query (or update) for which
GProM can compute provenance.

2. PROV Import and Export

GProM computes provenance for database operations (queries, up-
dates, transactions) on demand using temporal database technolo-
gies (maintaining a transaction time history and time travel sup-
port for queries) to access past database states if necessary. This
functionality is exposed through SQL language extensions, e.g.,
PROVENANCE OF (SELECT ...); computes the provenance of the
enclosed query which is returned as a single relation mapping out-
put tuples of the query to input tuples in their provenance. GProM

compiles such a query with provenance extensions into SQL code
that is evaluated using a regular relational database system.

Export: To support export of such provenance we add an optional
TRANSLATE AS clause to the PROVENANCE OF language construct.
This construct is implemented by running several projections over
the provenance computation to construct snippets of the PROV-
JSON document (e.g., create an entity for each query output tuple),
using aggregation to concatenate all snippets of a certain type
(e.g., all used edges), and a final string concatenation to create
the document. Such a query returns a single row with a single
column storing the JSON document for the provenance computed
by PROVENANCE OF.

EXAMPLE 2. The result of PROVENANCE OF for query Q from Fig-
ure[l|is shown below. Intuitively, each tuple in this result represents
one wasDerivedFrom assertion, e.g., tuple t,1 was derived from tu-
ple tgﬂHere P denotes a renaming function used to create unique
attribute names for attributes in the provenance. We also show
which wasDerivedFrom edge each tuple corresponds to.

Query Result user Relation Provenance
state avgAge | P(state) P(age) P(gender)
tor — to | Mllinois 50 llinois 50 female
too — t1 | Arkansas 23 Arkansas 80 male
too — te | Arkansas 23 Arkansas 18 male

If we assume for now that no imported provenance for tuples
t1 to te is available, then generating the JSON serialization of the
PROV graph corresponding to query @ is rather straightforward:

1: We create JSON fragments representing the tuple entities us-
ing either a system tuple identifier and/or the tuple values to create
unique identifiers for these nodes. This can be realized by project-
ing the result of the provenance computation on either the query
result attributes (to create result tuple entities) or the attributes in
the provenance (to create input tuple entities). These attribute val-
ues are then substituted into a template string for entities.

2: We create a constant string representing the query activity.

3: Edges are generated in the same fashion as entities. For example,
to generate wasDerivedFrom edges, we combine the query output
attributes (respective input attributes) into identifiers for result (re-
spective input) tuples and substitute them into a template.

4: The results of steps 1 to 3 are combined into a single JSON
document using an aggregation function which concatenates strings
(e.g., create a string representing all entities) and string concatena-
tion to combine the aggregated fragments with fixed “glue” strings.

These operations are expressible in SQL as long as an aggre-
gation function concatenating strings is available. We implement
the provenance computation and translation in a single query. The
translation code consists of multiple branches, each accessing the
result of the provenance computation and outputting a single text
value. These values are then combined using cross productﬂ Ap-
pendix [A] shows the generated SQL code for the running example.
Note while this query may look surprisingly complicated, the part
of the code generating the PROV graph consists of a fixed num-
ber of aggregations over the output of the provenance computation.
This code only depends on the schemas of input relations of the
query for which provenance is computed, and is otherwise inde-
pendent of this query. Thus, the overhead of PROV graph construc-
tion is linear in the size of the generated PROV document and the
number of input relations.

! This relational encoding [10] encodes provenance polynomials.

2 Using cross-products is unproblematic in this case, because the inputs to
each crossproduct contain only a single row.

Figure 3: Example PROV Graph with Update

Import: We provide a language construct IMPORT PROV FOR ...
to import PROV for an existing relation R. This construct is used
to import available PROV graphs for imported tuples and store
them alongside the data. We add three columns to each table to
store imported provenance. For for each imported tuple, we store a
PROV-JSON snippet representing its provenance in the prov_doc
attribute. The prov_eid attribute indicates which of the entities
in this snippet represents the imported tuple. Column prov_time
stores a timestamp as of the time when the tuple was imported. We
use this column to correctly model provenance of tuples subjected
to updates (see Section [3). These attributes are useful for query-
ing imported provenance and, even more important, to correctly
include it in exported provenance (as explained below).

