Introducing Die Datenkrake:
Programmable Logic for Hardware Security Analysis

Dmitry Nedospasov
FG SecT, TU Berlin

dmitry@sec.t-labs.tu-berlin.de

Abstract

This work presents Die Datenkrake, an open source
hardware USB peripheral for hardware analysis. Die
Datenkrake is comprised of an ARM microcontroller and
a Field Programmable Logic Array. The design of Die
Datenkrake overcomes many limitations that are com-
mon to widely used embedded hardware analysis tools.
The programmable logic makes it possible to add addi-
tional functionality to the ARM MCU such as additional
I/O interfaces, support for proprietary protocols and real-
time signal processing in hardware. This work also
presents several example applications that can greatly
benefit from utilizing such a platform versus standard
tools.

1 Introduction

In the world of software security, many tools for binary
analysis are readily available. Many popular binary anal-
ysis tools, such as IDA Pro [4], provide extensible plug-
in architectures. Any functionality missing in the core
application itself can be implemented as a plug-in. The
extensibility of these tools has made them particularly
popular. Moreover, entire ecosystems of plug-ins and
extensions already exist. Plug-ins can make it possible
to seamlessly export data or interface to other programs.
In embedded security the picture is very different. In-
terfacing with the target device can be particularly tricky.
Embedded hardware analysis may require the simulta-
neous measurement of several signals. For simple ap-
plications, standard measurement equipment may suf-
fice. In fact, modern measurement equipment such as
digital storage oscilloscopes and logic analyzers provide
protocol decoders for many standard embedded proto-
cols. Segmented memory ensures that only traces of rel-
evant data are captured by the hardware. The problem
arises when analyzing proprietary protocols that are not
included in the device’s set of standard protocols.

Thorsten Schroder
modzero AG
ths @modzero.ch

Several open source projects are built around pro-
grammable microcontrollers and serial interfaces. Such
platforms commonly include a serial bootloader to facil-
itate firmware upgrades via the USB to serial interface
without the need for an external programmer. One of the
most popular projects is the Arduino platform. The Ar-
duino is especially popular because of the availability of
expansion boards known as “shields” for the character-
istic Arduino footprint. Shields are available that sup-
plement common interfaces and functionality, including
radio interfaces, such as Bluetooth and WiFi. The pro-
grammable pins of the Arduino make it possible to im-
plement low-speed serial protocols via bit-banging. It is
possible to perform common embedded hardware secu-
rity analysis tasks, such as interfacing to or eavesdrop-
ping on embedded memories and interfaces. One of the
most notable examples of such an Arduino-based project
is JTAGEnum [6], a powerful Arduino sketch for enu-
merating and detecting JTAG interfaces.

One of the simplest and most versatile tools for em-
bedded analysis is the Dangerous Prototypes Bus Pi-
rate [11]. Unlike the Arduino, the Bus Pirate is com-
monly available with a simple set of test leads to con-
nect to headers on embedded devices. The connector on
the Bus Pirate itself is a standard shrouded 10-pin header
that makes it trivial to make custom cables to interface
to other devices. The code running on the Bus Pirate
hardware provides support for various common embed-
ded buses and interfaces. Incoming data from external
interfaces is processed and decoded by the microcon-
troller and the data is sent via the serial interface to the
PC. Such a configuration makes it possible to implement
a user-facing Command Line Interface (CLI) to switch
between different modes of operation.

However, both the Bus Pirate and Arduino lack the
real-time performance necessary for interfacing to high-
speed memory interfaces. In his seminal work, “Hacking
the XBOX” [5], Andrew “Bunnie” Huang details the pro-
cess of interfacing to the Hypertransport bus on the PCB.



To capture the high-speed signals on the device, a buffer-
ing circuit was used to convert the differential signaling
to single ended I/0. Subsequently signals were sampled
and buffered in a FIFO implemented on an Field Pro-
grammable Gate Array (FPGA). The setup utilizes the
advanced I/O configurations that are available on modern
FPGAs to demultiplex and capture dataflows that exceed
the speed of communication link to the PC.

