FireDrill: Interactive DNS Rebinding

Yunxing Dai, Ryan Resig
Electrical Engineering and Computer Science Department
University of Michigan
Ann Arbor, M| 48109
{yunxing, rresig}@umich.edu

ABSTRACT

By using traditional DNS rebinding attacks, an attacker is
able to circumvent firewalls in order to access internal net-
work servers. Although many of the variations of this attack
are well-known and sufficiently defended against, we show
that by exploiting browsers’ DNS cache table, it is possible
to launch a DNS rebinding attack on modern browsers. Fur-
thermore, we implement FireDrill, a tool that uses this DNS
cache flooding technique to initialize an interactive session
between the attacker and victim’s web server. This interac-
tive session opens up a number of malicious possibilities for
the attacker on top of existing DNS rebinding uses. Some of
the new potential uses include authentication, modification
of website state, framing of the victim, and more.

Categories and Subject Descriptors

C.2.0 [COMPUTER-COMMUNICATION NET-
WORKS]: Security and Protection

General Terms

Security, Design, Experimentation

Keywords

DNS, DNS rebinding, Firewall, Network security, Same-
origin policy

1. INTRODUCTION

DNS rebinding attacks circumvent the same-origin
policy[1}, 2] of web browsers. The attack confuses the
victim’s browser, causing it to pool two distinct enti-
ties into one origin. This allows the attacker to cir-
cumvent firewalls, scan internal networks, access and
infiltrate private nodes on the network, uncover sensi-
tive information, and even convert victim browsers into
open network proxies.

A DNS rebinding attack is particularly powerful be-
cause it is easy to initiate and has a high impact once
open access is established. In order to initiate the at-
tack, an attacker merely needs to drive traffic to his
page. This could be through advertisements, spam emails,
or social engineering. Once the victim begins connect-
ing to the attacker’s web server, the browser is quickly
compromised and the attacker has open access to the
victim’s internal network using the victim’s IP.

In a traditional DNS rebinding attack, the attacker
would set up a DNS server which answers queries to his
own website. The query responses would have a short
time-to-live (TTL). The attacker’s web server would
send malicious JavaScript to the user, which would then
attempt to send a request back to the server after the
TTL has expired. The subsequent DNS lookup would
rebind the host name to the target server’s IP address,
thus placing both the victim’s web server and the at-
tacker’s web server under the same origin. In its sim-
plest form, this attack will then gather as much data
from the webserver as it can via HTTP requests and
then exfiltrate that data back to the attacker’s web
server, as shown in Figure

A common defense against the traditional attack is
DNS pinning|3]. With DNS pinning, the browser will
cache the result of the DNS lookup for a relatively long
period of time regardless of the response’s TTL. This
defense is not entirely effective though, as browser plug-
ins generally maintain separate DNS entry databases.
Such multi-pin vulnerabilities are the result of each
plug-in mapping to a different TP address, and then
communicating with one another in order to execute
the attack[4]. However, many multi-pin vulnerabilities

Attacker
oNs |/

Victim
G Browser

Y Attacker
HTTP Web A
Server
Victim
Apache
e Web
Server
Figure 1: Traditional DNS Rebinding attack.

Once the victim’s browser has established connection to
both servers, it can relay data from the internal server
back to the attacker’s server. The attacker can use this
to gain access to private information stored on the vic-
tim’s intranet.

have been closed as well by the developers of the plug-
ins. Moreover, the web is developing towards way that
controls the permissions of plug-ins.

Our main work focuses on executing a DNS rebind-
ing attack by flooding the DNS cache on the victim’s
browser. We flood the cache with invalid entries in or-
der to force the browser to do the vital second DNS
lookup. In order to demonstrate this exploit, we im-
plement FireDrill, a tool that uses this vulnerability to
initialize a fully interactive session between the attacker
and the victim’s web server.

The rest of the paper is organized as follows: Section
2 discusses related work on DNS rebinding. Section 3
introduces the cache flooding exploit and outlines our
implementation of FireDrill. Section 4 evaluates this
technique against alternative approaches. Section 5 dis-
cusses defenses and future work. Section 6 concludes.