EXAMPLE 3. Below we show the relation user with imported
provenance. Attribute value d is the PROV graph from Figure
without the query and query outputs.

state age gender prov_doc prov_eid prov_time
t1 | Arkansas 80 male d t1 2015-...
te | Arkansas 18 male | d te 2015-... |

Alternative Storage Organization: An obvious disadvantage of
the default storage scheme explained above is that PROV graphs
may be replicated if more than one tuple was created by the same
process. We allow users to use their own storage scheme for
imported provenance, e.g., a normalized format which stores the
imported PROV-JSON documents in a separate relation. However,
we require that the user makes the system aware of how to connect
a tuple to its PROV document. For example, we may store the
example PROV graph d in arelation import (did, doc) andusea
foreign key to did instead of the actual document in relation user.
Another option is to use database-side deduplication techniques to
avoid replicated storage of PROV graphs (e.g., Oracle’s Advanced
LOB Deduplication feature).

Using Imported Provenance During Export: To compute the
provenance of a query that accesses a relation with imported prov-
enance, we have to propagate imported provenance to connect it to
provenance produced by the query. Unless the user requests export
of provenance, we treat the imported provenance in the same fash-
ion as we treat provenance generated by database operations. To
export the provenance of a query over data with imported prove-
nance, we include the imported provenance as bundles in the gen-
erated PROV graph and connect the entities representing input tu-
ples in the imported provenance to the query activity and output
tuple entities. Bundles [[12] enable nesting of PROV graphs within
PROV graphs, treating a nested graph as a new entity. Whenever
we need to refer to the identifier of an input tuple entity (e.g., for
used edges) we use the identifier stored in the prov_eid attribute.

3. Handling Updates

So far we have assumed that tuples with imported provenance are
never modified. If a tuple is modified, e.g., by running an SQL
UPDATE statement, then this should be reflected when provenance
is exported. For instance, assume the user has run an update to

correct tuple ¢;’s age value (setting age to 70) before running the
query. This update should be reflected in the exported provenance
as follows: 1) there should be an activity, say u, that represents
this update; 2) there should be two versions of the tuple ¢; en-
tity in the graph. Figure |3| shows part of a PROV graph for the
example reflecting this update. Since PROV supports versioned en-
tities, the main challenge in supporting updates for export is how
to track the provenance of updates under transactional semantics.
This problem has been recently addressed in GProM [3]] using the
novel concept of reenactment queries. Using GProM the user can
request the provenance of an past update, transaction, or set of up-
dates executed within a given time interval. To export provenance
for updated tuples we use GProM to generate a provenance repre-
sentation similar to the one for queries where tuples versions in the
provenance are represented in the same fashion as shown in Exam-
ple 2] We then apply the same techniques as for queries to create
the entities and edges to create a PROV document. Since it may
not be feasible to export the whole derivation history of tuples that
have been imported a long time ago, we let the user decide how far
to trace back.

4. Querying Provenance

Since we treat provenance computations as queries, SQL can be
used to query provenance. This has been demonstrated to be quite
effective for querying relational provenance. To query imported
PROV graphs, however, we would want to be able to access their
internal structure. If the database supports JSON path expressions
embedded in SQL or extraction of relational data from JSON, (e.g.,
the SQL/JSON standard supported by Oracle [[11] and DB2) then
we use this functionality to express queries that span database and
imported provenance.

EXAMPLE 4. Assume we want to know how the tweets in the prov-
enance of the example query result (Illinois, 80) are distributed
over the input files of monthly twitter logs. This query can be im-
plemented in, e.g., Oracle, by computing the provenance of Q, ex-
tracting the wasDerivedFrom edges as relational data from the
propagated imported PROV documents, filtering out tuples from the
query input based on these wasDerivedFrom edges, and counting
the number of such tuples grouped by input file.