Though low-cost FPGA and CPLD development
boards have become readily available in recent years,
they remain fairly unattractive for embedded analysis.
Most development boards are not tailored for the imple-
mentation of custom interfaces for embedded analysis as
development boards commonly supply only high-density
I/O expansion connectors. Procurement of such connec-
tors can be very difficult and they require adapter PCBs
to access individual pins. Additionally, development
boards generally provide only a single programmable de-
vice. Using solely an FPGA for such applications makes
it difficult to efficiently load and change parameters of
registers implemented on the FPGA. By instead integrat-
ing a microcontroller alongside the FPGA, the microcon-
troller can be interfaced directly to the FPGA’s bus and
used for the configuration internal registers of the FPGA.

High-end test and measurement equipment generally
runs full-blown operating systems and high-performance
processors. Standardized interfaces, such as VISA [8],
allow users to access capture data directly so that pro-
tocol analysis can ostensibly be performed on a PC af-
ter capturing the data. However, very few manufactur-
ers of test and measurement equipment provide an ex-
tensible interface to the actual measurement hardware.
Without direct hardware access, real-time analysis be-
comes particularly difficult to implement efficiently or
at all. One interesting solution is the National Instru-
ments FlexRIO [7]. The FlexRIO is an expansion board
for the National Instruments PXI backplane system that
adds programmable logic for implementing custom I/O
interfaces. The system implements the necessary inter-
faces for communication with the PC. Hence, users must
only supply the programmable logic to implementation
for the custom I/O that interfaces. Characteristic to Na-
tional Instruments the system requires the hardware to
be programmed in National Instrument’s LabView pro-
gramming environment. This makes this solution partic-
ularly unattractive as it adds significant licensing costs
for users outside of universities.

In this work we introduce Die Datenkrake! (DDK for
short), a low-cost extensible hardware analysis platform.
We highlight several example applications where the ad-

I Datenkrake - literally “Data Octopus”, is German slang for orga-
nizations with questionable privacy practices that hoard and resell user
data. The platform consists of eight user-configurable channels for in-
terfacing to external data sources, hence the name.

vent of programmable logic makes analysis significantly
easier. The DDK utilizes an ARM Cortex-M3 microcon-
troller (MCU) and an FPGA to provide maximum flex-
ibility for embedded applications. The ARM MCU is
connected to a PC via a USB-to-serial interface and is
also connected to the FPGA via a parallel bus and multi-
ple serial interfaces. The FPGA provides programmable
logic and an interface to eight channels of General Pur-
pose I/O (GPIO). Each GPIO channel consists of six
individually configurable bidirectional pins. Internally,
the DDK uses a common open-source bus, making it
particularly easy to integrate existing logic implementa-
tions. Additional I/O protocols can be implemented for
the GPIO channels as well as additional logic for real-
time data analysis. The DDK is open-source hardware —
the hardware design files, as well as the HDL and C code
are completely open-source and freely available on the
project website [3].

Organization

The rest of this paper is structured as follows. Section 2
illustrates several hardware security applications that can
strongly benefit from programmable logic. Section 3
covers the design of Die Datenkrake and describes essen-
tial features missing in other platforms. Further refine-
ments for future generations of the DDK are presented
in Section 4. Finally, we conclude with a summary of
what is necessary for embedded hardware analysis in
Section 5.

2 Example Applications

Programmable logic offers many benefits over general
purpose programmable microcontrollers. By utilizing
these advantages, targets can be analyzed more effi-
ciently. This section covers three embedded security ex-
amples that highlight the advantages of programmable
logic. Specifically, analysis of multiple target devices in
parallel, applications with advanced timing constraints
and timing critical real-time signal processing scenarios
are presented. The DDK provides eight identical, but
individually configurable channels each with six bidirec-
tional GPIO pins. For simplicity, only a single channel,
chX, is illustrated in each of the following examples, see
Figures 1, 2 and 5.

2.1 Hardware Interfacing

One of the greatest challenges in embedded device anal-
ysis is interfacing to the devices themselves. Embed-
ded devices generally provide only limited low-speed
serial communication interfaces. However the effective



txl p——P| rx

rxl K—tx ul

rstl p———P rst

chX

tx2 p———P rx
rx2 K— tx u?2

rst2 p———P| rst

Figure 1: Odroid channel module

throughput to such devices can be increased by interfac-
ing to multiple device instances simultaneously. One ba-
sic application is brute-forcing firmware passwords for
service or administrative accounts. Successful logins can
be automatically identified automatically based on the
delay and serial output. By brute-forcing multiple de-
vices in parallel the penalty for failed login attempts can
also be reduced.

