GitHub2PROV: Provenance for Supporting Software
Project Management

Heather S. Packer
University of Southampton
Southampton, UK
hp3@ecs.soton.ac.uk

Abstract

Software project management is a complex task that requires
accurate information and experience to inform the decision-
making process. In the real world software project man-
agers rarely have access to perfect information. In order
to support them, we propose leveraging information from
Version Control Systems and their repositories to support
decision-making. In this paper, we propose a PROV model
GitHub2PROV, which extends Git2PROV with details about
GitHub commits and issues from GitHub repositories. We
discuss how this model supports project management deci-
sions in agile development, specifically in terms of Control
Schedule Reviews and workload.

CCS Concepts «Theory of computation — Data prove-
nance; - Software and its engineering — Agile software
development.

Keywords process provenance data, software project man-
agement, PROV

ACM Reference Format:

Heather S. Packer, Adriane Chapman, and Leslie Carr. 2019. GitHub2PROV:

Provenance for Supporting Software Project Management. In TAPP
’19: International Workshop on Theory and Practice of Provenance,
June 03, 2019, Philadelphia, PA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Software project management is the application of knowl-
edge, skills, and tools to manage activities to meet project
requirements [6]. It requires managers to balance cost, scope,
and schedule, to meet these requirements. This balance is
difficult to achieve and poor management results in finan-
cial losses. The Project Management Institute (PMI) reports
that 9.9% of every dollar invested in projects is wasted!, and

IPMI Report 2018: https://www.pmi.org/-/media/pmi/documents/public/
pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2018.
pdf?sc_lang_temp=en

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

TAPP ’19, June 3, 2019, Philadelphia, PA

© 2019 Copyright held by the owner/author(s).

Adriane Chapman
University of Southampton
Southampton, UK
adriane.chapman@soton.ac.uk

Leslie Carr
University of Southampton
Southampton, UK
lac@soton.ac.uk

around $1 million is wasted every 20 seconds or $2 trillion
every year?.

The PMI attributes wastage to three factors: 1) Failing
to bridge the gap between strategy design and delivery; 2)
Executives do not recognise that their strategy is delivered
through projects; and the most relevant to this paper 3) the
“importance of project management as the driver of an orga-
nization’s strategy isn’t fully realized”!. To enable software
project managers to make rational critical decisions, they
require complete, unbiased and accurate data. However, in
the real world decision makers rarely have access to perfect
information, and data may be so poorly presented that a de-
cision is not obvious®. It can be hard for managers to access
data because of the opacity of software engineering tools.
They usually make decisions under time pressure and with
inadequate data of questionable accuracy. Often decisions
are based on a manager’s experience and trusted parties’
opinions®.

Version Control Systems (VCS) such as Git, are commonly
used for project development. They use branching, the dupli-
cation of a commit, for developing new features in parallel
along both branches. These VCS repositories are typically
hosted on cloud services such as GitHub, because they pro-
vide additional tools for development teams to manage and
track their projects. Both VCS and hosting services offer
flexibility in their use, and thus teams’ working practices
can vary greatly especially because there is no standardised
process on how to interact with them.

Provenance data models describe the linage of data and
this can describe the software engineering process. The
Git2PROV [3] tool already models Git processes using PROV
but this model data does not describe collaborations relating
to decisions behind commits. Git process handles the version-
ing of files, whereas GitHub provides all of the social aspects
of development, such as issue reporting and development
collaboration. The complexity of these social interactions
is compounded by the number and types of development
branches (see Figure 1), and distributed development. In

Brightline Initiative: https://www.worldfinance.com/strategy/
the-brightline-initiative-gives-life-to-ideas

SPMI Critical Decision Making Skills for Project
Managers: https://www.pmi.org/learning/library/
critical-decision-making-skills-project-managers-5798