5. Provenance for JSON Path Expressions

So far we have assumed that the output of our twitter analysis work-
flow is represented as relational data that can directly be loaded
into a database system for analysis. However, this assumption may
not hold, i.e., the output of the classification may only be available
in a common data exchange format such as XML or JSON [11].
Most commercial and open-source DBMS support extracting of
relational content from these semistructured data formats. For in-
stance, the SQL/XML standard defines the XMLTABLE construct for
this purpose and analogously the SQL/JSON standard [11]] defines
JSON_TABLE. Both constructs are table functions which use a row
path expression to match a set of nodes within the semi-structured
document and a set of column path expressions which assemble a
tuple from a node matching the row path expression by extracting
attribute values from child elements of the matched node.

EXAMPLE 5. For instance, in a variation of our running example,
the user would import a single JSON document (shown in Figure[d)
storing the results of the classifiers into the database and then use
the DBMS to extract tuples t1 to ts. JSON supports nesting of
arrays and objects (represented by [] respective {}). The example
document contains an array of objects - each representing one
classification result. If we treat the JSON documents as opaque
values then we would only be able to track back the provenance

Vstate”: "Arkansas”,
Tage”: 7807,

“gender”: “male”

e

Tstate”: "Illinois”,

OO IN N W —

Tage”: 7507,
"gender”: “female”

—_——
LN =
-

Figure 4: Running Example JSON Input File

of a usertuple to this imported JSON document. That is even if the
PROV graph for this JSON document is available we would lose
the information on which tweets an imported tuple depend on.

To keep track of dependencies between tuples and the part of
a semistructured document they were extracted from, we support
tracking the provenance of JSON path expressions embedded in
SQL following an approach similar to [7].

EXAMPLE 6. For example, we can use the JSON path expression
$[*] .state to extract all state values from the JSON document
shown in Figure[d|(here $ represents the root of the JSON document
and [*] is a wildcard that matches any element of the outer array
containing the classification result objects). The provenance of
each extracted state value in this example consists of the value
itself and the path leading to this entity in JSON document (e.g.,
$[0] . state for (Arkansas,80,male))).

A detailed explanation of our approach is beyond the scope of
this paper. Similar to provenance for SQL operations we compute
provenance requests for JSON path expressions on-demand by
compiling them into SQL/JSON code. Intuitively, the provenance
of a path expression for an input JSON document d consists of a
set of JSON fragments paired with paths. Each such pair represents
one binding of the path expression to a subdocument of d and the
path that leads from the root of d to this subdocument.

6. Implementation and Experiments
6.1 Implementation

We have implemented the proposed approach in GProM [4]. Prov-
enance export for queries is fully functional while import of PROV
is done manually for now. Exporting of propagated imported prov-
enance is supported, but we only support the default storage lay-
out. While GProM already supports provenance computation for
updates and transactions, our current prototype does not support
the PROV translation described in Section [3] yet. We plan to add
support for the import statement to GProM’s parser and user de-
fined storage layouts for imported provenance in the near future.

6.2 Experiments

We ran a small suite of experiments to evaluate the performance of
provenance export and propagation of imported provenance com-
pared to computing database provenance without translating it into
PROV-JSON. We used TPC-H [[14]] benchmark datasets with scale
factors from 0.01 to 10 (~10MB up to ~10GB size). Experiments
were run on a machine with 2 x AMD Opteron 3.3Ghz Processors,
128GB RAM, and 4 1 TB 7.2K RPM disks configured in RAID 5.