A more advanced setup may instead fuzz software
components by providing test vectors to the Device Un-
der Test (DUT) via the serial interface. Frameworks,
such as Peach and Radamsa, already exist for test case
generation [10, 12]. However, fuzzing software compo-
nents and operating systems on embedded devices can
lead to crashes that render the DUT entirely or partially
unresponsive. It is essential to check whether the DUT is
performing erratically during the fuzzing process. When
an irregular operating state is detected, the DUT can
be reset and brought back to a nominal operating state.
Though modern embedded devices may include other in-
terfaces, it is common for such devices to include serial
interfaces for debugging purposes. Kernel error mes-
sages, for example, are often solely transmitted over the
device’s serial interface.

As a Proof-of-Concept (PoC), we implemented a sim-
ple channel module for the DDK that monitored serial
communication. Each channel interfaced 3 signals per
device, a bidirectional UART (tx and rx) and a reset line
(rst), see Figure 1. Because only three of the six signals
provided by the channel are used, two device instances
(ul and u2) can be monitored simultaneously. For our
PoC, the DDK was configured to monitor an Odroid-U22
embedded single board computer for system crashes. In
this configuration, the DDK sent carriage return charac-
ters to the target device. Hence, the absence of a car-
riage return coming back from the target within a timeout
window indicated a system crash. An automatic system
reset is triggered by the channel module by cutting the

2http://wuw.hardkernel.com/renewal_2011/products/
prdt_info.php?g_code=G135341370451

supply voltage of the target device via a pass transistor.
This implementation was completely realized in the pro-
grammable logic of the FPGA without utilizing the ARM
microcontroller.

By also utilizing the ARM microcontroller, a more ad-
vanced implementation would automate the process even
more. The bootloaders of many embedded devices facil-
itate device upgrades over the serial interface. Hence a
new kernel or ramdisk can be passed to the device at boot
time over UART. On the DDK, the programmable logic
of the FPGA makes it trivial to implement signal multi-
plexers. In a purely combinational logic implementation,
the tx pin of the LPC can be multiplexed to the target de-
vices with the parallel data bus providing the necessary
select signals. The reset lines of the target devices can
then be multiplexed in a similar fashion. However, such a
setup would not allow simultaneous communication with
multiple devices.

Simultaneous logging and monitoring of multiple tar-
gets can be realized by utilizing the ARM microcon-
troller in conjunction with a sequential logic imple-
mentation of the FPGA. Error messages decoded by
the individual channel modules in the FPGA can be
buffered in FIFO memory ensuring that no error events
are missed by the system. Upon detecting a system crash,
the DDK’s LPC ARM microcontroller is alerted to the
event over the interrupt line. The LPC reads registers
on the FPGA to determine which of the target devices
has crashed. A UART multiplexer implemented on the
FPGA is configured by the LPC to pass data directly to
the target device. The LPC is then configured to pass data
from the PC directly to the FPGA. An arbitrary sequence
of escape characters can be used to reset the communi-
cations once the transfer is completed. Note, in such an
implementation parallel channels would continue to be
monitored even when a device upgrade is in progress.

2.2 Hardware Glitcher

Secure systems are susceptible to several classes of tran-
sient faults that can be introduced during runtime [1].
Transient faults are non-invasive and temporary in na-
ture, but require a high degree of timing precision to exe-
cute successfully [2, 15]. Faults mainly induce rise- and
hold-time violations within the circuit as well as adver-
sly affecting the threshold voltages within memories. All
of these factors can lead to incorrect values being loaded
into registers. Transient faults must be executed within
a single clock cycle of execution of the target device.
Hence, precise timing on the order of fractions of a clock
cycle is needed.

Two common forms of transient faults that can be in-
troduced into almost any system are voltage supply and
clock glitching. The goal of a voltage glitch is to ad-



oe
Vee
clk clk E
I8}
3}
rst rst ¢
chX g
io io 2
nd
sl £

Figure 2: Hardware Glitcher

versely affect the operating conditions of an IC. In this
case the result of a combinational circuit arrives after the
sampling occurs, resulting in incorrect intermediate re-
sults. Alternatively, a high-voltages read from a devices
Non-Volatile-Memory may be corrupted. In clock glitch-
ing, the clock period is altered during a given clock cycle.
Here the combinational circuit is sampled too early be-
fore the correct signal arrives, also resulting in incorrect
intermediate results.

