
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Cheesecloth: Zero-Knowledge Proofs
of Real World Vulnerabilities

Santiago Cuéllar, Bill Harris, James Parker, and Stuart Pernsteiner, Galois, Inc.;
Eran Tromer, Columbia University

https://www.usenix.org/conference/usenixsecurity23/presentation/cuellar

Cheesecloth: Zero-Knowledge Proofs of Real-World Vulnerabilities

Santiago Cuéllar∗

Galois, Inc.
Bill Harris
Galois, Inc.

James Parker
Galois, Inc.

Stuart Pernsteiner
Galois, Inc.

Eran Tromer
Columbia University

Abstract
Currently, when a security analyst discovers a vulnerabil-
ity in critical software system, they must navigate a fraught
dilemma: immediately disclosing the vulnerability to the pub-
lic could harm the system’s users; whereas disclosing the
vulnerability only to the software’s vendor lets the vendor
disregard or deprioritize the security risk, to the detriment of
unwittingly-affected users.

A compelling recent line of work aims to resolve this by
using Zero Knowledge (ZK) protocols that let analysts prove
that they know a vulnerability in a program, without revealing
the details of the vulnerability or the inputs that exploit it. In
principle, this could be achieved by generic ZK techniques. In
practice, ZK vulnerability proofs to date have been restricted
in scope and expressibility, due to challenges related to gener-
ating proof statements that model real-world software at scale
and to directly formulating violated properties.

This paper presents CHEESECLOTH, a novel proof-
statement compiler, which proves practical vulnerabilities
in ZK by soundly-but-aggressively preprocessing programs
on public inputs, selectively revealing information about ex-
ecuted control segments, and formalizing information leak-
age using a novel storage-labeling scheme. CHEESECLOTH’s
practicality is demonstrated by generating ZK proofs of
well-known vulnerabilities in (previous versions of) critical
software, including the Heartbleed information leakage in
OpenSSL and a memory vulnerability in the FFmpeg multi-
media encoding framework.

1 Introduction

Ideally, programs that process sensitive information would
always execute safely and securely. With this ideal remaining
difficult to achieve for the foreseeable future, it is critical
that when programs are found to be vulnerable, the program’s
affected users are alerted quickly and safely. This requirement
presents a challenge: convincingly disclosing a vulnerability

∗Authors listed alphabetically.

requires sharing the vulnerability’s details (such as an exploit
that triggers it), thereby placing users at greater risk.

A promising approach to disclosing vulnerabilities convinc-
ingly yet safely is to leverage Zero-Knowledge (ZK) proofs:
protocols in which one party—designated as the prover—
convinces another party—designated as the verifier—of the
validity of a claim without revealing any additional infor-
mation about the claim’s evidence. ZK proofs of program
vulnerabilities would improve responsible disclosure in sce-
narios where vendors are unresponsive. In such scenarios, a
reporter will traditionally share the vulnerability with a trusted
coordinator who will validate the vulnerability and mediate
a response by the software vendor [32]. Instead of sharing
the potentially valuable vulnerability with a trusted coordi-
nator, the reporter (prover) could generate a ZK proof that
the coordinator (verifier) uses to validate the exploit without
receiving the triggering input. ZK proofs of vulnerabilities
would also improve responsible disclosure by allowing re-
porters and vendors to classify the severity of a vulnerability
before revealing the vulnerability. This would prevent situa-
tions where vendors minimize the severity and corresponding
bug bounty reward after having already received the exploit.

Such a use of ZK proofs has arguably been a conceptual
possibility ever since the initial fundamental results establish-
ing that they exist for all problems in NP [26]. It has become
more realistic with improvements to underlying ZK protocols
and with the emergence of schemes for encoding knowledge
of executions of programs written in convenient languages
(starting with [10, 24] and discussed further below).