Export: We computed the provenance of a three way join between
relations customer, order, and nation with additional selection
conditions to control selectivity (and, thus, the size of the exported
PROV-JSON document). Every result tuple of this query depends

10MB 100MB

0 m With Export S 0

H = With Export

3 10| = Without Export 2 10; = Without Export

° Query Import ° Query Import

E 1 E1

50.1 201

0.01 0.01
0.001 15 150 1500 5000 10000 15000 0.001 15 150 1500 5000 10000 15000

Number of Query Result Tuples Number of Query Result Tuples

= With Export S = With Export

o @)

2 10| = Without Export 2 10{ =™ Without Export

° Query Import ° Query Import

El E1

€ kS

éOAl EEO 1

0.01 0.01

0.001 15 150 1500 5000 10000 15000 0.001 15 150 1500 5000 10000 15000

Number of Query Result Tuples Number of Query Result Tuples

Figure 5: Provenance Computation W/WO PROV-JSON Export

on exactly three input tuples (one from each relation). We compare
performance of provenance computation and provenance computa-
tion plus translation of the generated provenance into PROV-JSON.
Figure5]shows the runtime of these experiments averaged over 100
runs for database sizes from 10MB to 10GB varying the number of
result tuples (by changing the selection condition in the query) be-
tween 15 and 15K tuples. Generating the PROV-JSON document
comes at some additional cost over just computing the provenance.
However, this cost is linear in the size of the generated document
and independent on the size of the database. To stress test the export
mechanism we also computed the provenance of TPC-H query Q13
which produces large provenance graphs. The approach still scales
linearly up to scale factor 0.1 (~280MB of exported provenance).
The runtime for 1GB is roughly 20 times higher than for 100MB.

Propagating imported provenance: For the next experiment we
stored imported PROV-JSON documents alongside every tuple in
the customer relation. Each customer is associated with a unique
small PROV-JSON document that we generated based on a few
handcrafted templates. Performance results for exporting prove-
nance for the queries from the previous experiment are shown in
Figure [5] Export runtime increases linearly in the size of the im-
ported PROV graphs. The unexpected spike for the query with 15
result tuples stems from the fact that the database chooses an sub-
optimal execution plan. Our preliminary experiments demonstrate
the feasibility of implementing provenance import and export using
SQL and integrating it with provenance computation for queries.

7. Related Work

The introduction of the PROV standard marks an important step
towards interoperability between provenance systems. However,
a common exchange format for provenance does not solve all
provenance interoperability problems. Gehani et al. [8]] study the
problem of identifying nodes in two provenance graphs that rep-
resent the same real world entity, activity, or actor and discuss
how to integrate such provenance graphs. Some approaches try to
address the interoperability problem between database and other
provenance-aware systems by introducing a common model [1} 2}
6] for both types of provenance or by monitoring database access
to link database provenance with other provenance systems [513].
With PROV we also rely on a common model for provenance, but
instead of requiring a central authority for monitoring and prov-
enance recording, we support interoperability through import and
export of provenance in PROV. Our approach for tracking prove-
nance of JSON path expressions is similar to work on tracking the
provenance of path expressions in XML query languages [7].

8. Conclusions

We integrated import and export of provenance represented as
PROV-JSON into provenance-aware databases. Our approach uses
the DBMS to construct a PROV graph representing the fine-grained
provenance of a database operation on the fly. If the underlying
database system supports SQL JSON then this capability can be
used to query PROV graphs imported into the DBMS. This enables
tracking the provenance of data that has been derived by multi-
ple provenance-aware system where one of the involved systems
is a database. Our approach uses imported provenance for tuples
in the provenance of a query result to construct one comprehen-
sive PROV graph that represents the whole derivation history of
an entity even before it was imported into the database. In addi-
tion to extending the implementation of our approach as outlined
in Section[6.1] it would be interesting to investigate de-duplication
techniques to handle redundancy in imported provenance automat-
ically (e.g., Oracle’s securefiles feature or existing provenance spe-
cific techniques) and investigate methods for automatic detection of
common elements in independently imported provenance graphs.

References

[1] U. Acar, P. Buneman, J. Cheney, J. van den Bussche, N. Kwas-
nikowska, and S. Vansummeren. A graph model of data and workflow
provenance. In 7TaPP, 2010.

