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Abstract

We provide a model describing data transformation
workflows on tables constructed from first principles,
namely by defining datasets as structures with functions
and sets for which certain morphisms correspond to data
transformations. We define rigid and deep data trans-
formations depending on whether the geometry of the
dataset is preserved or not. Finally, we add a model of
concurrency using meet and join operations. Our work
suggests that algebraic structures and homotopy type the-
ory provide a more general context than other formalisms
to reason about data cleaning, data transformations and
their provenance.

1 Introduction

Data cleaning [16]] is increasingly significant task in data
science across industry and academia. Scientific re-
producibility depends on the existence of well-curated
datasets which implies, in research contexts, respecting
specific data storage format specifications, no lexico-
graphic errors or misclassified entities, and adequate rep-
resentation of missing data in contraposition with valid
data. Ensuring all the above can be hampered by manual
or systematic errors that may be hard to spot. Datasets
are routinely constructed manually via entry interfaces,
direct input in spreadsheets or CSV files, with the proba-
bility of errors proportional to dataset size and their dis-
tribution somewhat randomized. In other cases, auto-
mated processes may produce systematic errors in data
processing may also be difficult to identify and correct
manually. As data volumes and technology grows, the
challenge intensifies [6]].

Tools such as OpenRefine [10] provide a pragmatic
pathway toward better datasets via data cleaning work-
flows. OpenRefine records the operation history applied
to a dataset using JSON, also known as a data clean-
ing recipe. Recipes specify data cleaning workflow, se-
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quences of data transformations intended to solve vari-
ous types of errors in datasets regardless of their origin.
The premise of our work is that, to fully reap the benefits
of data cleaning, one must first robustly understanding
data transformations at depth. The study of data trans-
formations has followed several theoretical paths: using
programming language theory [3}[19], relational algebra
[4}12] and general algebraic models [13} 8} 11]] or combi-
nations of those [9]].

While significant progress has been achieved across
these fronts, we believe more progress can still be made
with simpler theoretical tools. Simple, in our case,
means small syntactic overhead. Acquiring proficiency
in many of the existing formalisms demands significant
effort just to model simple aspects of data transforma-
tions. Provenance-wise, these formalisms tend to focus
on the history of a dataset as an atomic unit; we take an-
other route that attempts to also uncover the history of
individual cell contents. In the resulting dataset after ex-
ecuting an operation history, each piece of content must
be somehow causally connected to those in the original
dataset. Parts the original dataset may be not end up in
the final dataset, but provenance information should al-
low us to reconstruct them. We would like to ask specific
questions about how a given value in a cell came to be,
and what its individual operation history was. Metaphor-
ically, we wish to proceed as when following the trace
left by a collection of leaves along a flowing river: many
of the leaves will be lost, but for those that survive we
should be able to tell their history as long as we know
how water carries them. Our aim is to provide a model
that promotes cells as first-class citizens with an interest-
ing life of their own.

For this purpose, we harness the language of algebraic
structures [15]. We observe that OpenRefine recipes con-
taining data transformation operations are equivalent to
a directed lattice of intermediate datasets 2 = {D; }icr
where Dy is the original dataset and D the final one
connected by functions where the direction of the arrow



is defined by D; being a predecessor of D;, or for-

mally D; < D;4 iff D; A—J> Di11 (equivalently, if D;y1 =
A;(D;)) for some transformation A;. Moreover, since the
lattice defined above defines a preorder (2, <) in which
meet and join operations correspond to concurrent dis-
joint transformations on copies of a dataset and merge
transformations respectively, we can always find a mono-
tone map to a linear preorder of sequential execution
steps. All the latter suggests that morphisms constitute
an appropriate general language to express facts about
data transformations.

Our model resembles the spreadsheet algebra reported
in [13] insofar datasets are equated with tables for pur-
poses of simplicity. However, we dispense with the syn-
tactic and operational complexities of relational algebra
altogether. The notions developed in this article can be
extended to more complex cases where relational alge-
bra operations such as joins and selects occur. While
we do not provide extensive discussion on the prove-
nance model arising from our model, the appendix hints
at which information can be preserved for such purposes.