A successful Git branching model: https://nvie.com/posts/
a-successful-git-branching-model/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2018.pdf?sc_lang_temp=en
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2018.pdf?sc_lang_temp=en
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2018.pdf?sc_lang_temp=en
https://www.worldfinance.com/strategy/the-brightline-initiative-gives-life-to-ideas
https://www.worldfinance.com/strategy/the-brightline-initiative-gives-life-to-ideas
https://www.pmi.org/learning/library/critical-decision-making-skills-project-managers-5798
https://www.pmi.org/learning/library/critical-decision-making-skills-project-managers-5798
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/

TAPP ’19, June 3, 2019, Philadelphia, PA

release
feature

branches develop

=
) Tag
) 0.1
B ajor Severe bug
eature for
next release
e

Tag
0.2

branches hotfixes master

fixed for
production:
hotfix 0.2

Incorporate

bugfixin
develop

A4

Figure 1. Complexity of managing branches *
license: Creative Commons.

order for software project managers to track and analyse the
development of features they require more social informa-
tion than Git2PROV can provide to predict the time required
to develop features for creating schedules. In order to better
support them, we propose GitHub2PROV. It uses PROV to
model social interactions influencing software project devel-
opment, specifically issues. Concretely, in this paper we:

1. Present a PROV model called GitHub2PROV, which
extends the Git2PROV model;

2. Show how GitHub2PROV can provide insights into
software development from multiple sources, both
GitHub API and git file;

3. Evaluate our model against metrics described in re-
lated work to support decision-making in agile devel-
opment.

The rest of the paper is as follows. In Section 2 we de-
scribe software development management in terms of Agile
development using Git and Git web hosted repositories. We
then, in Section 3 describe related work including PROV,
Git2PROV, PROV workflows and process provenance. Then
in Section 4, we present our model GitHub2PROV. Following
that, in Section 5 we discuss how our model can support
project managers. In Section 6 we provide a discussion about
our model, it’s uses and limitations. Finally, in Section 7 we
conclude and present our future work.

Heather S. Packer, Adriane Chapman, and Leslie Carr

2 Software Development Management

Adaptive life cycles, also known as agile methods, are in-
tended to respond to high levels of change. They are itera-
tive and incremental, and unlike other methods, their itera-
tions are very rapid with iterations usually have a duration
of 2 to 4 weeks [6]. Git manages low-level version control
transactions. It is the de facto standard for agile software
development when it comes to version control systems’. It
supports a range of workflows and allows changes to be
quickly pushed down the development pipeline.

There are many tools that are used to support Agile soft-
ware engineering from communication through source repos-
itory. We now discuss the popular tools, Git and GitHub, an
example of a web hosted repository.

2.1 Git and Web Hosted Repositories

Git is a VCS, where users can create a snapshot of files by
committing them to Git. Typically a user would follow this
process to create a git commit® :

1. They create files on their local machine;

2. Then they stage these files ready for a commit;

3. The staged files are then pushed to a Git repository.
This Git repository can be hosted either locally or on
an online repository hosting service.

Each committed snapshot is stored within a Git reposi-
tory, allowing users to view changes between commits and
revert code to previous versions. A series of commits can be
described as a graph, where it is possible to create separate
chains of commits, called branches. A repository will usually
have a main or Master branch that is considered the primary
version of the code. Additional branches allow users to di-
verge from the Master branch so that work can continue on
features without changing the Master. Software projects and
developers have different approaches to using branches to
manage the evolution of a codebase. For example, Gitflow’
proposes a Master branch to hold production-ready code,
and a Develop branch where the code is assembled until it
has reached a stable point suitable for merging to Master.
Development work on features and bug fixes is conducted
on separate branches after which developers will merge to
Master.