2. RELATED WORK

Jackson et al. [5] surveyed a number of previously
undiscovered DNS rebinding attacks that exploit inter-
actions between browsers and their plug-ins. Many of
the attack vectors described in this paper have been
closed since its publication. Their work outlines the
possibility of using DNS rebinding not only for con-
necting to otherwise inaccessible services, but also for
accessing public services using the victim’s IP address.
Once the attacker has hijacked the victim’s IP address,
he can execute a number of attacks including commit-
ting click fraud, sending spam, defeating IP-based au-
thentication, and framing the victim. Each of these has
important ramifications, but are all outside the scope
of our work.

Other tools have been created which take different
approaches to DNS rebinding, and have different in-
tended uses. One tool, called Rebind [6], implements
the multiple A record DNS rebinding attack. However,
since the multiple A record attack is only possible when

all the records are public IP addresses, this kind of at-
tack cannot be used on local addresses. The author
worked within this limitation, and made the target of
the attack the victim’s router’s public IP address. This
attack vector relies on exploiting default passwords on
the router hardware, and the frequency with which the
default credentials are left unchanged. Our approach
does not require using only public IP addresses because
at its root, our approach is not a multiple A record at-
tack, it is a time-varying attack. We are able to gain
access to the entire intranet via binding to local TP ad-
dresses.

Byrne also demonstrated how to turn a victim’s browser

into a web proxy using a standard time-varying and
plug-in attack [7]. However, those attacks have their
limitations: standard time-varying attacks potentially
require several minutes to complete due to DNS pin-
ning. Our approach accomplishes a similar result, while
requiring only a fraction of the time. The vulnerabili-
ties that enable a plug-in attack have been mostly fixed,
and thus require the user to have an old version of a
browser plug-in installed, such as Java or Flash Player.
Such vulnerabilities have been patched out of most if
not all modern versions of the plug-ins.

Finding web servers on the victim’s intranet is a well-
solved problem. It has been demonstrated by scanning
IP addresses in JavaScript and monitoring responses|(§|,
and various host-name-guessing techniques|5|. Thus, it
is not a focus of this work.

3. IMPLEMENTATION

Our approach to the DNS rebinding attack is de-
rived from a standard time-varying attack, which can
potentially take several minutes based on browser im-
plementation of DNS Pinning. We discovered a previ-
ously undocumented variation which takes on the scale
of tens of seconds. Instead of waiting for the pinned
entries to expire, we flood the DNS cache with enough
invalid entries to remove valid entries from the list. We
built on this idea and provided the attacker with a seam-
less browsing experience on the victim’s internal server,
as shown in Figure The next step is to retrieve the
data from the victim’s server (similar to existing scrap-
ing methods). Then we will allow the attacker to click
links, take actions, and submit forms by sending the
data to the victim’s browser,which is acting as a proxy.
The JavaScript on the browser then forwards the ap-
propriate request to the server.

3.1 Malicious DNS server

Our attack scenario consists of a custom DNS server
authoritative for an attacker controlled domain name:
attacker.com. The DNS server keeps track of DNS re-
quests and their source IP address. When the DNS
server sees a request, it checks: 1) If it is the first time

Firewall

Attacker
bns | A\

Victim
G Browser

Attacker

[}
HTTP Web A
\4 Server
Victim # e
Apache
s-| Web

Server

Attacker
Browser G

Figure 2: FireDrill Attack Overview. When a
victim accesses the attacker’s web server, a malicious
Javascript payload is delivered and runs on the victim’s
browser. It then issues a large batch of DNS request to
flood victim’s DNS table and rebind the original domain
name to the IP address of victim’s web server. The vic-
tim’s browser then becomes a proxy between the inter-
nal websites and the attacker’s browser. The attacker
can navigate it as he would in any other website.

the server sees the request, it returns a IP address de-
notes as IP(attacker.com), which is the address of
the attacker’s server that provide web content including
html page and Javascript payload. 2) If the DNS server
has seen the DNS requests from the same IP address
twice, it knows that this DNS request is initiated by
the rebinding Javascript that runs on victim’s browser.
At this time, the the malicious DNS server will return
an attacker-specified IP address, typically an internal
IP, denotes as IP(victim.com).