2 Defining a Dataset

Intuitively, a dataset is a collection of elements with
some algebraic structure. Each element contained in the
dataset is a representation of an interesting entity whose
representation is a string of symbols drawn from an al-
phabet X. Along with the alphabet, two special strings
are provided: the empty string € for events where the
contents may be empty and yet semantically adequate,
and the null string L for cases when information is legit-
imately missing. We are now in position to define a lan-
guage %5 = X*U{ L}, which for the time will be taken
as regular; hence, to every regular expression r € R (R
being a finite set of regular expressions) corresponds a
language % (r) C %. From usual data cleaning prac-
tices, the contents of individual rows are not free-form,
since they depend on certain formatting practices. As-
suming that for each of the N columns of a dataset a reg-
ular expressions 7,1 < j < N exists, rows are elements
of the set

N
X< X L(r)),
=1

which is loosely equivalent to a relation in database
theory. But, as indicated, we seek a more flexible rep-
resentation that decouples the contents from their struc-
tural scaffold. We thus define the dataset content as a set
of pairs ¢ = {(c,A)|c € C,A € N} where

N
cc %) (1)
j=1

and A is uniquely assigned for every c¢ before trans-
formations are applied. A dataset is composed of a fi-
nite number of rows composed of cells, addressable en-
tities by means of row and column indices /,J such that
I1={1,2,--- M} andJ={1,2,--- ,N}.

In the usual spreadsheet view, cells are addressable
memory locations that contain representations; as ex-
pected, we invert this perspective by constructing a func-
tion S that assigns a unique index (i, j) elements of ¢ € ¢
that appear in the dataset. We call any such function a
structuring function

S: € —IxJ )
S={c—(i,j)lceb,icl, jel}. 3)

We can use the positions of cell contents to compute
A. A simple way to guarantee uniqueness is the mapping
A(i, j) =2'-3/. A cellis therefore an object for which the
structuring function S circumstantially assigns an index,
not the other way around. The cell is the mapping ¢ —
(i, ) itself, and S can change as needed. We finally define
a dataset as the quintuplet

D= (R,%,S,1,J). “)

Several equivalence relations become apparent be-
tween any two datasets. D,D’ are encoding-equivalent
(D =g D') if they share the same regular expressions.
A weaker form of this equivalence occurs by content-
preserving transformations between regular expression.
They are content-similar (D =¢ D’) if their content is
identical. Both datasets are intention-similar (D =g D’)
if a one-to-one isomorphism exists between elements of
Sin D and those of 8" in D'. A curious fact can derived in
the following manner. Let us define dataset equivalence
as the relation

D=D < (D=xD)AN(D=cD)\N(D=sD') (5

and note that such type of equivalence also defines
equality, since two datasets sharing the encoding, the
structure and the content must be identical. We are there-
fore justified to state

(D=D")=(D=D). (6)

The latter is suggestive of the form of the univalence
axiom [18]. More work is required to model datasets
as types and transformations as homotopies using homo-
topy type theory (HoTT) [[1]. In the same line, we also



suspect that datasets may be equivalent to simplicial sets
[14]. Finding such link between data transformations and
HoTT would provide a unifying view of data transfor-
mations (and by extension data cleaning) potentially ca-
pable of, for instance, subsuming relational algebras [7]]
and providing formal verifiability [5] towards more fun-
damentally understanding prospective and retrospective
provenance.

3 A Data Transformation Algebra

Back to data cleaning pragmatics, we now focus our in-
terest on representing transformations as functions in the
space of datasets. For fixed R, €, S, I and J consider the
dataset space

@[R,(K,S,I.J] :{(R7%1S717J)|S€y} (7)

over a set of functions . C (I x J)*. For concise-
ness, we will refer only to those sub-indices of Z rele-
vant to the context in which a transformation occurs. A
data transformation is a function

AY: Do — Dy (8)

where parametrizations & and 8 may differ such that

for D € 9y and D' € P, it holds that AB (D) =D'. De-
pending on which parameters define the space of trans-
formations, we classify them as geometric transforma—

tions (A ;S;IJ ol
p #1[%,S,1 J] (i.e. encoding transformations (p = [R)),
content transformations (p = [€)), structure transforma-
tions (p = [S])). We call the pair s = (a, B) the signature
of a data transformation, and assume the existence of a
function o that extracts s from A.