Web services such as GitHub® and Bitbucket’, allows users
to publish their Git repositories online. Git repositories are
commonly hosted on web services because they allow users
to collaborate on the development of features, and report

5 Atlassian Agile Coach:
software-development/git

The numbered stages be described using Git2PROV
"https://nvie.com/posts/a-successful-git-branching-model/
8GitHub: http://github.com

9BitBucket: http://bitbucket.com

https://www.atlassian.com/agile/

https://www.atlassian.com/agile/software-development/git
https://www.atlassian.com/agile/software-development/git
https://nvie.com/posts/a-successful-git-branching-model/
http://github.com
http://bitbucket.com

GitHub2PROV: Provenance for Supporting Software Project Management

issues. The way in which users interact with GitHub and sim-
ilar services can vary greatly due to a team’s working prac-
tices and the range of features offered to manage changes;
there is no standardised process for interacting with Git.

2.2 Agile Software Engineering and Management
Metrics

Software project managers require tools to make sense of
project development. There are numerous third party tools
available via GitHub’s marketplace, these tools however pro-
vide limited customisation on the data provided. The focus
of our work is to develop a model that is flexible enough for
managers to construct their own queries. These queries can
be used to create a Control Schedule to monitor the status
of the project [6]. The goal of this process is to identify any
deviations from the plan so that corrective and preventive
actions can be taken.

A Control Schedule (taken from A Guide to the Project
Management Body of Knowledge (PMBOK) [6]) determines:

P1 The total amount of work delivered;

P2 The rate at which deliverables are produced;
P3 Whether deliverables are validated; and

P4 The velocity of a team.

3 Background and Related Work

In order to model provenance, we will be using the W3C
standard language PROV [4]. PROV describes provenance
using a conceptual model PROV-DM, which can be serialized
using the PROV formats PROV-O, PROV-XML, PROV-N,
and queried using PROV-AQ. It has three core concepts,
prov:Entity, prov:Activity, and prov:Agent, and their
relationships.

The Git2PROV tool [3] was developed to map a Git repos-
itory to the PROV format. The tool generates PROV (see
Figure 2) describing:

1. The activity of committing a set of files. This is ex-
pressed as a prov:Activity that connects two prov:
Entity objects, expressed through prov:used and
prov:wasGeneratedBy relations. Figure 2 shows PROV
of a commit ¢ which uses a file f._; and generates a
file f. [3];

2. The version of the files that were committed and how
they relate to the previous versions. This is repre-
sented using a dependency between two objects ex-
pressed as the relationship between two prov:Entity
objects using the relations prov:wasDerivedFromand
prov:specializationOf, where a file f. was derived
from another previous file f._;, both are a specializa-
tion of a certain file f [3];

3. Agents who authored and committed the files, are
expressed as prov:Agent which created the Entity us-
ing the relations prov:wasAttributedTo and prov:

TAPP ’19, June 3, 2019, Philadelphia, PA

wasAssociatedWith, modeling the two potentially dis-
tinct roles of a author and a committer [3].

While Git2PROV describes the chain of commits within a
Git repository, on both locally and cloud-hosted services, it
does not describe the collaborations that those cloud-hosted
services facilitate.

@
[commiter] [athor] (fer)
\ FY /‘ X

assoc

tassoc

git_commit

Figure 2. Git2PROV, attributes are not shown for clarity.

In addition to the Git2PROV, the provenance community
has also explored PROV to document the Software Devel-
opment Process (SDP), this research area was identified in
2010 as an emerging field in [9] and it has not yet filtered
through into software project management. The following
related work discusses provenance and SDP.

Miles et al. [8] propose PRiIME, a technique that adapts
application designs to enable them to interact with a prove-
nance middleware layer. They detail how to apply PRIME
and analyse its effectiveness using two case studies. Wendel
et al. [11] present a solution to common failures in soft-
ware development processes based on PRIME. Notably, they
identify that users are concerned with quality reassurance,
process validation, statistical analysis, and process optimisa-
tion. Junaid et al. [5] propose using a system, called iSPuP,
that intercepts users actions with suggestions of possible
future tasks, based on captured provenance. iSPuP aims to
improve processes and their focus is to support software pro-
cess execution, monitoring, and analysis phases to improve
software processes.