In order to prove vulnerabilities in ZK about practical soft-
ware, several open problems remain to be addressed. First,
proof frameworks must scale to compile proofs of vulner-
abilities that require considerably more steps of execution
and space. TinyRAM [10–12] is sufficiently flexible to val-
idate the executions of applications, but it is expensive, in
part due to the fact that it simulates every instruction in the
modeled CPU’s ISA in each step. TinyRAM’s performance
is surpassed by those of Pantry [17] and Buffet [52], but both
frameworks require loops to be unrolled to a public bound:

USENIX Association 32nd USENIX Security Symposium 6525

publicly revealing these bounds leaks information about the
underlying vulnerability.

A second open problem is to efficiently compile statements
from an understandable form. One immediate approach is to
execute a program under a dynamic safety monitor for well-
understood safety properties, such as those implemented in
Valgrind [42]; however, directly encoding the additional moni-
toring would induce prohibitively large overhead. Approaches
for verifying low-level exploits in ZK [27] rely on being able
to efficiently compile directly-understandable properties into
statements of control-location reachability.

To address these problems, we present CHEESECLOTH, an
optimizing ZK proof-statement generator that efficiently en-
codes vulnerabilities in practical software. The contributions
behind CHEESECLOTH’s design include:

1. Optimizations of ZK statements that verify the executions
of programs, taking advantage of program structure but
without revealing additional information about the exe-
cution. Specifically, Public-PC segments construct execu-
tion traces from segments with public program counters,
thus enabling aggressive constant folding, without leaking
information about the overall execution trace. Similarly,
instructions which are publicly-determined to be executed
infrequently are sparsely supported (i.e. can’t be executed
at every step), making the statement smaller.

2. Novel, efficient ZK encodings of memory errors prevalent
in practical software, specifically out-of-bounds access,
use-after-free, free-after-free, and uninitialized access. Pre-
vious related work focused primarily on proving knowl-
edge of a valid execution without proving existence of a
vulnerability [10, 11] or encoded proofs of vulnerability
using a less efficient memory model [29].

3. A novel, efficient encoding of statements that a program
always leaks data (when given an exploit as a secret input).
Our scheme enables proofs of program properties that are
related to, but critically distinct from, existing program
monitors and type systems that prove that a program may
leak data [20, 40], optionally in ZK [21].

We implemented these optimizations and encodings in
CHEESECLOTH, a full compilation toolchain for encoding
vulnerabilities of real-world programs into efficient ZK
proofs. The toolchain extends previous approaches based on
TinyRAM, and includes a full definition of a novel TinyRAM
extension (named MicroRAM) and a compiler to MicroRAM
from the LLVM intermediate language, enabling proofs of
vulnerabilities in programs provided in C, C++, or Rust.

We evaluated our implementation by proving in ZK the ex-
istence of three vulnerabilities in practical systems software.
Specifically, we proved that previous versions of the GRIT and
FFmpeg [2] graphics processing libraries contained buffer-
overflow vulnerabilities, and that the OpenSSL cryptography
toolkit [3] was vulnerable to the notorious Heartbleed vulner-
ability [5]. CHEESECLOTH takes the software C/C++ source

code and a flag denoting a vulnerability’s class; it combines
these with an emulation of the runtime environment (oper-
ating system and libraries), and applies the aforementioned
techniques, to derive a statement directly provable in ZK. The
ZK proof can then be given, as a witness, the concrete ex-
ploit used to demonstrate the original attack. CHEESECLOTH
contains implementations of powerful program analyses that,
when combined with manual program partitioning in some
cases, dramatically increase the scale of programs that it can
process, compared to a more naive compiler.

The remainder of this paper is organized as follows: Sec. 2
reviews the background that this work builds upon. Sec. 3
presents the implementation details of our CHEESECLOTH
compilation pipeline; Sec. 4 covers the critical and aggres-
sive optimizations we make to verify the ZK execution of a
program; Sec. 5 describes our ZK encodings to efficiently de-
tect memory and information leakage vulnerabilities; Sec. 6
describes our practical experience using CHEESECLOTH to
prove vulnerabilities; Sec. 7 compares our approach to related
work and Sec. 8 concludes.

2 Background

In this section, we review prior work on which our contribu-
tion builds upon, specifically Zero-Knowledge (ZK) proofs of
program executions (Sec. 2.1), information leakage by pro-
grams (Sec. 2.2), and partial program evaluation (Sec. 2.3).