For any given ), the identity transformation Ajq is
always defined such that Ajq(D) = D. From this, we ob-
serve that separate identities exist per dataset space, and,
by extension, that data transformations in general either
take a dataset space onto itself or onto another space. For
instance, changing the encoding or the content within a
dataset without altering its shape are all rigid transforma-
tions. On the other hand, adding, dropping or removing
rows or columns are geometric transformations. Given
an operation history H = (A}, Ay, ,A,), we can com-
pute the corresponding signature set

), and rigid transformations (Ap ) where

su = {s=0(Aj)|Ai € H} ©

and furthermore the signature graph Gy that tracks the
motion across signatures induced by the transformation
sequence. Consider for instance a dataset transformation
that changes the order of rows (A1), replaces one date for-
mat by another (A;), fixes certain inconsistent dates (A3)

([c,s,1,J],[c',s", I',J)

Figure 1: Signature graph sy for the operation history
H= <A1;A25A37A4>-

and finally performs a clustering operation to group sim-
ilar data per those dates (A4). Figure[I]depicts sy . It be-
comes immediately apparent that both H and sy consti-
tute two separate aspects of provenance: H is a prospec-
tive account of exactly what happens to the dataset in
question, while sy is a generalized prospective account
of how transformations reconfigure the space of transi-
tions between dataset spaces regardless of their specifics.

The objects of our algebra are data transformations
within an operation history H, and our only operation is
composition (® = o). The application of H to a dataset
Dy should yield a final dataset Dr. Consequently,

H(Do) = (A1, Aa, -+ ,A) (Do) =
1

Q) Ac| (Do) = Au(Do) = Dr (10)
k=n

Note that composition runs inverse to the order in
which data transformations are specified in H, and if no
problems exist, defines a transformation itself. The fol-
lowing axioms, along with the previous definition, con-
stitute the basis to determine well-formedness of H for
indices k, k', k"

D=Aq(D), (1)

(Aig)" = A, (12)

A oAl = Al & o(AY) =o(al) = (Ak”) (13)
AR A = A s o(AY) =o(AY), (14)

6<[A§r®[Aﬂ >o([A )
(@UY,BUS). (15)

The first axiom captures the absorption-like quality of
the identity. The second one describes idempotence. The
third axiom ensures that identities are restrained only
within their dataset spaces. The fourth one extends the
identity restrictions to other data transformations that
share the same signature, thus whose outcomes belong
to the same space. Finally, the fifth axiom indicates that
the composition of different transformations in general



results in the aggregation of parameter spaces. One use-
ful application of the last axiom consists of detecting in-
consistencies between the formal specification of trans-
formations: if the signature of a particular composition
step is not cumulative, an error has occurred (i.e. trans-
formations refer to unrelatable dataset spaces).

3.1 Rigid Transformations

We now turn our attention to making visible the in-
ternal structure of data transformations. At the start,
we observe that a clear separation exists between rigid
and geometric transformation depending on whether the
structure and indexing of the dataset are preserved or
not. Let us start by defining a rigid cell transformation
T(c + (i,)) as the function that, contingent on a predi-
cate p applies a function @ to ¢ € ¥ and a function 7 to
pairs (i, j), namely

¢(c) = x(i, ), p(c)

c (i, 7), 0.W. (16)

(e (i) =
We abuse notation here by also assuming that 7 corre-
spondingly alters % and S in the resulting dataset. Note
that @ may include translating between formats as cap-
tured by regular expressions underlying the languages
behind €, choosing new elements form C or even result-
ing in L. From the perspective of a cell, T is reversible
if and only if @ is reversible and p(c’) = —p(c). As an
example, adding the number 1 to a numeric cell is re-
versible (¢ ~'(c) = ¢ — 1 but the toUppercase function
is not, since it is surjective (e.g. “AbC” and “aBc” both
map to “ABC”, and hence toUppercase ™! is not a func-
tion). In terms of retrospective provenance, reversible
functions contain all the information required to recon-
struct the past, while irreversible ones require additional
records of past values. An interesting example that pre-
serves the geometry of S is that where 7 corresponds to
a permutation of the indices over all ¢’s: since permu-
tations can be labeled and have inverses, they are also
reversible.