Costa et al’s [2] work investigates whether process prove-
nance data can provide information to support software
process execution, monitoring, and analysis phases, con-
tributing to the process improvement as a whole. Notably,
their paper conducted a survey of approaches describing
software process execution and found 16 publications. These
papers either suggested the use of generic tools for process
management or adopt proprietary solutions. None of these
proposals uses data provenance.

Costa et al. [1] presents an approach for visualising soft-
ware process provenance data, called SPPV. To evaluate their
work they run an exploratory analysis using two real-world
industry processes, with positive feedback from the process

TAPP ’19, June 3, 2019, Philadelphia, PA

Heather S. Packer, Adriane Chapman, and Leslie Carr

‘ github_parent_commit_1 l ‘ github_parent_commit_2 ‘ W

Git2PROV

in
inf
github_commit [

inf

GitHub2PROV_Commit

Figure 3. Github2PROV and Git2PROV commit, attributes for type, state and label not shown for clarity.

experts. In their evaluation they investigated whether prove-
nance data could support managers in identifying problems
with workloads, using the following questions [1]:

Q1 How many entities/artifacts were manipulated by the agent?

Q2 How often are these entities manipulated by the agent over
time?

Q3 How many activities/tasks were completed by the agent?

Q4 How often are these activities performed by the agent over
time?

Q5 How many activities/tasks, related to new requests, were
started by the client?

4 Mapping of GitHub to PROV

In order to investigate whether PROV models can inform
software project management, we use the GitHub’s APT'?.
We selected GitHub because it has become a de facto standard
for software development, with over 31 million developers
and 96 million repositories in 20181, and its API is RESTful
which allows resources to be modeled as resolvable elements
in a PROV graph. Our model, GitHub2PROV, makes use of
two core resources within a GitHub project, Commits, and
Issues. We describe the mapping of these two resources in
the following two sections.

4.1 Commits

In this paper, we discuss Commit resources which are re-
ferred to by both Git2PROV and our GitHub2PROV model.
We will use the naming convention Git commit and GitHub
commit to describe commits provided by Git2PROV and
GitHub2PROV models. While we make the distinction be-
tween Git commit and GitHub commit, these two activities de-
scribe the same commit activity. Git2Prov’s Git commit is not
resolvable, hence we utilise the URL provided by GitHub’s
API to describe the GitHub commit entity. Concretely, resolv-
ing a GitHub commit entity’s URL provides details about the
committer, author, message, and verification.

10GitHub API v3 https://developer.github.com/v3/
https://octoverse.github.com/

GitHub’s API describes a GitHub commit resource and
provides details including the GitHub commit’s message,
any comments, build status, the author and committer. Our
mapping is shown in Figure 3, and the two classes that we
used are identified below. For each class, we describe how
provenance can be expressed using concepts from the PROV
Data Model [10]:

1. Communication - where github_commit is informed
by github_parent_commit_1 and github_parent_com—
mit_2. Where github_parent_commit_2 is optional. Hav-
ing two parent GitHub commits represents a merge.

2. Attribution - where the github_commit activity is at-
tributed to github_committer using the prov:wasAss-
ociatedWith relation.

In order to map our model onto Git2PROV, we use a com-
munication relation, wasIn f ormedBy, between a Git commit
and GitHub commit (see Figure 3).

4.2 Issues

GitHub has an issue tracking system which manages and
maintains lists of issues. It is useful in Agile development
because they support collaboration, particularly in large or
geographically distributed communities. GitHub’s API de-
scribes an issue resource and details a list of events that have
occurred against that issue. In order to model issues, we have
identified three cases:

1. A new issue (see Figure 4), where an issue has been
created in a project. We describe our model using con-
cepts from the PROV Data Model [10]:

a. Communication - where annotator_commit is in-
formed by issue_event_annotation.

b. Attribution - where github_annotator was attrib-
uted to issue_version_annatotion.

c. Dependency - issue issue_version is a specialization
of a certain issue issue.

d. Activities - an event issue_event generates a new
issue version issue_version;

https://developer.github.com/v3/

GitHub2PROV: Provenance for Supporting Software Project Management

commit github_issue_opener
o
issue_event

issue_version

issue_opened

Figure 4. Github2PROV new issue, attributes for type, state
and label not shown for clarity.