[2] Y. Amsterdamer, S. Davidson, D. Deutch, T. Milo, J. Stoyanovich, and
V. Tannen. Putting Lipstick on Pig: Enabling Database-style Workflow
Provenance. PVLDB, 5(4):346-357, 2011.

[3] B. Arab, D. Gawlick, V. Krishnaswamy, V. Radhakrishnan, and
B. Glavic. Reenacting Transactions to Compute their Provenance.
Technical report, Illinois Institute of Technology, 2014.

[4] B. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B. Glavic. A
generic provenance middleware for database queries, updates, and
transactions. In 7aPP, 2014.

[5] F. Chirigati and J. Freire. Towards integrating workflow and database
provenance. In IPAW, pages 11-23, 2012.

[6] D. Deutch, Y. Moskovitch, and V. Tannen. A provenance framework
for data-dependent process analysis. PVLDB, 7(6), 2014.

[7] J. N. Foster, T. J. Green, and V. Tannen. Annotated XML: Queries and
Provenance. In PODS, pages 271-280, 2008.

[8] A. Gehani and D. Tariq. Provenance integration. In 7TaPP, 2014.

[9] B. Glavic and G. Alonso. Perm: Processing provenance and data on
the same data model through query rewriting. In /CDE, pages 174—
185, 2009.

B. Glavic, R. J. Miller, and G. Alonso. Using SQL for Efficient
Generation and Querying of Provenance Information. In In Search of
Elegance in the Theory and Practice of Computation, pages 291-320.
Springer, 2013.

[11] Z. H. Liu, B. Hammerschmidt, and D. McMahon. JSON data manage-
ment: supporting schema-less development in RDBMS. In SIGMOD,
pages 1247-1258, 2014.

[12] P. Missier, K. Belhajjame, and J. Cheney. The W3C PROV family of
specifications for modelling provenance metadata. In EDBT, pages
773-776, 2013.

[13] Q. Pham, T. Malik, B. Glavic, and I. Foster. LDV: Light-weight
Database Virtualization. In ICDE, pages 1179-1190, 2015.

[14] TPC. TPC-H Benchmark Specification, 2009.

[10

A. Example Provenance Export

In this section we show the queries and results of applying our ap-
proaches to generate the PROV-JSON representation for the prove-
nance of the running example query. We discuss the case where no
imported provenance for the workflow that generated the user rela-

tion tuples is available. We use the following query to request prov-
enance for the example query and translate it into PROV-JSON:

PROVENANCE OF (
SELECT state, avg(age) FROM usr GROUP BY state
) TRANSLATE AS JSON;

Figure [8] shows the query generated by GProM for computing
the provenance of example query) (which generates the result
shown in Example[2). Figure[6]shows a visualization of the PROV
graph based on this PROV-JSON document (generated using the
PROV translator available athttps://provenance.ecs.soton.
ac.uk/validator/view/translator.html). Query () groups
the 6 input tuples by state to compute the average age per state.
Thus, the output contains the two tuples shown on the bottom of
the visualization. For instance, result tuple (I1linois,50) was
derived from the 4 left-most input tuples and tuple (Arkansas,49)
was derived from the 2 right-most input tuples. In the JSON serial-
ization these two tuples are represented as entities with the follow-
ing identifiers:

"tupQ\ (Arkansas|49\)"
"tup\(I1linois|50\)"