FPGA’s offer a wider support for different I/O stan-
dards than microcontrollers, making it possible to select
an I/O standard with better signal integrity for the task
at hand. More importantly, the programmable logic of
FPGAs makes it possible to realize sequential logic cir-
cuits capable of toggling outputs once per clock cycle.
By comparison, toggling a value in a microcontroller’s
I/0 registers takes multiple clock cycles and may require
the execution of multiple instructions. The outputs of
an FPGA can be toggled at even higher frequencies by
utilizing multiple clock domains and clocking the output
circuit at a higher clock than the rest of the FPGA.

For the DDK, we developed a hardware peripheral ca-
pable of performing voltage and clock glitching, see Fig-
ure 2. This peripheral is capable of performing both volt-
age and clock glitching as both are supplied to the target
device by the channel module. To achieve the high tem-
poral resolution required to induce a glitch for a fraction
of a clock cycle of the target device, the output mod-
ule can be clocked at a higher frequency. To implement
this, the A3PN125 used for the DDK provides a PLL,
frequency dividers, delay lines and multiple global clock
signals. These FPGA hardware resources simplify the
process of implementing logic with multiple clock fre-
quencies on the same device.

For our PoC glitcher, a standard smartcard was inter-
faced via the ISO7816 protocol. For clock glitching, a
gated clock output is utilized as the DUT’s clock source.

Figure 3: Example OR-gated output clock

The output of the gate depends on the state of both of the
inputs. Hence, the glitching module can asynchronously
change the output of the gate by altering the glitch in-
put of the gate, see Figure 3. By clocking the glitch out-
put module at 100 MHz, 10ns gltich pulses can be in-
duced in the target device’s clock.

Voltage glitching is performed in a similar fashion.
Unlike clock glitching, part of the glitching logic must
be realized outside of the FPGA. For voltage glitching
a PoC circuit was designed that utilized analog multi-
plexers to select the voltages at v.. and gnd of the target
device, see Figure 2. A programmable power supply was
used to set the glitch voltage, vgiitcn. Alternatively a po-
tentiometer or digital-to-analog converter could be used
in conjunction with an operational amplifier in a voltage
follower configuration. The voltage follower ensures that
circuit can drive sufficient current.

The analog multiplexers are controlled by the select
lines s1 and s2. The multiplexers switch the supply volt-
ages of the DUT, i.e. v.. and gnd. When s1 and s2 are
low, the target device received its nominal supply volt-
age. By setting either s1 or s2 to high, vg1itcn Was ap-
plied to the high-side or low-side of the device, respec-
tively. The analog multiplexers also included an output
enable line, oe, that could decouple the supply voltage
from the target device completely. As with the clock
glitcher, the clock of the glitching module determines the
glitch resolution. A 100 MHz clock can produce voltage
glitches with 10 ns resolution.

2.3 Software Defined Radio

chX

mode
cs
sck

sdio

gio

mode

cs

sck

<>— sdio

A7125

Figure 5: A7125/RF channel module

NRF24-based transceivers,

such as the Nordic




Ground pad

Figure 4: DDK v1.0 hardware overview.

Semiconductor NRF24L01+, are readily available and
can be easily acquired. However, these ICs lack the
promiscuous mode necessary for raw packet capture.
To receive packets, referred to as Enhanced Shockburst
Frames, the interface must first be configured with a
valid MAC address. Subsequently, incoming packets that
match the address configured in the transceiver are de-
coded and transmitted over an SPI interface. After con-
figuration, outgoing data packets can also be transpar-
ently sent to the IC over SPI.

FPGAs are commonly used in software defined ra-
dio applications. The nature of programmable logic al-
lows for algorithms to be unrolled and realized as a sin-
gle clock cycle computation. Even relatively low-speed
radio interfaces can overwhelm hardware lacking ded-
icated logic for the computation. Moreover, variable
length frames may make it difficult to identify valid
packets in security applications.

The difficulty of implementing such applications is
demonstrated by the Keykeriki wireless keyboard snif-
fer [13]. The Keykeriki is capable of sniffing and in-
jecting the RF traffic of certain transceivers, such as the
2 Mbps NRF24-based modules. Among other applica-
tions, NRF24-based modules are widely used in wireless
keyboards and car immobilizers. A 2010 presentation
demonstrated the vulnerability of such devices to sniff-
ing and injection attacks [14].