2. A new issue event (see Figure 5a), where an event
has happened on an existing issue. The API has 26 dif-
ferent event types'?. For example, when an issue was:
assigned, closed, milestoned, referenced, renamed, re-
opened, and subscribed. We describe our model using
concepts from the PROV Data Model:

a. Communication - where commit is informed by issu
e_event.

b. Attribution - where github_issue_opener was attrib-
uted to issue and issue_version.

c. Dependency - where, an issue issue_version was de-
rived from another previous file issue_version, both
are a specialization of a certain issue issue.

d. Activities - where an event issue_event_annotation
generates a new issue version issue_version_annot—
ation;

3. Anew event with type marked as duplicate, which
is a special case of Case 2. We model this case because
software project managers benefit from understanding
the development effort on the same or similar issues.
Anissue is marked as a duplicate so that users can track
similar issues and remove unnecessary overheads of
managing two issues. This type of event will use the
combination of models in Figures 5a and 5b. The alter-
nate relationship between issue_version _annotation
and previous_issue describes when an issue is marked
as a duplicate of another issue because it details aspects
of the same issue.

The following table describes the attributes for the issue
entities and issue event activities:

PROV element Type | Description

Issue Entity prov:type | title of issue
state | open/closed
Issue Event Activities | prov:type | title of issue
endTime | xsd:dateTime

121ist of issue event types: https://developer.github.com/v3/issues/events/

TAPP ’19, June 3, 2019, Philadelphia, PA

5 Applying the GitHub2PROV Model

In order to evaluate Git2PROV, we discuss how it can support
(i) the compilation of a Control Schedule Review (see Section
2.2), and (ii) workload (see Section 3), using metrics derived
from the GitHub2PROV. We note that the metrics we discuss
in this Section are useful in project management, however,
none of them provide insight into the causes of the results
but they do provide discussion points to evaluate a team’s
progress.

In order to evaluate our metrics, we have generated GitHub
2PROV and Git2PROV models for the LibVips project!®, a
popular imaging processing library which was first devel-
oped in 1995 and its Git repository was first pushed to GitHub
in 2007. At the time of generating the model, it had 5,684
github commits, 51 open issues, and 998 closed issues. In
Figure 6 we depict an excerpt of the LibVips provenance.

5.1 Control Schedule Review

In order to discuss how our model can support a Control
Schedule Review, we first identify metrics that can be used
(see Section 2.2):

M1 Open/close rates - how many issues are reported
and how many issues closed within a specific time
period. This metric describes the volume of work that
has been completed and supports P1.

M2 Lead Time - how long it takes for a feature to be in
the delivered software. This metric supports P2, which
can be used to provide context on the rate at which
deliverable is produced on the project.

M3 Cycle Time - how long it takes for a change to be
made to the software system and deliver that change
into production. This metric helps describe the rate at
which deliverable is produced, thus supporting P2.

M4 Team velocity - how many “units” of software the
team typically completes in an iteration. This supports
P4.

The above metrics do not address item P3, this is because
our model, for now, does not describe validation processes.
We plan to address this in future work.

A common requirement in the evaluation of metrics used
for a Control Schedule Review is the start and end time for a
given activity such as the development of a feature. The use
of our model allows the explicit timing information derived
from a traditional issue tracker to be combined with the
implicit timing provided by other activities such as commits.
The activity start is defined as the earliest activity directly
attributable to the issue. The activity end would usually be
the point in time that code is merged to production, after
which CI/CD pipelines or code release processes take over.