Note that identifiers like these are self-explanatory, but not
necessarily unique. For instance, the input relation usr may
contain duplicates. We will support additional options for the
TRANSLATE AS JSON clause to include additional distinguishing
information in the generated identifiers such as a system row
identifier and a version timestamp, the database name, and the
database servers IP address. However, for simplicity we will use
the simple value-based identifiers in this example. The PROV-
JSON document created by running the query is shown in Fig-
ure [/| The JSON serialization of PROV uses a top-most object
where each field corresponds to all elements of a certain type
(e.g., used edges). Field prefix defines the namespaces used in
this PROV-JSON document. Field entity stores all entities (tu-
ples in our example) and activity stores all activities (the query
in our example). For example query (), there are § entities and
1 activity. The following parts store edges between nodes in the
PROV graph. A separate field is used for every type of edge. For
example, the first element in wasDerivedFrom models that the en-
tity "rel:tupQ\(Illinois|50\)" was derived from the entity
"rel:tup_USR\(Illinois|31|female\)". The first element
in wasGeneratedBy indicates that entity "rel:tupQ\(I1linois
|50\) " was generated by the activity "rel:Q". The first element
in used indicates that entity "rel:tup_USR\(Illinois|31]|
female\)" was used by the activity ("rel:Q").

https://provenance.ecs.soton.ac.uk/validator/view/translator.html
https://provenance.ecs.soton.ac.uk/validator/view/translator.html

>

[1 ¢
— 2 “prefix”:
é i “rel™: “http://relational —model . org”
o 5 Tentity”: {
- - 6 “rel:tupQ\(Illinois [50\)": {
2 El 7 “prov:type”: “rel:tuple”
@ H
g H 8 I8
+ = 9 “rel:tupQ\(Arkansas [49\)": {
:? 10 “prov:type”: "rel:tuple”
@ 11 ,
i‘ 12 “rel:tup-USR\(I1linois |31|female\)”: {
i 13 “prov:type”: "rel:tuple”
14 1.
\ / 15 “rel:tup-USR\(Illinois |69 female\)": {
V 16 “prov:type”: “rel:tuple”
A 17 :
[18 “rel:tup-USR\(Arkansas |80 male\)": {
19 “prov:type”: “rel:tuple”
3 5 20 3.
g = 21 “rel:tup.USR\(Illinois [50| female\)”: {
- 2 22 “prov:type”: "rel:tuple”
e @
= - 23 }.
P £ 24 “rel:tup.USR\(Illinois |50 male\)": {
2 < 25 “prov:itype”: “rel:tuple”
o
] | (o4 26
5 g g :
<] = 27 “rel:tup-USR\(Arkansas |18|male\)": {
g 5 28 “prov:type”: "rel:tuple”
5 29 }
g 30).