To implement a promiscuous mode, a second
transceiver is utilzied on the Keykeriki. An Amicom

A7125 2.4GHz is used to provide a demodulated bit
stream of the wireless interface. The Keykeriki im-
plements an interrupt handler to decode frames dur-
ing the interrupt routine. The protocol used by Nordic
Semi-based transceivers permits packets, known as En-
hanced Schockburst frames, that can be up to 329 Bits
in length. Furthermore, an Enhanced Shockburst frame
can have several variable length fields, see Figure 6. This
makes it extremely difficult to detect the start and end of
frame without additional information such as the MAC-
addresses of the devices that are communicating. More-
over testing all combinations in software is impossible
during a single interrupt, since the Keykeriki utilizes
just a single 100MHz ARM microcontroller. Hence,
the Keykeriki implementation only performs partial real-
time protocol analysis and instead takes false positives
into account.

Address (3-5 Bytes)
/ Control (9 Bits)

l\ i/ Payload (0-32 Bytes) D
Preamble (1 Byte)

CRC 1-2 Bytes _
Figure 6: Enhanced Shockburst Frame used by the
Nordic Semiconductor RF interface.

A programmable logic implementation would not suf-
fer from these constraints. FPGAs offer several possi-
bilities for simultaneous access to memory by multiple



Figure 7: DDK v1.0 with example test leads.

modules. The A3PN125 used for the DDK includes sup-
port for dual ported memory and FIFOs. On the DDK
the Amicom A7125 could be directly connected to one
of the channels, see Figure 5. The initial configuration
of the A7125 device is performed by using a 3-wire SPI
bus (cs, sck and sdio). The mode pin is used to put the
transceiver module into RX or TX mode. Finally, once
configured, the transceiver provides a demodulated sig-
nal over gio. In such an implementation, the entire sig-
nal processing can subsequently be performed in hard-
ware on the DDK. To decode a valid packet, several bits
of the frame can be checked using a bitmask. Specifi-
cally, the protocol defines two valid preambles: 0xAA if
the first bit of the address is a 1 and 0x55 if the first bit
of the address is a 0. Upon detecting a valid preamble
and verifying the control bits, a CRC can be iteratively
computed and applied to the rest of the stream. A CRC
match would identify a valid packet, which would then
be passed to the LPC for additional processing. If dy-
namic payload length is enabled, the payload length can
be used to determine the offset fo the CRC.

3 Design

This section details the characteristics of the DDK’s de-
sign. An overall overview of the DDK Hardware is pre-
sented in Figure 4. One of the primary goals of the DDK
project was to provide a simple user-friendly connec-
tor that provided access to the GPIO. Test leads should
be easy to manufacture and easy interface to PCB test
pads, headers and breadboards. The connector should in-
clude a power rail in case the target hardware uses a non-

standard I/O-interface and a circuit is needed to translate
the 1/O levels. The I/O should be bidirectional and be
capable of interfacing to common embedded open-drain
interfaces, such as JTAG and I12C. The firmware of the
ARM and the bitstream of the FPGA should be upgrad-
able over the serial interface so that multiple devices can
be deployed in parallel and updated.

3.1 DDK Hardware

The DDK consists of an FTDI FT230X USB to serial in-
terface, an NXP LPC 176X ARM Cortex-M3 MCU and
a Microsemi ProASIC3 Nano A3PN125 low-cost flash-
based FPGA, see Figure 4. To reduce overall system
costs and eliminate the need for two separate clock do-
mains, the FPGA clock is supplied via the CLKOUT of
the LPC, which in turn generates its internal clock from
a PLL and a quartz crystal clock source. Because the
entire system shares a single clock, this eliminates the
potential of clock drift between the FPGA and the ARM.
For maximum flexibility, the FGPA and ARM are con-
nected via 6 GPIO pins that form USART1, USART2 and
USARTS3 of the LPC. With this configuration, custom im-
plementations can easily utilize the LPC’s hardware re-
sources to implement additional channels of bidirectional
serial communication. Data processed and serialized by
the LPC can then be passed to the PC via the FTDI USB
to serial interface. Additionally, a 16-bit wide parallel
bus connects the LPC and the FPGA. The parallel bus is
used to interface the LPC directly to the internal bus of
the FPGA.