2.1 Zero-Knowledge Proofs
Zero-knowledge proofs enable a prover party to prove to
a verifier party that the prover knows the correctness of
a computational statement (e.g., that a given boolean cir-
cuit is satisfiable), without revealing information about their
evidence for the claim (e.g., the witness that satisfied the
circuit). There exist ZK protocols for proving knowledge
of solutions to all problems in NP [26], and in recent
years, numerous efficient protocols have been developed
and implemented for ZK proofs of general statements (e.g.,
[8, 10, 12, 14–16, 22, 24, 28, 29, 31, 33, 39, 44, 52]).

Some of these works specifically address statements about
correct execution of programs running on a general-purpose
architecture that include Random Access Memory (RAM),
where the program is expressed in low-level machine code or
a high-level language [9, 10, 12, 14, 16, 17, 22, 27, 29, 31, 33,
39, 52].

Our compiler uses a hybrid of step-by-step CPU emula-
tion, similar to TinyRAM [10–12], a MIPS-like CPU that
can simulate programs in C and similar low-level languages
that access RAM. The TinyRAM encoder, given a public
TinyRAM program and bound on the number of steps of ex-
ecution to simulate and a private program input, generates
a Rank-1 Constraint System (R1CS) [10] that is satisfied by
encodings of the input. The constraint system consists of (1) a

6526 32nd USENIX Security Symposium USENIX Association

family of constraint systems that validate computations purely
over registers in each step and (2) a novel memory-checking
sub-circuit that verifies the correctness of RAM operations
using a permutation network. This CPU-unrolling technique
is excellent for supporting language features such as data-
dependent loops, control-flow and self-modifying code. The
technique can also naturally leverage existing tools such as
compiler front-ends and libraries.

We combine TinyRAM-style emulation with direct compi-
lation of program blocks into circuit gates [17,24,52] (Sec. 4).
The compiler’s output is a circuit whose satisfiability is equiv-
alent to the existence of a vulnerability in the source program,
and whose structure does not reveal the vulnerability or how
it may be triggered.

In our evaluation, the underlying ZK protocol is the Diet
Mac’n’Cheese [9] protocol for proving circuit satisfiability, as
implemented by the Swanky [23] library. This is an interactive
protocol, where the prover and verifier engage in multiple
rounds of communication to evaluate the circuit, at the end
of which the verifier learns that the circuit accepted the secret
witness provided by the prover (and nothing else).

2.2 Information Flow

One core contribution of our work is a practical scheme for
proving in zero knowledge that a program leaks data, which
we have applied to prove that previous versions of OpenSSL
leak private data, as triggered by the Heartbleed vulnerability
(described in Sec. 5.2 and Sec. 6.3). The scheme’s design
requires a formal treatment of information flow: specifically,
a treatment sufficiently formal that we could generate logical
circuits that would be satisfied only by witnesses to leakage. In
the interest of space and clarity, we will omit a definition of in-
formation flow and leakage for a full programming language,
but we will describe ours in sufficient detail to communicate
the key challenges and approaches.

A labeling L is a subset of a program’s input variables I
designated as the private inputs, and a subset of its output
variables O denoted as public outputs. Program P satisfies
noninterference with respect to L if each pair of inputs that
are only distinct at private inputs result in values that are the
same at all public outputs; P leaks with respect to L if, with
respect to L, it does not satisfy noninterference. It follows
from the above definition that a leak is witnessed by a pair
of executions that differ only at L-labeled inputs and produce
distinct L-labeled outputs.

Noninterference has a precise but accessible formal defi-
nition that can capture the flow requirements of some criti-
cal software [20], but its shortcomings in practice are well
known [40, 41, 46]: the complete information flow specifi-
cations of practical programs often are not noninterference
properties, intuitively because programs that take sensitive in-
puts typically do need to reveal some partial information about
them; and even when desired flow properties are noninterfer-

ence properties, proving that a program satisfies the property
in general can involve careful reasoning about unbounded
data and control. A rich body of prior work [13,18,19,25] has
considered generalizations of noninterference involving equiv-
alences over observable events, along with rich programming
languages and type systems and attempt to prove their satis-
faction. However, noninterference properties still constitute
aspects of a program’s complete information flow require-
ments that unfortunately are both critical and are violated
in practice (Heartbleed being a prominent example). This
pattern justifies the current work’s primary focus on proving
noninterference violations.