3.2 Rebinding based on DNS table flooding

Modern browsers will pin a DNS entry
(www. attacker.com to IP(www.attacker.com)) it sees for
a period of time, during this time, no other DNS entry
with the same domain name will get accepted[3]. To
remove a pinned entry from the DNS entry table, we
use a DNS flooding technique. In current implemen-
tations of Chrome, all the domain names in the same
level have the same priority. For this reason, we set
our malicious URL (which the victim must request) to
www.attacker.com.

Our malicious Javascript code then flood the DNS
table by sending out 120 DNS resolving requests, from
nl.takenoteswith.us to n120.takenoteswith.us. In
this case, we assume the browser’s DNS table size is
100, which is the default size in Chrome 25(Chrome 26
increases the cache size to 1000, which we will discuss
later). The number of invalid DNS requests are slightly
more than 100 here because we want to speed up the
process by eliminating the tail effects that some DNS
resolutions can take a long time. After the DNS entry
has been evicted by the DNS flooding, the malicious
Javascript code will ask the content of
www.attacker.com/index.html. Since the browser

can’t find the DNS entry in its cache(it has already been
evicted), it will ask the malicious DNS server to resolve
IP of www.attacker.com again, which will then return a
different IP address, IP(www.victim.com).

Our Malicious DNS server is written in Python2.7.
It keeps a big cache of the IP of DNS requests’ initia-
tors. When a request comes to our DNS server, if the IP
of initiator is in the cache, the server knows the record
is initiated by malicious Javascript and return the ma-
licious IP. Otherwise, it will just insert the entry into
the cache. Each cache entry has a expiration time set
to 5 minutes to be able to relaunch the attack when the
victim connect to the server again.

The careful readers may notice that the DNS re-
quests n*.takenotes.us will not complete since they
disobeys the same-origin policy. However, we found
that Chrome will still insert the invalid entries into the
DNS cache table and treat them with same priority.

3.3 Malicious Javascript proxy

A malicious Javascript proxy will be running on the
victim’s browser. It maintains a WebSocket connec-
tion to the attacker’s webserver and receives proxy com-
mands from it in the format of JSON. The commands
from the webserver have three fields, the method field
is used to specify whether an HTTP post or get request
should be forwarded. The url field specify the target of
the request. The args field contains the arguments of
the request.

The response from the JavaScript proxy to the server
must take additional step to maintain data integrity.
Apart from plain HTML, sometimes the attacker wants
to access binary data such as image and audio files. In

this case, the proxy has to put the HTTP headers(’content-

type’, specifically) into the response so that the at-
tacker’s browser knows how to parse and encode it. If
the response is compressed, the JavaScript will be re-
sponsible to decompress it. In this case, the HTTP
header field ’content-length’ should be changed accord-
ingly. Lastly, if the response contains binary data, the
JavaScript must encode it using base64 so that it can
be transmitted in a JSON object.

For instance, if the attacker is asking to submit a

post request to /form/login with arguments {name=alice},

it will send a JSON command to the victim’s browser
{method:’post’, url:/form/login’, args:name="alice’}. The
proxy will then contrust a XMLHTTPRequest object
based on it, fetch the content of response, and pass it
back to be displayed on attacker’s browser. Note that
since we are using relative paths, we don’t need to trans-
late the links and forms here.

3.4 Attacker’s interface

The attacker’s interface is developed to give the at-
tacker the ability to get notified when a new victim

clicks the malicious link and to switch between multi-
ple victims.

When a victim’s browser is connected to attacker’s
website, it immediately creates a WebSocket connection
to the session server, which is responsible for creating a
new session object to handle all the interactions between
the victim’s browser and the attacker. The attacker will
then be notified via both web interface and e-mail that
a new victim is connected. After the attacker selects
an interactive session, he can then browse it using his
browser as we would with regular websites.

When the attacker’s browser requests a web object
from the victim’s intranet, it sends a request to his web
server which is connected to the victim’s browser via
the persistent WebSocket connection. The web server
will redirect the request to corresponding session ob-
ject, which will spawn a thread to handle the request.
The thread will then forward the request again to the
JavaScript proxy running on victim’s browser, sleep and
wait for the response and wake up again when the re-
sponse from the proxy is available. The thread then
decodes the response, rebuilds the HT'TP header, and
forwards it back to the attacker’s browser, thus com-
pleting the request.