31 Tactivity": {
\ 32 “rel:Q7: {
\Vi 33 “provitype”: “rel:query”
34 }
/ 35 3
36 “wasDerivedFrom™: {
3 37 " _:wdb.USR\(I1linois |5O| Illinois [31]female\)": {
g 38 “prov:usedBntity”: “rel:tup-USR\(Illinois [31]female\)”,
= 39 “prov:generatedEntity”: “rel:tupQ\(Illinois [50\)”
2 S 40 ¥},
z ? 41 7 _:wdb_USR\(Illinois |50| Illinois |[69]female\)”: {
g § 42 “prov:usedEntity”: "rel:tup.USR\(Illinois [69]female\)”,
= z 43 “prov:generatedEntity”: “rel:tupQ\(Illinois|50\)”
g 44 3.
g‘ d & - :wdb.| rkansas rkansas male H
45 - wdb.USR\ (Ark 49| Ark 80| male\)”
g 2 46 “prov:usedEntity”: “rel:tup.USR\(Arkansas|80|male\)”,
= % 47 “prov:generatedEntity”: “rel:tupQ\(Arkansas|49\)”
\ 48 3.
\/ 49 ¥ _:wdb-.USR\(I1linois [50| I1linois |50| female\)”: {
N 50 “prov:usedEntity”: “rel:tup.USR\(Illinois 50| female\)”,
[51 “prov:generatedEntity": “rel:tupQ\(Illinois|50\)”
52 1.
I 53 " _:wdb.USR\(I1linois [50| I1linois |50|male\)”: {
g 54 “prov:usedEntity”: “rel:tup.USR\(Illinois [50|male\)”,
8 - 55 “prov:generatedEntity”: “rel:tupQ\(Illinois [50\)”
s g 5 56 3.
5 i £y 57 ”_:wdb_USR\ (Arkansas |49 | Arkansas [18] male\)”: {
@ = z2 58 “prov:usedEntity™: “rel:tup_USR\(Arkansas|18|male\)”,
AE -g ﬁ. 59 “prov:generatedEntity”: “rel:tupQ\(Arkansas|49\)”
| 2z 60 }
& = £ 61 1,
3 o 62 »
] 2 asGeneratedBy™: {
B 2 63 ¥ _iwgb\(T1linois [50\)”: {
64 Tprov:activity” rel:Q”,
\ 65 “prov:ientity’: “rel:tupQ\(Illinois|[50\)"
v} 66 3
) 67 _:wgb\(Arkansas [49\)": {
[68 “proviactivity”: “rel:Q”,
prov:entity”: “rel:tupl rkansas
69 S ity “rel Q\ (Ark 49\)”
3 70 }
| 71 }.
8 72 -
= 73 " _:wub.USR\(I1linois |31]female\)”: {
© i 74 “prov:activity”: “rel:Q”,
2 ;g_ ;g , “prov:entity”: “rel:tup.USR\(Illinois [31]female\)”
g
= 77 ¥ _:wub-USR\(I1linois |69 female\)": {
& 78 “proviactivity”: “rel:Q”,
3 79 “prov:entity”: “rel:tup.USR\(Illinois [69]female\)”
2
z 80 1.
81 " _:wub_USR\ (Arkansas |80 male\)": {
\ / 82 “prov:activity”: “rel:Q”,
v 83 “prov:entity”: “rel:tup.USR\(Arkansas|80|male\)”
84 }.
[85 _:wub USR\(I1linois |50 female\)”: {
86 "prov:activity”: "rel:Q7,
< 87 Tprov:ientity”: "rel:tup.USR\(Illinois |[50|female\)”
<
£ 88 3
& 89 ¥ _:wub-USR\(I1linois |50 male\)”: {
— p 90 Tprov:activity “rel:Q”,
%)
= % 91 “prov:ientity”: “rel:tup.USR\(Illinois [50|male\)”
3 : 9 3.
£ z 93 7 _:wub_.USR\ (Arkansas | 18| male\)”: {
E 94 prov:activit rel:Q”,
17 95 “prov:entity”: “rel:tup.USR\(Arkansas|18|male\)”
2 96 }
o
g gg }
}

