é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Hyperproofs: Aggregating and Maintaining Proofs
in Vector Commitments

Shravan Srinivasan, University of Maryland; Alexander Chepurnoy, Ergo Platform;
Charalampos Papamanthou, Yale University; Alin Tomescu, VMware Research;
Yupeng Zhang, Texas A&M University

https://www.usenix.org/conference/usenixsecurity22/presentation/srinivasan

This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 31st USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

31st USENIX Security Symposium.

August 10-12, 2022 « Boston, MA, USA
978-1-939133-31-1

Open access to the Artifact Appendices
to the Proceedings of the 31st USENIX
Security Symposium is sponsored
by USENIX.




A Artifact Appendix

A.1 Abstract

Hyperproofs artifact contains two components: (1) source
code of the Hyperproofs vector commitment (VC) scheme
and (2) scripts to compare the performance of Hyperproofs
aggregation with SNARKSs based Merkle-proof aggregation
(implemented by Ozdemir et al. [3,4]).

We use the Golang bindings of the mc1 library [2] to imple-
ment Hyperproofs. Hyperproofs source code contains three
major components: (1) the vector commitment scheme, (2)
implementation of the argument system for Lé’,fTCH using the
inner-product argument (IPA) proposed by Biinz er al. [1],
and (3) KZG commitment scheme to optimize the verifier of
the IPA.

A.2 Artifact check-list (meta-information)

* Algorithm: We implement the Hyperproofs vector com-
mitment scheme described in the paper.

e Compilation: Hyperproofs require go 1.16 or above
and mc1 requires GCC 9.3.0 and above. Baseline imple-
mentation from Ozdemir et al. requires rust [3].

* Run-time environment: Ubuntu 20.04 or similar with
sudo privileges (for mc1 installation).

* Hardware: Our benchmarks used a machine with Intel
Core 17-4770 CPU @ 3.40 GHz with 8 cores and 32 GiB
of RAM.

e Execution: Benchmarks are single-threaded and
memory-intensive thus the benchmarking results can
vary due to simultaneous usage of resources by other
processes. Approximately, micro and macro benchmarks
(excluding Com and OpenAll) take 1.5+ hours, and com-
parison with SNARKSs based Merkle-proof aggregation
takes 6.5+ hours.

* Metrics: Experiments report the execution time of VC
operations.

e Qutput: The artifact returns the execution time of
benchmarks reported in the paper.

* Experiments: At a high level, we evaluate the perfor-
mance of our VC scheme through micro-benchmarks,
macro-benchmarks, and baseline comparison. Instruc-
tions to set up and run the experiments are included in
the readme of the corresponding project repositories (see
App. A.3.1).

* How much disk space required (approximately)?: In
total, 150 GiB of storage is required. This is because
the public parameters of the vector commitment scheme
requires 100 GiB and SNARKSs based Merkle-proof ag-
gregation requires 50 GiB of storage.

¢ How much time is needed to prepare workflow (ap-
proximately)?:

ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

Estimated time
Step

(hours)
Software installation 1+
Generating Hyperproof
. 1.5+
public parameters
Generating SNARK [3]
. 8+
public parameters
Total 10.5+

* How much time is needed to complete experiments

(approximately)?:
Step Estimated time
(hours)
Benchmark Open, Com 6.5+
Other micro/macro-benchmarks 1.5+
Hyperproofs aggregation 4+
SNARK + Merkle aggregation 2.5+
Total 14.5+

* Publicly available (explicitly provide evolving version
reference)?: Yes (see App. A.3.1).

* Code licenses (if publicly available)?: Apache License,
Version 2.0

* Archived (explicitly provide DOI or stable refer-
ence)?: Yes (see App. A.3.1).

A.3 Description
A.3.1 How to access

The stable URL to access the artifact:
https://github.com/hyperproofs/hyperproofs/releases/tag/1.0.0
The latest version of the artifact is available at:

https://github.com/hyperproofs/hyperproofs/

A.3.2 Hardware dependencies

Requires at least 32 GiB of RAM and 150 GiB of storage.

A.3.3 Software dependencies

Requires Ubuntu 20.04 with sudo privileges, go 1.16 or above,
rust nightly, GCC 9.3.0 or above, CMake, libgmp, libflint, git,
python3 (pandas and matplotlib), curl, and other standard
tools.

A.3.4 Data sets
N/A

USENIX Association

31st USENIX Security Symposium 197


https://github.com/hyperproofs/hyperproofs/releases/tag/1.0.0
https://github.com/hyperproofs/hyperproofs/

A.3.5 Models
N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

We include the detailed installation instructions in the project
repository (see App. A.3.1).

A.5 Experiment workflow

Once the necessary software tools are installed:

 Setup: First, run the scripts/hyper-go.sh in hyperproofs-
go. This generates the public parameters for the VC
scheme, which will be located in the folders pkvk-26 and
pkvk-30. Second, run the merkle-snarks-setup.sh script
in bellman-bignat. This generates the public parameters
for the SNARKS baseline in the folders pedersen-30 and
poseidon-30.

¢ Benchmarks: First, run the scripts/hyper-bench.sh in
hyperproofs-go. This generates the execution times of
various VC operations that constitute micro- and macro-
benchmarks reported in the evaluation section of the
paper. Moreover, this script also generates the prov-
ing and verification times of Hyperproofs aggregation
scheme. Second, run the merkle-snarks-bench.sh script
in bellman-bignat. This script computes and reports the
proving and verification times of SNARK based Merkle-
aggregation.

A.6 Evaluation and expected results

The evaluation section of the paper presents: (1) micro-
benchmarks, (2) macro-benchmarks, and (3) comparison with
SNARK based Merkle-tree aggregation. By running the
scripts/hyper-bench.sh, raw data for micro-benchmarks can
be obtained. Thus, the micro-benchmarking numbers can be
used to directly derive the macro-benchmarks. Additionally,
micro-benchmarking script returns the performance of aggre-
gation in Hyperproofs for varying batch sizes. The SNARKSs
baseline can be obtained by running merkle-snarks-bench.sh.

A.7 Experiment customization

N/A

A.8 Notes
N/A

A.9 Version

Based on the LaTeX template for Artifact Evaluation
V20220119.

References

[1

Benedikt Biinz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi
Vesely. Proofs for Inner Pairing Products and Applications. Cryptology
ePrint Archive, Report 2019/1177, 2019. https://ia.cx/2019/1177.

2

—

Mitsunari Shigeo. mcl: a portable and fast pairing-based cryptography
library. https://github.com/herumi/mcl/, 2015. Accessed: 2020-
10-14.

[3] Alex Ozdemir. bellman-bignat, 2020. https://github.com/alex-
ozdemir/bellman-bignat.

Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. Scaling
Verifiable Computation Using Efficient Set Accumulators. In 29th
USENIX Security Symposium (USENIX Security 20), 2020.

[4

=

198 31st USENIX Security Symposium

USENIX Association


https://github.com/hyperproofs/hyperproofs-go
https://github.com/hyperproofs/hyperproofs-go
https://github.com/hyperproofs/bellman-bignat
https://github.com/hyperproofs/hyperproofs-go
https://github.com/hyperproofs/bellman-bignat
https://github.com/hyperproofs/hyperproofs-go/blob/main/scripts/hyper-bench.sh
https://github.com/hyperproofs/bellman-bignat/blob/singlecore/merkle-snarks-bench.sh
https://ia.cr/2019/1177
https://github.com/herumi/mcl/
https://github.com/alex-ozdemir/bellman-bignat
https://github.com/alex-ozdemir/bellman-bignat

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