In Table 1, we present a description of our metrics, which
PROV elements are used to calculate the metrics, and met-
ric values taken from the month of January 2019 from the

B3LibVips: https://jcupitt.github.io/libvips/

https://developer.github.com/v3/issues/events/
https://jcupitt.github.io/libvips/

TAPP ’19, June 3, 2019, Philadelphia, PA

issue_annotation

(a) New issue event

Heather S. Packer, Adriane Chapman, and Leslie Carr

previous_issue
issue_version_annotation

alternate

(b) Marked as duplicate

Figure 5. Github2PROV new event and marked as duplicate, where attributes type, state and label not shown for clarity.

2096965178 |

121942

H_-Adgf| type: gitbub?_pro head_ref_fomce_guched | [121851

iypes s Zpeismne veion ZlﬁO]SEDM -~

121984 = [T —

weissve_version, VTR ' 2097105135
121943 5 wilabelecd type:gitub?_proveerenced 121842

2‘1‘3’7[05137 - type: it 2

type: github]_provmenged 121843

2097105143 type: b dpevu dssue_venian

ypes ithub_provclosed (1218 ¥

2097119699 ype: gt esve_versicm
type: github2_prav-head_ref_delcied 121845

type:gilbubZprovsissue_version

Figure 6. GitHub2PROV LibVips excerpt

LibVips exemplar. We have omitted for Team Velocity M4
from the table because the we were unable to calculate it
from the LibVips PROV model. To calculate M4 we would re-
quire each issue to be annotated with the number of software
development “units”, which is usually estimated by one or
more team members. We queried the models using SPARQL,
and the following is an example query for open rates (M1):

SELECT ?i 7?st
WHERE {
?i a github2prov:issue.
?i prov:wasGeneratedBy ?ca.

?ca prov:startedAtTime ?st.
FILTER ((?st >= "2019-01-01T700:00:00+00:00""*xsd:dateTime) &&
(?st < "2019-02-01T00:00:00+00:00"**xsd:dateTime))

5.2 Workload

In Section 3 we describe metrics used to determine the work-
load of users in project development scenarios. These met-
rics could be used to support the allocation of work during
a Control Schedule Review. To make the metrics more di-
rectly applicable to our model, we defined them in terms of

GitHub2PROV: Provenance for Supporting Software Project Management

Metric| Description Features used LibVips
in PROV results
M1 Open/Close Rates | GitHub2PROV: Opened:

derived from the issue | issue_event activity | 21

creation time and the | startTime attribute | Closed: 23
close issue annotation | and issue_event
event. activity ~ attribute
where status = closed

M2 Lead Time The start | GitHub2PROV: Days: 22.78
time is defined as the | issue_event activity
earliest of the issue | startTime attribute
creation time and the
activity start time.
M3 Cycle Time Start | GitHub2PROV: Days: 20.71

time is taken as the | issue_event activity
activity start time. startTime attribute

Table 1. Control Schedule Review Metrics

files and commits (described by Git2PROV), issues and issue
events (described by our GitHub2PROV model). These met-
rics are presented in Table 2, this table also defines the PROV
elements used, and metric values taken from the month of
January 2019 from the LibVips exemplar using SPARQL.

Metric| Description Features used in | LibVips Results

PROV
M5 The number of | Git2PROV: file | Developer 1: 122
files that were | entities, and | Developer 2: 7
edited by an agent | committer agents | Developer 3: 8
(Q1) Developer 4: 2

Developer 5: 2
Mé The frequency of | Git2PROV: file | Developer 1: 99.34
files which are ma- | entities, and | Developer 2: 0.36
nipulated by an | committer agents | Developer 3: 1.02
agent (Q2) Developer 4: 1.00
Developer 5: 1.00
M7 The number of | GitHub2PROV: | Developer 1: 86
events an agent | issue_event Developer 2: 3

is associated with | activity, anno- | Developer 3: 27
(Q3). tator/opener Developer 4: 5
agents Developer 5: 10
M8 The frequency of | Git2ZHubPROV: | Developer 1: 38.30
events associated | issue_event ac- | Developer 2:3.14
with an agent (Q4). | tivity, commit | Developer 3: 4.63
activities, anno- | Developer 4: 4.00
tator/opener/ Developer 5: 4.00
committer agents
M9 The number of | Git2HubPROV: | Developer 1: 71
events relating to | issue_event Developer 2: 1
new issues that an | activity, com- | Developer 3: 11
agent is associated | mit activities, | Developer 4: 4
with (Q5). annotator / opener | Developer 5: 0