Figure 6: Visualization of the PROV graph for Q Figure 7: PROV-JSON Document Produced For Query

— Compute database provenance
WITH temp-_view_of_0 AS (
SELECT FO.”GROUP.0” AS STATE,
FO0.” AGGR.0” AS "AVG(AGE)”,
F1.” _P_SIDE_.GROUP_0” AS PROV_USR_STATE,
F1.PROV_USR_.AGE AS PROV_USR_AGE,
F1.PROV_USR_.GENDER AS PROV_USR.GENDER
FROM
(SELECT avg(F0.AGE) AS "AGGRO0”,
FO.STATE AS "GROUP.0”
FROM usr FO
GROUP BY FO.STATE) FO
JOIN
(SELECT FO.STATE AS ”_P_SIDE_GROUP_0",
FO.AGE AS PROV_USR.AGE,
FO .GENDER AS PROV_USR.GENDER
FROM usr FO
WHERE FO.AGE = F0.AGE
AND FO.GENDER = FO.GENDER
AND F0O.STATE = F0.STATE) FI
ON F0.”GROUP0” = F1.” _P_SIDE_.GROUP_0”
OR (F0.”GROUP.0” IS NULL
AND F1.” _P_SIDE_.GROUP_0” IS NULL)

)
— Assemble final PROV-JSON document
SELECT (((((((({"prefix”:o{"rel”:."http ://relational —model.org”}, "entity "_:_{."
|| FO.” allEntities™)
[l >}.o7activity 7o o{ "rel :Q7:{"prov:type”:" query”}._},."wasDerivedFrom”._: _{")
|| F1.”allWdb™)
[l >},-”wasGeneratedBy”_:.{")
|| F2.7allWgb”)
[l 7}.=7used”:o{)
[| F3.”allUsed”)
I "} AS “jExport”
FROM (((((
— Create entities nodes
SELECT replace (rtrim (xmlagg(xmlcdata(F0.” entity ”)). getclobval(),’,’),
chr(38) || ’'quot;’,’”’) AS "allEntities”
FROM (((
SELECT (*7rel:tupQ\(’ || (FO.STATE || ('|°
|| (FO.”AVG(AGE)” || *\)”=:{"prov:type”:"tuple”},’))))
AS “entity”
FROM ((temp.-view_of_0) F0))
UNION ALL (
SELECT (’”rel:tup_.USR\(’ || (FO.PROV_USRSTATE || (|’
|| (FO.PROV_USRAGE || (°|" || (FO0.PROV_USR.GENDER
[T >\)7"=:{"prov:type”:"tuple”},”)))))) AS “entity”
FROM ((temp._view_of_0) F0))) FO)) FO)
CROSS JOIN ((
— Create wasDerivedFrom edges
SELECT DISTINCT replace (rtrim (xmlagg(xmlcdata (((((((CCCCCCCCCCCCCCCCC 72 wdb_.USR\ (" || FO.STATE)
| 1") || FO."AVG(AGE)) || '|°)
| FO.PROV_USRSTATE) || ’|’) || FO.PROV_USR.AGE)
| *|") || FO.PROV_.USR.GENDER)
| "\)7:o{."prov:usedEntity ":_"rel : tup _.USR\ (")
| FO.PROV_USRSTATE) || ’|’) || FO.PROV_USR.AGE)
| *|") || FO.PROV.USR.GENDER) || *\)”’)
| *.,’prov:generatedEntity ”:7 ")
| rel:tupQ\(’) || FO.STATE) || |’) || FO.”AVG(AGE)”)
| "\)7"}.7)))). getclobval (), .,),chr(38)
| “quot;’,’”) AS “allWdb”
FROM ((temp-view_of_0) FO0)) F1))
CROSS JOIN ((
— Create wasGeneratedBy edges
SELECT replace (rtrim (xmlagg(xmlcdata (((((((((((("-:wgb\(* || FO.STATE) || '|)
|| FO.”AVG(AGE)™)
[l "\)7o:o{o7proviactivity 7:2”rel :Q”, .7 prov:entity 7.7
[| >rel:tupQ\(’) || FO.STATE) || °|’) || FO.”AVG(AGE)”)
[\
[l >7}.7)))). getclobval (), ",),chr(38)
|| >quot;’,””") AS “allWgb”
FROM ((temp._view_of_0) FO0)) F2))
CROSS JOIN ((
— Create used edges
SELECT replace (rtrim (xmlagg(xmlcdata ((((((((((((((7 -:wub_.USR\(" || FO.PROV_USR.STATE)
[l "|") || FO.PROV.USRAGE) || '|)
|| FO.PROV_USR.GENDER)
[l >\)7-:o{."prov:activity 7:.”rel :Q”, _"prov:entity ”: " rel : tup_.USR\ (")
|| FO.PROV_USR.STATE) || *|’) || FO.PROV_USR.AGE)
[l >1’) || FO.PROV.USR.GENDER)
[T >\)”}.7)))). getclobval (), .,),chr(38)
|| quot;’,””") AS “allUsed”
FROM ((temp._view_of_0) F0)) F3)
)

Figure 8: Generating Provenance for Example Query () and Translating the Result into PROV-JSON

	Introduction
	PROV Import and Export
	Handling Updates
	Querying Provenance
	Provenance for JSON Path Expressions
	Implementation and Experiments
	Implementation
	Experiments

	Related Work
	Conclusions
	Example Provenance Export