4. EVALUATION

We measured our DNS rebinding attack by two pri-
mary factors. We analyzed the time-to-launch and the
impact of the attack. We then compared it to other ex-
isting DNS rebinding techniques. The results are shown
in Table [T

4.1 Configuration

We tested DNS rebinding experimentally by regis-
tering a malicious domain name takenoteswith.us and
running our framework on an Amazon EC2 instance
that runs on Ubuntu 12.04. The client side experiment
is runnig on OS X 10.8.3 and Chrome 26.0.1410.65. For
victim’s server, we set up an internal wiki using Tiki
Wiki that hosted on victim’s machine. We also con-
figured firewalls and Apache filtering rules so that it
can only be accessed through local connection. We will
discuss other major browsers later.

4.2 Time-to-Launch

In order to protect from a time-varying attack, most
modern browers have implemented DNS pinning tech-
nologies [3] that locks a domain name to a IP address
in the first DNS response. At this time, a time-varying
attack would take 160 seconds to launch according to
our experiment on the latest Chrome browser. However,
by flooding the DNS cache, we found that in the cur-
rent Chrome implementation, if a DNS record is evicted
from the cache, the pinning time would be nullified as
the entry no longer exists. We found that in our attack,

only 10 seconds are needed to launch the attack on a
browser that has a cache size of 100 entries.

In early 2013, the Chromium community has in-
creased the size of DNS cache from 100 to 1000. This
was not the result of security concerns, but rather a
performance related patch[9} [10]. We then ran our ex-
periments on the staging version Chrome, and found
that it would only take 10 more seconds to flood the
DNS table and launch the attack.

Two other different approaches of DNS rebinding are
multiple A-records attack and multi-pin attack. These
attacks need only a small amount of time due to the
small number of packets transmitted. However they all
have certain limitations, which we will discuss it in the
next subsection.

4.3 Impact

We now evaluate the impact of our attack against
other DNS rebinding approaches. As mentioned in the
last section, the multiple A record approach has the
advantage of requiring less time to launch. However,
it also has several limitations on its impact. First, the
rebound IP address cannot be an internal TP address.
Otherwise, the browser will prioritize it and select it
in the first place which results in a failure to execute
DNS rebinding. Second, the attacker cannot change the
rebound IP address on the fly, which makes it unable
to scan the subnet.

Multi-pin attack can be both fast and able to access
IP address from intranet. However, it is actually based
on browser’s plug-in support such as Abode Flash|11].
Most of the vulnerabilities have been fixed years ago
by developers and browser plug-ins are getting more
restrictions on which permissions they could have.

For time-varying attack, although it is possible to
bind to an internal IP address, it is also hard to change
the rebound IP address on the fly due to the extremly
long launching time.

In our experiement, we are able to use FireDrill to
rebind the domain name to an internal IP address to
build a interactive session. Also, we are able to dy-
namically change the IP address during an attack. The
attacker has the ability to navigate through the entire
intranet instead of just one single IP address.

4.4 Making The Victim Stay

Our attack establishes a fully interactive session, and
as a result, requires the victim’s browser to act as a
proxy. Thus, it requires the victim to stay on the page
for the attacker to have access to it. In order to do that,
we designed a “pending download“ page (shown in Fig-
ure |3)) that attempts to convince the victim to stay on
the page for two minutes to download a file. While
the victim is waiting for the download countdown, the
JavaScript proxy is actually running in the background

landscape-2-hd.tar.gz

Uploaded 9 minutes ago. Downloaded 0 times.

FREE TRIAL

AultiSite”

wanpisC

Download will begin in 110 seconds.

Follow Solidfiles: EdLke 35k vy Follow @solidfiles

n

Figure 3: Attack page. The page that a victim first
connects to. The user believes he is waiting for a file
download to start on a free file-hosting website. While
waiting for the file to be downloaded, the JavaScript is
running in the background as a proxy.

for the attacker to navigate through the internal web-
sites. While it is often challenging to convince a user
to stay on a website for such a long duration, we show
that some scenarios facilitate such a requirement.