The board also includes eight configurable I/O chan-



nels that are connected to the FPGA. As a readily avail-
able connector to interface test leads to external hard-
ware, RJ-45 jacks were chosen. The pinout of the con-
nector consists of the first twisted pair providing a 5V
rail and ground, and the remaining six wires providing
user configurable bidirectional I/O. In a pinch, users can
cut a standard ethernet cable in half to make a crude
set of test leads, see Figure 7. After removing the iso-
lation of the wires, they can be soldered directly to a
PCB or inserted directly into a solderless breadboard.
In our experience, category S5E spools designed for in-
door use are very rigid and optimal for use with solder
breadboards. In contrast, ethernet patch cables are sig-
nificantly more flexible and better adapted for test leads
that require crimping and soldering. The 5V rail makes
it easy to realize adapter boards that may need an ad-
ditional supply voltage for interfacing to other I/O stan-
dards or powering additional hardware. Since the USB
connector is mini-USB and mini-USB Y-cables are read-
ily available, the DDK can deliver approximately 4.5 W
of power to target devices from a connected PC.

To provide additional input protection and ensure the
I/O channels can tolerate a wider range of voltages, auto-
direction sensing bidirectional voltage translators are uti-
lized to buffer the I/O signals. These chips automatically
detect the intended direction of the signal based on the
drive strength of either side. Hence, these ICs seamlessly
adapt to any I/O configuration of the FPGA without the
need to toggle any additional control lines.

Access to the individual inputs and outputs, as well
as 3.3V supply and ground, is available at the head-
ers located along the length of the PCB. I/O signals can
be probed directly at the headers, and a ground pad is
also included to ground single-ended leads during mea-
surements, see Figure 4. The level shifters also include
an output enable control line that can completely de-
couple them from the circuit. Depending on the inter-
facing requirements, alternative signal conditioning cir-
cuitry can be connected to the headers to support virtu-
ally any I/O standard. For example, for open-drain sig-
nals lacking on-board pull-up resistors, additional pull-
ups can be connected to improve the slew rate of the cir-
cuit. Also, if the analog bandwidth of the buffers is in-
sufficient jumpers can short out the inputs and outputs of
the level translators creating a direct path from the FPGA
outputs to the RJ-45 connectors.

3.2 DDK Architecture

An overview of the DDK architecture is presented in Fig-
ure 8. As mentioned in the previous section, the system
clock (c1k) of the FPGA is supplied by the LPC’s clock
output. Of the 6 UART/GPIO lines interfacing the LPC
to the FPGA, only a single UART line (rx) is used to

clk p—P clk

rst p——)| rst

we p—— Pl we ch3

ARM ST e ™ Fpoa
data p———)| data

test p——— )| test ché

rx K] tx

int K] int chg

Figure 8: DDK v1.0 architecture.

send data from the FPGA to the LPC. A dedicated sys-
tem reset line (rst) facilitates synchronous resets of the
FPGA. A dedicated I/O interrupt (int) alerts the LPC to
event triggers implemented on the FPGA. For production
testing, a test mode (test) was also implemented. The
test mode switches the FPGA to a mode of operation in
which the integrity of the PCB and all solder joints can
be easily verified.

The primary interface for writing from the LPC to the
FPGA is the 16-bit parallel bus (data). Of the 16 bus
lines, 8 are currently used to implement an 8-bit address
bus and the remaining 8 are used to implement an 8-
bit data bus. Two additional lines are used to provide
the write enable (we) signal and the data clock (dclk),
which is toggled upon completion of a bus access. On the
FPGA, the open-source Wishbone interconnect is used to
interface modules [9]. Data on the parallel bus is inter-
nally converted to signals conforming to the Wishbone
interconnect on the FPGA. The Wishbone interconnect
is particularly common to open-source projects making it
easy to integrate existing modules. The overall architec-
ture of the DDK consists of eight I/O channel modules,
i.e. chl to ch8. The channel modules operate completely
independently and in parallel. Users can thus select dif-
ferent implementations for each channel individually de-
pending on their needs, see Section 2.

The ARM primarily configures the FPGA and pro-
vides a CLI to the user for configuring the mode of op-
eration. However, the ARM is also connected to the
JTAG programming pins of the FPGA and implements
a programming interface for upgrading the FPGA bit-
stream. The ARM itself is upgradable as well, since its
boot-ROM contains a serial bootloader. Hence, both pro-
grammable devices can be upgraded by users without ad-
ditional programming hardware.

4 Future Work

The overall design of the current generation DDK is op-
timized for cost. Future generations of the DDK will



be optimized for performance, however they will not re-
place the current generation DDK.