In order to construct a data transformation, one more
feature is required. Up to this point, we have assumed
that A applies to the entirety of the dataset. In practice,
however, few transformations act in this manner. Cor-
recting an individual error is restricted to a single cell,
converting from lower to upper case can be a column op-
eration, and rows can be re-indexed. A restricted data
transformation A\Lj}} with a cell transformation 7 is de-
fined as the image of 7 over some specific s S applicable
to elements where the range are pairs {c — (i, j)|c € €},
or

A =1s]n{e (G i)leed} a7

Since the restriction indices are sets —i.e. {i} = A and
{j} = B- we naturally establish the notation A|ij - A\}j )
for data transformations that operate only on a given col-

umn, A|?l.} = A%‘} for those that operate on rows and,

consequently, A[* = Alf = A for data transformations
not restricted by structure bounds. More elaborate in-
dex sets yield are clearly possible, but avoided here for
the sake of clarity since we wish to describe operations
that have a single intent per transformation. Looking
back to dataset cleaning provenance, data transformation
restrictions appear to define essential metadata for both
prospective and retrospective analysis. Using index sets,
we call two (restricted) dataset transformations A = A|§ ,
A’ = A|P concurrent (A[|A) if (AUC) x (BUD) =0 or
(AUC) x (BUD) =1xJ. A curious consequence of
this definition is that A;q is the only dataset transforma-
tion covering I x J in which Ay||A holds given any other
transformation A respecting Eqs. 12 and 13. Using con-
currency, we further provide commutativity as the axiom

AN & (AA) = (A ®A), (18)

anecessary step toward, for instance reorganizing data
transformation workflows to optimize computational ef-
ficiency even when these are sequentially executed.

3.2 Geometric Transformations

Let us now turn our attention to data transformations that
change the structure of datasets, not only their content.
We start by observing that our definition of rigid cell
transformation requires further restrictions. Consider the
function 7(i, j) = (j,i), which corresponds to the trans-
pose of the set. We immediately find that the structure
produced by this specification is 8’ : € — J x I. The
transformation has changed R, I and J in a fundamentally
different manner than that of a permutation. For exam-
ple, R’ contains only one column type after a transposi-
tion, namely |J; r; that applies to all columns. Similarly,
re-utilizing the notation of restricted transformations, we
note that both row permutations 7(x, j) and column per-
mutations 7(i, ) preserve the geometry of S.

We also find additive or subtractive operations in tools
such as OpenRefine. An additive data transformation
endows the dataset with new rows or columns by means
of (a) systematic copying and re-indexing. Conversely,
a subtractive data transformation removes rows and/or
columns systematically. Let us conveniently define ¢; ; =

~ (i, j), the column addition operation A™(j',n,Y, p)
transforms the dataset by modifying



J=JUl+1 (19
S ={cijli < jYo{n,i)ijlj=jU
{cijrali>J'} (20)

if the first-order predicate p holds. Note that 1 is a
function that depends on an index ¥ C J. For instance, a
copy operation is captured by

Y ={j'} (#2))
n(,i)=cipl€Y (22)

while computing an average with a given number of
columns and inserting them at a new position can be
achieved by

Y = {j1s Js oo ik} (23)
|
n(Yv i) =T Cig- (24)
|Y‘ ley
Assigning a unique value for A can be performed by
computing A(i,|J'|). The same argument can easily be
made for the row addition operation by restating these
equations for i’ instead of j/, and the form of p(Y) cap-
tures a wide range of dependencies. In OpenRefine, any
operation such a clustering or any other for which a script
is expressed solely in terms of 1,Y, p is captured by a
structural transformation. Note that copies can be traced
by looking for columns j,, j, with the same values row-
wise for which A (i, j,) /A (i, jp) = 3" forw > 1.
Similarly, let us define a subtractive column operation
A= (j',Y, p) with effects

J =JulJ| -1 (25)
S ={ecijli<ju
{eij1li>J'} (26)

controlled by the conditional p(Y) as well. Subtractive
operations do not alter preexising values of A. We note
that both operations, regardless of their concurrency, do
not commute in general (A~ ® AT #£ AT @ A™). However,
for a given AT there exists always a A~ such that

AT QAT = Ay, 27)
that is, A~ is a left-inverse of AT; this is so since
(A=)~! is injective column-wise. The provenance of
additive operations requires no additional information,
while the deleted cells need to be preserved in retrospec-
tive provenance. Being a left appears to be connected
with the need for additional provenance information; this
matter requires further investigation.