4.5 Changing the Content of Internal Wiki

Now we demonstrate how to use FireDrill to access
a victim’s internal wiki. Many organizations have in-
ternal wikis that contain extremly sensitive informa-
tion and is only accessible through the company’s lo-
cal network or VPN. By building a session using the
employee’s browser as a proxy, the attacker could not
only gain full access to the company’s wiki, but also the
ability to change the contents of it. Moreover, the mod-
ifications are done using the victim’s IP address, adding
to the anonymity of the attack, as shown in Figure
In a real-world scenario, the attacker could potentially
add malicious links into the wiki in order to launch sub-
sequent attacks.

4.6 Other Browsers

We also tested our attack on Firefox 20 and Internet
Explore 9 in order to measure the impact of our attack.

e Firefor. We found that Firefox is also vulnerable
to this attack. Firefox doesn’t have its own DNS
resolution, thus it depends on Operating System
to manage the DNS cache. In this case, flooding
Firefox’s DNS table actually floods the DNS cache
in the OS. Since the OS has no knowledge of which
DNS request a DNS cache entry is from, it makes
the defense even harder.

e Internet Explore 9. Internet Explore is not vulner-
able to our attack. We found that after a request
disobeys same origin policy, Internet Explorer will

EECS 588
Wiki

4 (2013104126 12:36) root

restored (2013104116 12:13) root

20130

Figure 4: Victim’s web site’s revision history. The
attacker can change the content of the company wiki
anonymously. The revision history shows that the au-
thor of change was the victim’s local IP address.

not add it into the DNS cache. Although we man-
aged to bypass the same origin policy by using a
X-Domain request object from Internet Explorer,
we still failed to evict the DNS entry we wanted
to rebind. Due to the lack of development docu-
mentation and a close-source enviroment, we don’t
exactly know what defenses Internet Explorer has
adopted. Some defenses from Internet Explore
that we inferred and recommend other browsers to
adopt are: 1) Building the browser’s own DNS res-
olution that is independent to OS. 2) Using smart
eviction policy to prevent an important entry to
be evicted. 3) Pin a DNS entry for a relatively
long time. We will discuss other defenses in the
next section.

S. DISCUSSION

Many in the security community consider DNS re-
binding attacks to be dead. However, we aimed to show
in this work that there are ongoing developments in the
area, and that DNS rebinding attacks are still possi-
ble on modern hardware and software configurations.
Along with motivating further work on DNS rebinding,
we hope to introduce some preliminary defenses against
the particular techniques we proposed in this paper.

5.1 Defense Against DNS Rebinding

A significant amount of work has been done in the
area to defend against DNS rebinding attacks at each
stage of the process. Browsers, plug-ins, DNS resolvers,
firewalls, and servers can all be augmented to help de-
fend against the attack [5]. Many of the most promising
defenses have been implemented, such as DNS pinning
and patching many of the plug-in vulnerabilities.

5.2 Defense Against DNS Cache Flooding

DNS cache flooding is a new method of forcing the
second DNS lookup which is crucial to the success of
a DNS rebinding attack. We demonstrated that it is

Time-to-Launch Impact

Time-varying 5 ~ 60 minutes

Need javascript support

Multiple A-records Instant

Unable to bind to IP addresses from intranet

Multi-pin Instant

Need (old) plug-in support; Rebound IP can be changed on the fly

DNS-flooding 10 ~ 20 seconds

Need javascript support; Rebound IP can be changed on the fly

Table 1: A comparison between different DNS rebinding techniques. The DNS-flooding technology that we use is a

trade-off between launch speed and impact.

possible to use this technique on modern browsers, but
we believe a few simple provisions will be able to suc-
cessfully defend against it.

e Host Head Checking. An server-side defense against
DNS rebinding is to reject incoming HTTP re-
quests with unmatched Host headers[12]. How-
ever, while most of the browsers have implemented
the client part that containing hostname in the re-
quest header, a lot of servers don’t implement it
or don’t turn it on by default. We deem that a
more reliable defense would be on client side that
is patched from the source of the attack: Browsers.

e Increasing Cache Size. Making the browser cache
large enough that cache flooding takes prohibitively
long is a very sensible approach. However, it is
not clear whether this will prevent this attack in
its entirety, but rather make it impractical. There
are also performance concerns involved with scal-
ing up the DNS cache that should be taken into
account before adopting this approach.

o Smarter Cache Eviction. Cache flooding is made
possible by the fact that invalid entries are be-
ing inserted into the table, which evict valid en-
tries. The entries are invalid because the requests
disobey same-origin policy, so an attempt resolve
them should not occur. If the browser insists on
inserting these invalid entries to the DNS cache,
they should at least be the first to be evicted when
the cache is full.