The current generation DDK utilizes a low-cost Mi-
crosemi A3PN125 flash-based FPGA. Though the per-
formance of this device is sufficient for most embedded
applications, it lacks several features necessary for ad-
vanced embedded analysis. For example, the A3PN125
lacks differential I/O. On the current generation DDK
additional I/O standards can be realized by connect-
ing additional circuitry to the channel headers. How-
ever, higher-end FPGAs provide a wider selection of I/O
standards.

One of the biggest disadvantages of the current gener-
ation hardware is the write endurance of the array. Flash-
based FPGAs are cheaper to integrate in terms of overall
system costs than SRAM FPGAs. The write endurance is
not an issue for a low-cost system as systems can simply
be replaced. However, a more expensive system should
utilize SRAM-based FPGAs that have an unlimited write
endurance. A future DDK design would include an SD-
Card for storing bitfiles. The bitfiles could then be loaded
into the FPGA depending on the task at hand.

For high-speed sampling applications requiring signif-
icant trace-depth, the current generation DDK lacks suf-
ficient sample memory. In a future generation a higher
performance microcontroller with a dedicated external
memory interface will be used. The FPGA will interface
the microcontroller to multiple channels of SDRAM.
Sample data will simply be mapped into the address
space of the microcontroller. To provide a higher-speed
interface for data transfers both a high-speed USB inter-
face and an ethernet phy will be integrated into the de-
sign. The ethernet phy will also allow devices to operate
autonomously and to be configured remotely.

5 Conclusion

In this work we introduced Die Datenkrake. The DDK
is a low-cost platform for embedded security analysis,
which provides significantly more flexibility than other
solutions. The DDK utilizes standard RJ-45 connectors,
making it easy to interface to target devices. The pro-
grammable logic of the DDK makes it possible to ana-
lyze multiple devices in parallel, implement I/O with a
very high timing resolution and perform real-time analy-
sis in hardware. The design of the DDK makes it easy to
interface existing modules to the internal bus interface.
Most importantly the device is completely open source
hardware. The design files, as well as the source code
are freely available on the project website.

References

[1] RossJ Anderson. Security Engineering. In A Guide
to Building Dependable Distributed Systems, chap-
ter Physical Tamper Resistance, pages 483-521.
Wiley, November 2010.

[2] H Bar-El, H Choukri, D. Naccache, Michael Tun-
stall, and C Whelan. The Sorcerer’s Apprentice
Guide to Fault Attacks. In Proceedings of the IEEE,
pages 370-382, 2006.

[3] Die Datenkrake. Repositories.
datenkrake.org/repos.

http://

[4] Hexrays. IDA: About. https://www.hex-rays.
com/products/ida/index.shtml.

[5] Andrew “Bunnie” Huang. Hacking the Xbox: An
Introduction to Reverse Engineering. an introduc-
tion to reverse engineering. No Starch Press, 1 edi-
tion, July 2003.

[6] Nathan Andrew Fain. JTAG Enumeration.
http://deadhacker.com/2010/02/03/
jtag-enumeration/.

[7] National Instruments. FlexRIO. http://www.ni.
com/flexrio/.

[8] National Instruments. Virtual Instrument Software
Architecture. http://www.ni.com/visa/.

[9] OpenCores. Wishbone B4 Specification.
http://cdn.opencores.org/downloads/
wbspec_b4.pdf, 2010.

[10] Peach Fuzzing Platform. Homepage.
peachfuzzer.com.

http://

[11] Dangerous Prototypes. Bus Pirate Home-
page. http://dangerousprototypes.com/
docs/Bus_Pirate.

[12] Radamsa Project. Homepage. https://wuw.ee.
oulu.fi/research/ouspg/Radamsa.

[13] Remote Exploit. Keykeriki v2.0. http:
//www.remote-exploit.org/articles/
Keykeriki_v2_0__8211_2_4ghz/index.html.

[14] Thorsten Schroder, Max Moser. Practical Exploita-
tion of Modern Wireless Devices: Keykeriki V2.
http://t2.fi/schedule/2010/#speechd.

[15] T Verbauwhede, D Karaklajic, and J.M. Schmidt.
The Fault Attack Jungle-A Classification Model to
Guide You. Fault Diagnosis and Tolerance in Cryp-
tography, FDTC 2011, pages 3-8, 2011.