3.3 Concurrency

We have only considered so far linear operation his-
tories. In reality, data cleaning can be expensive and
any opportunities for concurrency are valuable. Let us
consider two additional operators A\(D) = (D,D) and
V((D,D')) = D". The first one (a fork) duplicates the
dataset via n subhistories; for simplicity, n = 2 here.
The second operator is a join, which yields a dataset
such that R” = RN R’ (representing a mutual update),
" =FU%, S =(SNS)U(SAS) and I" x J" =
I' xJ' =1xJ. Error-wise, finding that |S”| # || im-
plies data conflicts that can be explained by incorrect fac-
torization of dependencies. If A||A” the following axiom
captures the concurrency intent:

A®A)(D)=  (28)
V[Alaoa)o)]] =V [a@)am)]. @9

An example workflow using all constructions up to
this point is provided in the Appendix.

4 Conclusion

In this article, we described a data transformation alge-
bra for data cleaning and provenance. The framework
explained here appears to cover most data cleaning op-
erations present in tools such as OpenRefine, while re-
maining general enough to study workflows (i.e. oper-
ation histories) at various levels of abstraction. More
work remains to be done regarding isomorphisms be-
tween recipes, since it is often of interest to determine
the transformability between possibly equivalent opera-
tion histories.

Our framework revealed several connections between
datasets, data transformations and algebraic structures.
In particular, the appearance of an instance of the uni-
valence axiom cast datasets and their transformations as
simplicial sets, rich structures under the light of homo-
topy type theory. Another line of work corresponds to
exploring lossy transformations between regular expres-
sions. Finally, a software package following this alge-
braic approach is under development.
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Login email Identifier | First name | Last name
laura@example.com | 2070 Laura Grey
craig@example.com | 4081 Craig Johnson
mary @example.com | 9346 Mary Jenkins
jamie@example.com | 5079 Jamie Smith

Table 1: Minimum Dataset for Email Onboarding from
Staffbase

S Appendix: an complete example

Consider the following small table provided by Staffbase
as examples for user onboarding with emai We chose
the Minimum Dataset for Email Onboarding (Table [)).
We start by specifying the dataset using our construc-
tions, and to that end, we obtain the regular expressions
for each column.

o Login email (7emai1):
" ([a-zA-Z0-9_\-\.I1+)@((\[[0-91{1,3}\.
[0-91{1,3}\.[0-91{1,3}\.) |

(([a-zA-Z20-9\-1+\.)+)) ([a-zA-Z]1{2,4}|
[0-91{1,3H) (\I?D$

e Identifier (rigent):

[0-914{3}

o First name (Fpame):

[A-Z] [a-z]*

e Last name (ripame):

[A-Z] [a-z]*

Hence, Ry = {7email, Zident, "fname  "name } - The content
of the dataset is thus:

%o ={('laura@example.com’, 6), {craig@example.com’, 12),
('mary @example.com’, 24}, ('jamie @example.com’,48),
(2070, 18) (4081, 36), (9346,72), (5079, 144),
('Laura’,54), (Craig’, 108), (Mary’,216), ('Jamie', 436),
('Gray’,162), ('Johnson’,324), ('Jenkins', 648), (' Smith’, 1296) }

ISee: https://support.staffbase.com/hc/en-us/
articles/360007108391-CSV-File-Examples,


https://support.staffbase.com/hc/en-us/articles/360007108391-CSV-File-Examples
https://support.staffbase.com/hc/en-us/articles/360007108391-CSV-File-Examples

with Iy = {1,2,3,4} and Jo = {1,2,3,4}. For clarity
purposes, we will omit A values is S to concentrate on
dataset changes. Using that, we proceed to specify its
structure:

So :{
'laura@example.com’ — (1, 1)
'craig@example.com’ — (2, 1),
'mary @example.com’ — (3, 1)
'jamie @example.com’ > (4, 1),
2070 (1,2),
4081 — (2,2),
9346 (3,2),
5079 — (4,2),
'Laura’ — (1,3),
'Craig’ — (2,3),
(3,3),
'Jamie' > (4,3),
'Gray' — (1,4),
'Johnson’ + (2,4),
'Jenkins' — (3,4),
'Smith’ — (4,4)
.