5.3 Future Work

FireDrill brings together many existing and novel
ideas in order to demonstrate a very powerful DNS re-
binding attack. Ensuring that the malicious DNS, web
server, attacker interface, and other pieces are working
in unison is a complex task. Automating the process
of launching these utilities and monitoring for potential
victims could reveal some opportunities to improve the
efficiency and impact of the attack as a whole, which is
important given the rigid time requirement of the at-
tack.

Many of the original attack vectors of DNS rebinding
achieved nearly instantaneous execution, but have since
been closed and patched. At this point, we are able to

achieve a DNS rebinding attack on modern browsers in
about ten seconds. While this is an improvement over
alternative approaches, it can still be a prohibitively
long duration to wait. The defense strategy for DNS
rebinding focuses on preventing the browser from doing
a second DNS lookup. Exploring new ways of circum-
venting defenses could lead to a new, faster form of the
attack.

We have outlined three promising defenses to the
DNS cache flooding approach. Both fixes rely on browser
developers to change DNS cache behavior. While we be-
lieve the best approach to be defending at the source,
the cache, it is possible that a proper defense to this
technique could be employed elsewhere in the configu-
ration.

6. CONCLUSIONS

An attacker can implement a DNS rebinding attack
to circumvent firewalls and confuse the browser into
breaking the same-origin policy. While many existing
approaches towards exploiting DNS rebinding vulner-
abilities have been fixed, many new vulnerabilities are
still being discovered. Existing defenses attempt pro-
tect against specific attack vectors, but do not prevent
DNS rebinding attacks as a whole. These attacks are
highly cost effective, relatively quick to execute, and are
capable of doing severe damage to both the victim and
the intranet to which he is connected. The ability to
interactively communicate with the otherwise inacces-
sible server gives the attacker even more power. The
attacker can hole punching into firewall, scan internal
networks, access and infiltrate private nodes on the net-
work, uncover sensitive information, modify the state of
web pages under the IP address of the victim, login and
authenticate as another user, and hijack the victim’s IP
address for use in a botnet.

DNS rebinding attacks have been around for more
than 15 years[13], many defenses have been presented
in previous work for preventing traditional DNS rebind-
ing attacks but the threat hasn’t been completely re-
moved. We present possible defenses against the DNS
cache flooding technique we introduced in this paper.
Increasing the cache size can help make the attack pro-
hibitively impractical to execute, while smarter cache
eviction could potentially eliminate this particular form

of DNS rebinding altogether. We believe that DNS re-
binding is still a very important and dangerous exploit,
and hope that future work in this area will explore new
vulnerabilities.

7. ACKNOWLEDGMENTS

This paper is derived from our course project of Ad-
vanced Computer Security in University of Michigan.
We would like to thank the lecturer, Professor J. Alex
Halderman for his introduction to DNS rebinding that
motivated our work and for his encouragement to pub-
lish our results. We would also like to thank Eric Wus-
trow and Zakir Durumeric for comments on earlier ver-
sions of this paper and all the classmates for the discus-
sions and insightful suggestions.

8. REFERENCES

[1] J Ruderman. Same-origin policy.
http://www.mozilla.org/projects/security/
components/same-origin.html, 2013.

[2] C Jackson, A Bortz, D Boneh, and J Mitchell.
Protecting browser state from web privacy
attacks. In Proceedings of the 15th international
conference on World Wide Web, pages 737-744.
ACM, 2006.

[3] C Matthies. Dus pinning explained.
http://christlan.blogspot.com/2007/07/
dns-pinning-explained.html, 2007.

[4] K Anvil. Anti-dns pinning + socket in flash.
http://www. jumperz.net| 2007.

[5] C Jackson, A Barth, A Bortz, W Shao, and
D Boneh. Protecting browsers from dns rebinding
attacks. http:///crypto.stanford.edu/dns/
dns-rebinding.pdfl, 2007.