Table 2. Workload Metrics

TAPP ’19, June 3, 2019, Philadelphia, PA

6 Discussion

Our approach uses the GitHub API to populate the GitHub2P-
ROV model. Thus it contains the same data as the GitHub
API, however, our model benefits from the linage of data pro-
vided by the PROV-DM, which was used to support queries
M2 and M3. Another alternative to querying our model using
SPARQL, is to place all statements into a relational database,
however 2 out of our 8 use cases requires graph traversal
and using a database would be harder in terms of lines of
code and query complexity.

Our model describes GitHub commits and issues, both of
which are core to project development. It does not model
every possible interaction with GitHub, we took this design
choice for two reasons: First, we wanted to evaluate whether
the information about GitHub commits and issue tracking
would be useful, without investing in modeling GitHub’s
extensive API; Second, our model describes core concepts
that are common to online Git hosting services so that our
model could be re-purposed for other services.

It is possible to extend GitHub2PROV so that it describes
other resources made available via the GitHub API, however
it is a challenge to capture the complete provenance of this
process because project development is often distributed over
a number of non-integrated tools. Provenance capture may
not be complete, thus making it difficult to draw conclusions
from these sources or it maybe extremely time-consuming
to collect due to the scale of available data.

The results form the metrics can be displayed in tables
or graphs so that software project managers can quickly as-
sess the metrics (see Figure 7). The metrics derived from the
project management perspective (see Section 5.1) required
more complex queries than the metrics derived from related
provenance research (see Section 5.2). The former metrics
were more complex because it was necessary to traverse
the directed graph of Git commits to determine when devel-
opment on an issue started and this required insight into
a project’s development process. While we have calculated
measures for the LibVips repository, where we have gener-
ated our figures for the time period of a month, this may not
be representative of development iterations. This knowledge
should, however, be available to a project manager using this
model. Even without the knowledge of these development
details, our model can still provide an insight into the activ-
ity of a project, the evolution of a team, and the resolution
of issues. This insight can provide users with details about
whether the code base is maintained and whether the devel-
opers are reactive to issues. It also allows users to compare
GitHub code libraries for use in their projects.

We were also unable to generate a metric M4 from our
exemplar, team velocity, because the developers did not pro-
vide information in the repository about development units.
If the developers choose to include this level information in
their issues, this could be calculated. The richness of PROV

TAPP ’19, June 3, 2019, Philadelphia, PA

140
120

100

80
22
21 60
20 40
19 20
18
0
17
16

Open/Closed Rate Lead Time Cycle Time

(a) Control Schedule Review Metrics

Developer 1

m Files Edited

Heather S. Packer, Adriane Chapman, and Leslie Carr

Developer 2 Developer 3 Developer 4 Developer 5

m Files Manipulated Events Event Freq m New Issue Events

(b) Workload Metrics

Figure 7. Graphs showing the Metrics for the LibVips project

captured by our model depends on how developers interact
with GitHub. For instance, if the development is led by a
single developer, and they do not report issues through the
issue tracker then this information is lost. In this case, a
better strategy would be to use the time derived from tasks
completed tasks for project managing workload.

While our model extends the Git2PROV model, it is not re-
quired to query a GitHub2PROV model. That said, Git2PROV
provides interesting insights into Git repositories. The com-
bination of Git2PROV models of multiple user repositories
and GitHub2PROV model provide interesting insights into
team behaviour. We also note that GitHub2PROV would
not be able to support the Metrics M5 and M7 without the
Git2PROV model. Other provenance models could be com-
bined with the GitHub2Prov model to enrich it and more
applicable for other purposes. For instance, the work of Miao
et al. [7] presents a model for data scientists to model the
evolution of their datasets, the dataset version could be con-
nected to a GitHub commit.