Thus we define Dy = Do, = (Ro, %0,.50,10,J0)-

'Mary’ >

5.1 A set of equivalent histories

Suppose that user names in a hypothetical system we
need to populate are equal to user emails without the
@’ symbol and the domain part. Take the functional im-
plementation (using Haskell throughout this example) of
a function ¢ = uname_from_email that performs such
task

uname_from_email x = head (splitOn '@' x)

with (i, j) = (i, ) and p;(c) = true, we define our
first transformation A; = A|i Since it is irreversible, we
can preserve the tuples

(e (i), @i (c) = m (i, j))

only for cells that experienced change as the minimum
required information to fully accomplish retrospective
provenance. The set prov¥ for transformation Dy is the
generalized set of such tuples. After applying A; to Dy
we obtain a dataset such that

€1 — %0 ={
('laura’,6), ('craig’, 12),
('mary’,24), ('jamie’, 48)
}

and

M :{
"laura’ — (1,1)
‘craig’ v+ (2,1),
'mary’ — (3,1)
'jamie’ — (4,1),
2070 — (1,

'Gray' + (1,4),
'Johnson’ +— (2,4),
'Jenkins' — (3,4),
'Smith — (4,4)

where

prov! ={

'laura@example.com’ — (1, 1), laura’ — (

'craig@example.com’ — (2, 1), craig’ + (

N =
—_ = =

mary @example.com’ — (3,1), mary’ + (

'jamie @example.com’ — (4,1), jamie’ —

)

(
(
(/
(

—~ "W

}.

Let us now suppose that user creation in the destina-
tion system starts with identifier O instead of identifier 1
in the source table. Hence, we need a transformation that

subtracts 1 to all identifiers Ay = A|iz}. This is easily
achievable with the function ¢, = decr_id

decr_id x = x - 1
. —1 . .
whose inverse @, * exists and is

incr_id x = x - 1



and hence prov? = 0 since invertible maps require no
additional recording effort. Correspondingly,

6 —6 ={
(2069, 18), (4080, 36),
(9345,72), (5078, 144)

}

and

S> :{
"laura’ — (1,1),
‘craig’ — (2,1),
"mary’ — (3,1),
'jamie’ s (4,1),
2069 (1,2
4080 — (2,2
9345 5 (3,2
5078 — (4,2),

"Laura’ —

)

)

b

\/\/\/\/

= (1,3),

(2,3),
'Mary’ — (3,3)
'Jamie' > (4,3),

'Craig’ +—

b

3
'Gray’ + (1,4),
'Johnson’ + (2,4),
'Jenkins' — (3,4),
(4.4)

'Smith” —
Now, in our hypothetical destination system all users

with identifiers above 5000 are administrators due to in-
ternal rules, and we would like our dataset to reflect that.

We define A3 = AT (j/,1,Y, p) where
J =5,
Y =2,
p(c) =true
. 'admin’, ¢; ;> 5000,/ €Y
n(Y7l) = {/ , i
user’,  o.w.

Note that this operation is invertible by setting Ay 1=
A5 (Y, p) with j/ =5 and p(y) = true. In this case, no
provenance information is required either.

As with the prior cases, we compute

G — 6 ={
('user’ ,486), ('user’ ,972),
('admin’ ,1944), ('admin’,3888)
1

C— 61 =
for which its regular expression is rgroup 1S

'user' | 'admin'

so that R3 = Ro U {rgroup }as well as the structure

S3 :{
"laura’ — (1,1),
),
1),
'jamie’ > (4,1),
2069 (1,2)
4080 — (2,2),
9345 (3,2),
078 - (4.2)

(1,1
‘craig’ — (2,1
'mary’ — (3,1

)

i

'Tamie' > (4,3),
'Gray' + (1,4),
'Johnson' + (2,4),
'Jenkins' — (3,4),
'Smith’ — (4,4)
"user’ — (1,5),
"user’ — (2,5),
'admin’ +— (3,5),
'admin’ — (4,5)