[6] C Heffner. Remote attacks against soho routers.
http://media.blackhat.com/bh-us-10/
whitepapers/Heffner/

[11] Adobe. Adobe flash player 9 security.
http://www.adobe.com/devnet/flashplayer/
articles/flash_player_9_security.pdf, 2006.

[12] D Ross. Notes on dns pinning.
http://blogs.msdn.com/dross/archive/2007/
07/09/notes-on-dns-pinning.aspx, 2007.

[13] D Dean, E Felten, and D Wallach. Java security:
From hotjava to netscape and beyond. In Security
and Privacy, 1996. Proceedings., 1996 IEEFE
Symposium on, pages 190-200. IEEE, 1996.

BlackHat-USA-2010-Heffner-How-to-Hack-Millions-of-Routers-wp.

pdf}, 2010.

[7] D Byrne. Intranet invasion through anti-dns
pinning. https://www.blackhat.com/
presentations/bh-usa-07/Byrne/
Presentation/bh-usa-07-byrne.pdf, 2007.
Invited talk.

[8] J Grossman and T Niedzialkowski. Hacking
intranet websites from the outside: Javascript
malware just got a lot more dangerous. Blackhat
USA, 2006.

[9] Issue 114277:hostcache of size 100 fills up very
quickly with dnstransaction.
https://code.google.com/p/chromium/
issues/detail?id=114277.

[10] http://src.chromium.org/viewvc/chrome/
trunk/src/net/dns/host_cache.cc.

http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://christ1an.blogspot.com/2007/07/dns-pinning-explained.html
http://christ1an.blogspot.com/2007/07/dns-pinning-explained.html
http://www.jumperz.net
http:///crypto.stanford.edu/dns/dns-rebinding.pdf
http:///crypto.stanford.edu/dns/dns-rebinding.pdf
http://media.blackhat.com/bh-us-10/whitepapers/Heffner/BlackHat-USA-2010-Heffner-How-to-Hack-Millions-of-Routers-wp.pdf
http://media.blackhat.com/bh-us-10/whitepapers/Heffner/BlackHat-USA-2010-Heffner-How-to-Hack-Millions-of-Routers-wp.pdf
http://media.blackhat.com/bh-us-10/whitepapers/Heffner/BlackHat-USA-2010-Heffner-How-to-Hack-Millions-of-Routers-wp.pdf
http://media.blackhat.com/bh-us-10/whitepapers/Heffner/BlackHat-USA-2010-Heffner-How-to-Hack-Millions-of-Routers-wp.pdf
https://www.blackhat.com/presentations/bh-usa-07/Byrne/Presentation/bh-usa-07-byrne.pdf
https://www.blackhat.com/presentations/bh-usa-07/Byrne/Presentation/bh-usa-07-byrne.pdf
https://www.blackhat.com/presentations/bh-usa-07/Byrne/Presentation/bh-usa-07-byrne.pdf
https://code.google.com/p/chromium/issues/detail?id=114277
https://code.google.com/p/chromium/issues/detail?id=114277
http://src.chromium.org/viewvc/chrome/trunk/src/net/dns/host_cache.cc
http://src.chromium.org/viewvc/chrome/trunk/src/net/dns/host_cache.cc
http://www.adobe.com/devnet/flashplayer/articles/flash_player_9_security.pdf
http://www.adobe.com/devnet/flashplayer/articles/flash_player_9_security.pdf
http://blogs.msdn.com/dross/archive/2007/07/09/notes-on-dns-pinning.aspx
http://blogs.msdn.com/dross/archive/2007/07/09/notes-on-dns-pinning.aspx

	Introduction
	Related Work
	Implementation
	Malicious DNS server
	Rebinding based on DNS table flooding
	Malicious Javascript proxy
	Attacker's interface

	Evaluation
	Configuration
	Time-to-Launch
	Impact
	Making The Victim Stay
	Changing the Content of Internal Wiki
	Other Browsers

	Discussion
	Defense Against DNS Rebinding
	Defense Against DNS Cache Flooding
	Future Work

	Conclusions
	ACKNOWLEDGMENTS
	References