2.2.1 Labeled Programs and Executions
In their most general form, information flow and leakage
are defined over pairs of executions. Practical program mon-
itors [20, 50] and type systems [40] prove facts about all
execution pairs, by labeling the program’s data and control
structures with metadata which is tracked through the execu-
tion. These approaches can be carried out by a programmer
or automated analysis that directly annotates the program or
execution. However, the requisite guarantees are different in
our proof-of-vulnerability context compared to their usual
applications, as seen next.

At a high level, the guarantees provided by dynamic infor-
mation flow monitors are as follows. A labeling of a program
execution over n steps is an assignment from each program
variable and step 0 ≤ i < n to a sensitivity label. A labeling
over-approximates information flow if, from any two exe-
cutions starting from states that only differ at high inputs,
the program produces results that differ only at high-labeled
timestamped storage cells (static analyses and type systems
lift this property to be defined over all pairs of executions that
differ only at sensitive inputs).

Such over-approximation allows for “false positives” in
identifying information flows. For example, in a context
where only input x is sensitive and the return value is pub-
lic, the following function always_true does not leak any
information about its input secret because it returns true
for each input value:

bool always_true(bool secret) {
if (secret) return secret;
else return !secret; }

However, many natural taint analyses would label the returned
values as sensitive because it is computed from secret.

Over-approximation of potential leaks is often still valuable
for aiding programmers to ensure that their program does not
leak: falsely determining that a secure program may leak may
constitute a nuisance, and may need be mitigated to ensure
practicality, but can to some degree be tolerated.

However, in our setting of proving a leak in ZK, it is un-
acceptable for the verifier to learn only that a program may
leak. The whole point is to prove that it does leak (given the
purported exploit). We will thus create a labeling which is an

USENIX Association 32nd USENIX Security Symposium 6527

under-approximation, i.e., when the labels say so, a leakage is
present. It will then remain to empirically show that labeling
indeed detects leakage for the vulnerabilities of interest.

2.3 Partial Evaluation
In many practical contexts, a program may receive different
subsets of its input after it has been written and compiled:
e.g., after being installed, a configuration file may be included
that remains the same over all executions on distinct inputs
subsequently received from a network. A natural objective is,
given a program and a subset of its inputs that can be fixed, to
generate a specialized program that processes the remaining
inputs with improved performance. Stated more precisely,
for program P(X ,Y) with input variables X and Y , a partial
evaluation of P on an assignment A : X →Words from X to
data values Words is a program PA such that P(A,B) is the
same as PA(B) for each assignment B : Y →Words.

Partially evaluating programs in a practical language brings
several complexities [36]; the underlying technique amounts
to: (1) evaluate the program under a symbolic state, in which
registers and memory addresses may be mapped either to
memory addresses or terms defined over symbolic variables
that denote unknown values; (2) using computed symbolic
states that describe all possible states at each control point,
simplify the control structure at each point. Variations of this
technique may be viewed as generalizations of the constant
propagation analysis and constant folding transformation im-
plemented in conventional optimizing compilers [7].

3 CHEESECLOTH Implementation

CHEESECLOTH produces ZK proofs of real world vulnera-
bilities. It takes as input a public LLVM program (typically
compiled from C, C++, or Rust) and, when run as the prover,
a secret exploit that triggers a vulnerability in the program.
CHEESECLOTH outputs a ZK circuit that verifies the execu-
tion trace of the program and checks whether or not a vulner-
ability occurred during that execution. The pipeline enables a
prover to demonstrate to a verifier that there is a vulnerability
in a program while keeping the vulnerability and triggering
exploit secret.

CHEESECLOTH produces ZK circuits in multiple stan-
dard representations including R1CS [10] and SIEVE IR [6].
Because the circuits are serialized in standardized formats,
CHEESECLOTH is agnostic to the ZK protocol applied. When
run as the prover, CHEESECLOTH outputs the accompanying
witness for the circuit.