7 Conclusions and Future Work

In this paper, we present GitHub2PROV, a PROV model
which describes GitHub commits and Issue resources. It ex-
tends the Git2PROV model. We discuss how our model can
support project management decisions using metrics and we
calculated these metrics for our LibVips exemplar.

For future work, we plan to extend our model by includ-
ing other core concepts from the GitHub API namely pull
requests, other user interactions, and information from con-
tinuous integration tools describing validation. By including
these concepts in our model, we can provide better support
to software project managers. We plan to explore addition
use cases for our model, including Software Sustainability
for open source projects.

References

[1] Gabriella CB Costa, Marcelo Schots, Weiner EB Oliveira, Humberto
LO, Claudia ML Dalpra, Regina Braga, José Maria N David, A Mar-
cos, Victor Stréele Miguel, and Fernanda Campos. 2016. SPPV: Vi-
sualizing Software Process Provenance Data. Sociedade Brasileira de
Computagao—-SBC (2016), 49.

Gabriella Castro Barbosa Costa. 2016. Using Data Provenance to

Improve Software Process Enactment, Monitoring, and Analysis. In

Software Engineering Companion (ICSE-C), IEEE/ACM International

Conference on. IEEE, 875-878.

Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam Coppens, Paul T

Groth, Erik Mannens, and Rik Van de Walle. 2013. Git2PROV: Expos-

ing Version Control System Content as W3C PROV.. In International

Semantic Web Conference (Posters & Demos). 125-128.

Paul Groth and Luc Moreau. 2013. PROV-overview. An overview of

the PROV family of documents. (2013).

Malik Muhammad Junaid, Maximilian Berger, Tomas Vitvar, Kassian

Plankensteiner, and Thomas Fahringer. 2009. Workflow composition

through design suggestions using design-time provenance information.

In E-Science Workshops, 2009 5th IEEE International Conference on. IEEE,

110-117.

Erick W Larson and Clifford F Gray. 2015. A Guide to the Project Man-

agement Body of Knowledge: PMBOK (®) Guide. Project Management

Institute.

[7] Hui Miao and Amol Deshpande. 2018. ProvDB: Provenance-enabled

Lifecycle Management of Collaborative Data Analysis Workflows.

Data Engineering (2018), 26.

Simon Miles, Paul Groth, Steve Munroe, and Luc Moreau. 2011. PrIMe:

A methodology for developing provenance-aware applications. ACM

Transactions on Software Engineering and Methodology (TOSEM) 20, 3

(2011), 8.

Luc Moreau. 2010. The foundations for provenance on the web. Foun-

dations and Trends in Web Science 2, 2-3 (2010), 99-241.

[10] Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza BAAZFar, James
Cheney, Sam Coppens, Stephen Cresswell, Yolanda Gil, Paul Groth,
Graham Klyne, et al. 2013. Prov-dm: The prov data model. W3C
Recommendation REC-prov-dm-20130430. WWW Consortium (2013).

[11] Heinrich Wendel, Markus Kunde, and Andreas Schreiber. 2010. Prove-
nance of software development processes. In International Provenance
and Annotation Workshop. Springer, 59-63.

[2

—

3

[t

[4

[l

5

—

[6

—

8

—

[9

—

	Abstract
	1 Introduction
	2 Software Development Management
	2.1 Git and Web Hosted Repositories
	2.2 Agile Software Engineering and Management Metrics

	3 Background and Related Work
	4 Mapping of GitHub to PROV
	4.1 Commits
	4.2 Issues

	5 Applying the GitHub2PROV Model
	5.1 Control Schedule Review
	5.2 Workload

	6 Discussion
	7 Conclusions and Future Work
	References