}

with /3 = {1,2,3,4,5}

Finally, both first and last names by convention in our
system are stored using uppercase characters only for
compliance with legacy processes. Take the function @4
= toUpper

toUpper = map (\¢c ->
if ¢ >= 'a' && c <= 'z'

then toEnum (fromEnum c - 32)

else c)



and define Ay = A|,{F3’4} such that

Hi(D()) = <A1 ,Az,Ag,A4>(D0)

prov —{ H(Do) = (A1, A2, A4,A3) (Do)
(Laura’ > (1,3),'LAURA’ o (1,3)) Hiv(Do)Z<A17A4,A2,A3>(Do)
('Craig’ ~ (2,3),/CRAIG > (2,3)) H"(Do) = (Ag, 43, A1,44) (Do)
('Mary’ — (3,3),'MARY’  (3,3)) HKDO) = (A2,A1,43,44) (Do)
('Jamie’ +— (4,3),'JAMIE' + (4,3)) H"(Do) = (A2,A1,A4,A3)(Do)
('Gray' — (1,4),/GRAY’ — (1,4)) H""(Do) = (A2,A3,A4,A1)(Do)
("Johnson' > (2,4),'JOHNSON' > (2,4)) H""(Dg) = (A2, A4, A3, A1) (Do)
('Jenkins' > (3,4),'JENKINS' — (3,4)) H™(Do) = (A, As, A1, A3) (Do)
('Smith’ — (4,4),”SMITH' s (4,4)) H*(Dg) = (A4,A1,A0,A3)(Dy)

} HY(Dg) = (A4, A2, A1,A3) (Do)
HY(Dg) = (A4,A,A3,A1)(Dy).

since toUpper is irreversible. The structure, altering

. . . In practice, as in database management systems, such
%4 as in the prior cases, respectively becomes

choice opens ample possibilities for optimizing query
histories when these have to be executed using sequen-
tial processing only. The reader can easily verify that the
Sy ={ union of signatures for these equivalent workflows

Naura’ —

s U S Hm
m

jamie’ s (4, 1 is contained in the graph depicted by Fig. which
’ contains two entry points that preserve the dependency

2069 — (1,2), between A, and As.
4080 5 (2,2),

9345 - (3,2), \_Q/—\.‘_/

5078+ (4,2),
'LAURA’  (1,3), (€l e (e, s8,1,J),[c', 8", 1", J")

'CRAIG — (2,3),

Figure 2: Union of signature graphs sy for the example

'MARY' — (3,3), operation history over Dyy,.
'JAMIE' — (4,3),
'GRAY' + (1,4),
'JOHNSON' - (2,4) 5.2 Concurrency
'JENKINS' 5 (3,4), Concurrency-wise, we now choose H' (any other choice
'SMITH' — (4,4) is fine) and derive the following maximally concurrent
luser’ — ( 1 5) structure:
"user’ — (2,5),
'admin’ o (3,5), VIAlasemonoao] -
/ Y
admin' — (4,5) V [Aldse (a3 @ 80) @ a1)(Do)]| =
}.
V/ [A4(Do), (A3 @ A2) ® A1) (Do)] =
We observe that A, J|A3 since both transformations act V {A“(D 0),V {/\ [((A3®A2) @ A1)) (Do) ]} -
sequentially on column 2. The latter yields the following { }
set of equivalent operation histories: \/ A4(Do), \/ [(43.©42) (Do), Ar(Do)]] -



Once again, since A, J|As, this is the maximally con-
current decomposition that can be achieved. We may im-
prove our notation to make more explicit the concurrency
aspect by introducing the following axiom:

\ [aD),V [A'(D),4"(D)] | =
V[V [AD),A(D)] a"(D)]
\V[am )7A/( ),A"(D)]

and, applied to the case in hand, the concurrent de-
composition becomes

(30)