CHEESECLOTH can be extended to check different proper-
ties about a program’s execution. Users can selectively enable
which extensions to run by providing different input flags to
the compilation pipeline. These extensions are how the mem-
ory and information leakage vulnerability detection checks
described in Sec. 5 are implemented. This section covers the

baseline design of the CHEESECLOTH compilation pipeline
which includes (1) the MicroRAM assembly language, (2) the
MicroRAM Compiler, and (3) the Witness Checker Generator.
Sec. 4 describes optimizations for this design that enable it to
scale to real world vulnerabilities.

3.1 MicroRAM

The MicroRAM assembly language is critical to CHEESE-
CLOTH. It is the core IR language that CHEESECLOTH op-
erates on and is the language that the MicroRAM Compiler
compiles LLVM programs to. The Witness Checker Gen-
erator produces ZK circuits that verify program executions
according to MicroRAM’s architecture.

MicroRAM is heavily inspired by TinyRAM [10, 11],
which is a practical and efficient assembly language with
a simple transition function that is ideal for ZK execution
verification. We describe MicroRAM and its architecture be-
low, and we precisely describe how its design diverges from
TinyRAM in Sec. 3.1.1.

MicroRAM is a random-access machine designed to ef-
ficiently detect vulnerabilities in program executions. It is
a reduced instruction set computer (RISC) with a Harvard
architecture and byte-addressable random-access memory.

MicroRAM instructions are relatively simple and include
4 boolean operations, 8 arithmetic operations for signed and
unsigned integers, 2 shift operations, 5 compare operations, 2
move operations, 3 jump instructions, 2 operations for reading
and writing to memory, and 1 answer operation that returns
and halts the execution. Floating-point and vector arithmetic
are not directly supported in the MicroRAM machine and
must be implemented in software. Instructions take two reg-
isters and one operand (either a register or an immediate)
as arguments. As an example, instruction xor ri rj 255
writes to register ri the exclusive-or of register rj and the im-
mediate 255. CHEESECLOTH extensions like those described
in Sec. 5 can introduce additional instructions as needed.

The state of the MicroRAM machine consists of the pro-
gram counter (pc), k 64-bit registers, a memory of 264 64-bit
words, a flag indicating whether or not the execution so far is
valid (inv_flag), and a flag tracking whether a vulnerability
has occurred (vuln_flag). CHEESECLOTH extensions can
extend the state of the MicroRAM machine as well.

To demonstrate the existence of a vulnerability in a pro-
gram, a prover must present a secret input that results in a valid
execution trace that triggers a vulnerability. Formally, given
a MicroRAM program, P, and an initial memory, m0, P(m0)
demonstrates a vulnerability in T steps if inv_flag is false
and vuln_flag is true in the final MicroRAM state of the
program’s execution trace. inv_flag is set to false if any
of the checks validating the program’s execution fails. The
extensions implementing the vulnerability detection checks
set vuln_flag to true if they observe a vulnerability during
the program’s execution.

6528 32nd USENIX Security Symposium USENIX Association

3.1.1 Beyond TinyRAM

As mentioned above, our MicroRAM machine is inspired
by TinyRAM. Here we report on how MicroRAM’s design
departs from the TinyRAM model.

• MicroRAM’s memory model is byte-addressable while
TinyRAM is word-addressable. Byte-addressable memory
is necessary to support functionality like string manipu-
lations and packed structs, without adding subroutines to
access bytes within full words.

• TinyRAM receives input via input tapes. In MicroRAM, in-
put is passed directly in memory, which saves many cycles
that TinyRAM spends copying input to memory. A Mi-
croRAM program can request non-deterministic advice in
several ways, however the prover does not have to commit
to the advice ahead of time on a tape; instead they provide
the advice upon request. This approach is better suited to
support backends that exploit parallelism or streaming, and
it results in smaller circuits.

