
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Cheesecloth: Zero-Knowledge Proofs
of Real World Vulnerabilities

Santiago Cuéllar, Bill Harris, James Parker, and Stuart Pernsteiner, Galois, Inc.;
Eran Tromer, Columbia University

https://www.usenix.org/conference/usenixsecurity23/presentation/cuellar

USENIX’23 Artifact Appendix: Cheesecloth:
Zero-Knowledge Proofs of Real-World Vulnerabilities

Santiago Cuéllar*

Galois, Inc.
Bill Harris
Galois, Inc.

James Parker
Galois, Inc.

Stuart Pernsteiner
Galois, Inc.

Eran Tromer
Columbia University

A Artifact Appendix

A.1 Abstract

This artifact accompanies the paper, Cheesecloth: Zero-
Knowledge Proofs of Real-World Vulnerabilities. It contains
pointers to the software repository for the work described
in the paper, instructions for compiling the software and its
dependencies, and instructions for running the benchmarks in
the paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There is no risk for evaluators.

Ethical concerns CHEESECLOTH aids in responsible dis-
closure by producing zero-knowledge proofs of the existence
of vulnerabilities while keeping the vulnerabilities and ex-
ploits secret. All vulnerabilities used in our evaluation have
been previously disclosed publicly, and fixes are widely de-
ployed. Thus, the work presented in the paper does not consti-
tute an unethical disclosure of potentially harmful information.
A black hat researcher could use CHEESECLOTH as part of the
process to sell a vulnerability, however CHEESECLOTH’s in-
volvement is unlikely to change the fact that the vulnerability
will still be sold and abused.

A.2.2 How to access

The source code accompanying this paper is avail-
able at https://github.com/GaloisInc/cheesecloth/
tree/usenix-2023-artifact.

A.2.3 Hardware dependencies

All measurements reported in the paper were performed on
a 128 core Intel Xeon E7-8867 CPU with 2 TB of RAM,
although our implementation uses considerably less mem-
ory. 592 GB of disk space is required to store the outputs of
all benchmarks. The OpenSSL benchmark takes up most of

*Authors listed alphabetically.

this disk space. The GRIT and FFmpeg benchmark outputs
combined require less than 35 GB.

A.2.4 Software dependencies

Benchmarks were run on Debian 11. LLVM version 9 is a re-
quired dependency. The Haskell (stack) and Rust (cargo) de-
velopment tools are also required to build CHEESECLOTH. All
other Haskell and Rust dependencies are listed in project con-
figuration files and are automatically retrieved using stack
and cargo.

A.2.5 Benchmarks

Experiments require the vulnerable versions of GRIT, FFm-
peg, and OpenSSL. All vulnerable versions are provided as
git submodules of the CHEESECLOTH repository and point to
the appropriate commit.

A.3 Set-up
A.3.1 Installation

LLVM version 9, stack, and cargo are dependencies
that must be installed. The two main components of
the CHEESECLOTH compilation chain are MicroRAM and
witness-checker, which both live in git submodules. For
convenience, the scripts ./scripts/build_microram and
./scripts/build_witness_checker will compile each
tool.

A Dockerfile is provided for reproducible builds, how-
ever Docker may add too much overhead in practice. You can
build and run the Docker container with:

d oc ke r b u i l d −− p l a t f o r m l i n u x / x86_64 − f
c h e e s e c l o t h / D o c k e r f i l e − t
c h e e s e c l o t h −image .

d oc ke r run −− p l a t f o r m l i n u x / x86_64 − i t
c h e e s e c l o t h −image : l a t e s t / b i n / bash

A.3.2 Basic Test

Correctness tests for MicroRAM and witness-checker can
be run with stack test in the MicroRAM directory and
cargo test in the witness-checker directory.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 395

https://github.com/GaloisInc/cheesecloth/tree/usenix-2023-artifact
https://github.com/GaloisInc/cheesecloth/tree/usenix-2023-artifact

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): CHEESECLOTH produces Zero-Knowledge proofs of
vulnerabilities for GRIT, FFmpeg, and OpenSSL with
multiplication gate counts as described in Table 1 of the
paper.

(C2): Turning off the sparsity and public-pc segment opti-
mizations increases circuit size in terms of multiplication
gate counts as described in Table 2 of the paper.

A.4.2 Experiments

For each of the experiments, running GRIT and FFmpeg takes
hours, while OpenSSL takes days. You may wish to skip the
OpenSSL runs.
(E1): Generate the ZK proofs of vulnerabilities for GRIT,

FFmpeg, and OpenSSL.
How to: Once all the dependencies are installed, run
the following scripts to generate the ZK proofs:

. / s c r i p t s / r u n _ g r i t && mv o u t / g r i t
o u t / g r i t _ b a s e l i n e

. / s c r i p t s / run_f fmpeg && mv o u t /
f fmpeg o u t / f f m p e g _ b a s e l i n e

. / s c r i p t s / r u n _ o p e n s s l && mv o u t /
o p e n s s l o u t / o p e n s s l _ b a s e l i n e

Results: All of the scripts should finish successfully
and the corresponding output directories will contain a
witness-checker.log file. This file contains the mul-
tiplication gate counts at the "mul_gates" key (under
"gate_stats") which correspond to Table 1.

(E1.5): Run the ZK proofs from E1 through the Diet
Mac’n’Cheese ZK proof backend.
How to: While our contribution is agnostic to the ZK
backend, you can run the Diet Mac’n’Cheese back-
end with the following scripts (you will need to update
swanky_dir in the script to point to the location of Diet
Mac’n’Cheese on your file system):

. / s c r i p t s / dmc . sh v e r i f i e r o u t /
g r i t _ b a s e l i n e &

. / s c r i p t s / dmc . sh p r o v e r o u t /
g r i t _ b a s e l i n e

You may want to invoke the prover and verifier in sepa-
rate terminals.
Results: The scripts will report the backend protocol
time for the given ZK proof (replace prover with
prover-count to report protocol communication).

(E2): Regenerate the ZK circuits with the sparsity and public-
pc segment optimizations turned off.

How to: Run the following scripts to regenerate the ZK
proofs:

. / s c r i p t s / r u n _ g r i t _ n o _ s p a r s i t y && mv
o u t / g r i t o u t / g r i t _ n o _ s p a r s i t y

. / s c r i p t s / r u n _ g r i t _ n o _ p u b l i c p c && mv
o u t / g r i t o u t / g r i t _ n o _ p u b l i c p c

. / s c r i p t s / r u n _ f f m p e g _ n o _ s p a r s i t y &&
mv o u t / f fmpeg o u t /
f f m p e g _ n o _ s p a r s i t y

. / s c r i p t s / r u n _ f f m p e g _ n o _ p u b l i c p c &&
mv o u t / f fmpeg o u t /
f f m p e g _ n o _ p u b l i c p c

. / s c r i p t s / r u n _ o p e n s s l _ n o _ s p a r s i t y &&
mv o u t / o p e n s s l o u t /

o p e n s s l _ n o _ s p a r s i t y
. / s c r i p t s / r u n _ o p e n s s l _ n o _ p u b l i c p c &&

mv o u t / o p e n s s l o u t /
o p e n s s l _ n o _ p u b l i c p c

Results: All of the output directories will contain a
witness-checker.log file again with the multiplica-
tion gate counts which correspond to Table 2.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

396 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