\/ [A4(Dy), (A3 ® Az)(Do), A1 (Do) -

5.3 The history of three cells

One of the not so obvious advantages of our represen-
tation is the ability to represent explicitly the history of
single cells in the final dataset. Since a data transforma-
tion is an image of a conditionally applied function over
a structure, nothing prevents us from expressing a data
transformation as a compositionally-defined morphism,
much in the same way as a Kronecker (tensor) product.
Let us define the product between one-cell data transfor-
mations A| }Z{ ON |{d} A }I;f}} such that the respective
Pubs P g are condltlonally appiied depending on their in-
dexes and respective predicates. Let us further suppose
that any dataset resulting from a given operation history
can be further obtained by such means, namely, by con-
structing a new transformation where each cell is the out-
come of a one-cell transformation. Namely, this equates
to decomposing an entire operation history transforma-
tion in Eq. 11 into a transformation product of the form

< @ AH|{J}>
iel,jeJ

It should be expected that every AH|{ is, actually, a
composition of one-cell transformations of length at least
that of Ay (=n)

3D

Al =

®Ak|{j}

The same argument regarding the need for additional
provenance information when a transformation is irre-
versible applies. Substituting Eq. 32 into Eq. 31 yields

(@)

(32)

A (Do) =

©)

i€l jeJ

(Dy). (33)
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We may think of AH\{] b as the single step transfor-

mation required to obtam cr — (iF, jr) in the resulting
dataset when departing from Dy. It is worth noting that
this history may entail saving complex provenance infor-
mation, in particular for creation and deletion functions
that depend on multiple other cells. However, in princi-
ple, there is nothing that prevents us from doing so. We
choose in the following exercise to reconstruct the oper-
ation history of three cells: (1, 1), (2,2) and (3, 5).

Cell (1,1) is only impacted locally by A1, and the effect
of the other transformations is equal to that of a one-cell
identity. Thus,

e
8ol sl {1} Al = Al

Assuming we use H', the one-cell operation history
becomes

Bl = Aelf) © sl @ el @iy} =
% {1} _ A {1
(Aid|{1}) ®A1|{1}—A1|{1}

and correspondingly

provg D=

where the first number in the triplet is the index of
the transformation associated with the change. We now
repeat the reasoning above for cell (2,2) and obtain

Mof3} =42

{2}

‘{;%7A3|§2{7A4‘{2} = id|{2}7

{2}

@) =

2
=l

2 2
@l @ dalil)

21 o A, 12
(Aid|{2}) ® A2|{2}

2
Aul3 =l f3)

and

(2,2)

provy,”™ =0

due to reversibility of the operation. Finally, we ex-
plore the history of cell (3,5) which does not exist on
the original dataset and illustrates both dependencies and
the local effect of creation transformations. Note that A3
depends on the outcomes of A;. With this in mind, we
observe that

= {(1,"laura@example.com’ > (1, 1), laura’ — (1,1))}



Az‘{s}

B
Aslfy =a
A1|{§{»A4|g% = Aid\%7
and
Auly = Ml @ as| ) 2ol S @[3 =
(8alfy) e @alff o 2213 = el 0 821,

The provenance of this set is interesting, since the cell
did not exist prior to Az. In essence, we need to provide
the most recent point referring to objects in D, such that
1M in Az can be verified. This leads to the curious prove-
nance set

prOVH ={
(2,4081  (2,2),4080 — (2,2)),

(3, L+ (3,5),user’ — (3,5))

}

where all the information to reconstruct the history of
the cell exists independent of the dataset. We provide a
GitHub repository that materializes this example using
an OpenRefine histor

With our approach, it is worth noting that significant
efficiency gains may be obtained for data cleaning work-
flows since most one-cell transformation histories tend to
contain few transformations different from the identity.
Hence, a data transformation from the perspective of the
dataset may often be amenable to compression into trans-
formation products of a small number of compositions
of one-cell transformations and not spending computa-
tion time on untouched or irrelevant data; our work has
resemblance to trace slicing in large software systems
[12] and eager provenance tracing in relational data flows
[L7]. Most significantly, since the construction of the set
is cell-wise, more granular opportunities for concurrency
exist, being the most extreme case that of data cleaning
workflows without inter-column or inter-row dependen-
cies that can be executed using embarrassingly parallel
processing only limited to core count.

Furthermore, since the cell history is derivable from
the dataset history and vice versa to the best of our cur-
rent knowledge, our algebra appears to have the ability
to sustain two consistent views at different data granular-
ities. The leaves in the river appear indeed to be driven
by the greater flow, but have lives of their own.

2See: https://github.com/LanLi2017/parse_orhistory

11
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