• TinyRAM uses a 1-bit condition flag for branching while
MicroRAM does not. This is advantageous since Micro-
RAM targets a variety of backends including non-boolean
arithmetic circuits where the flag is more expensive than a
regular register1. In addition, the semantics without a flag
are much simpler so the compiler, interpreter, and circuit
generator are simpler as well. We found that even when tar-
geting boolean circuits, the benefits of having a condition
flag are outweighed by the extra complexity.

• We have not yet explored using a von Neumann architec-
ture [12] for MicroRAM because, despite the asymptotic
benefits, the instruction fetching circuit is not yet a limiting
factor in our ZK statements.

3.2 MicroRAM Compiler

The MicroRAM Compiler is implemented as a LLVM back-
end that takes LLVM IR programs as input and produces Mi-
croRAM assembly as output. We currently support C, C++,
and Rust programs by compiling them to LLVM IR with
the Clang and rustc compiler frontends. Support for other
languages such as C#, Haskell, or Scala can be added in the
future by connecting their appropriate LLVM frontends and
writing the appropriate standard libraries.

Our compiler backend supports a large subset of the LLVM
IR language. The compiler supports all boolean and arithmetic
operations for integers of different sizes, bitwise operations,
all non-concurrent memory operations including pointer arith-
metic with getelementptr, conversion operations, function
calls, variable arguments, comparisons, and phi nodes. Com-
plex operations like floating-point operations are implemented
in software via a LLVM compiler pass.

1If full words fit in a field element, then the flag is the same size as a
register, but requires special circuitry and has more restrictions.

Exceptions, and all exception handling instructions, are not
supported; but we can still tolerate programs with exceptions
as long as the prover discloses that the execution of interest,
which triggers a vulnerability, does not throw any exceptions.
This is since the MicroRAM Compiler translates all exception
handling instructions to traps that mark the trace as invalid
by setting the inv_flag flag. By inserting traps, the Micro-
RAM Compiler can process programs with any number of
unsupported features, as long as the prover is willing to reveal
that those features are not involved in the vulnerable exe-
cution. With this simple trick, users can compile real-world
programs without having to manually remove unsupported
features. When enabling traps, provers must take care not
to reveal too much information about the underlying vulner-
ability. Sec. 3.4 presents a more detailed discussion about
the security implications of how proof statements can reveal
information about their witnesses.

3.2.1 Standard library

MicroRAM supports a significant portion of the C standard
library and POSIX system calls, using Picolibc [4]: a library
that offers the C standard library APIs and was originally
designed for small embedded systems with limited RAM. Pi-
colibc supports multiple widely deployed target architectures,
including ARM, RISC-V, and x86-64.

We implemented MicroRAM as a target architecture for
Picolibc. This enables the MicroRAM compiler to support
most of the C standard library and POSIX system calls. It is
also convenient as it allows provers to publicly customize the
behavior of system calls. For example, in our case study of
OpenSSL, the victim server receives the malicious request
from the attacker over the network. We customized the behav-
ior of read when compiled natively to intercept and record
all data received over the network. When compiled for Micro-
RAM, read returns the previously recorded exploit request,
which is loaded from secret memory. We also customize
the implementation of malloc and free to efficiently detect
memory vulnerabilities (Sec. 5.1.1).

3.2.2 Generating advice

As we will see in later sections, CHEESECLOTH requires non-
deterministic advice to efficiently generate a ZK circuit that
verifies the consistency of memory in an execution (Sec. 3.3)
and the presence of a vulnerability (Sec. 5.1). To aid the prover
in producing that advice, the MicroRAM compiler runs two
interpreter passes. The first pass executes the program with-
out any advice and records the necessary advice. The second
execution runs the nondeterministic semantics and records
the trace, which is passed to the Witness Checker Generator
to produce the witness for the prover.

3.2.3 Preprocessing public inputs

One opportunity for aggressive optimization is to publicly
evaluate logic that is determined by the program’s public in-

USENIX Association 32nd USENIX Security Symposium 6529

puts. Many practical programs collect inputs from multiple
sources, some of which are not secret (i.e., irrelevant to the
vulnerability). If the prover and verifier agree when defining
a proof statement that only some inputs are sensitive secrets
(e.g., data packets received from a network connection) while
others are not (e.g., straightforward configuration options),
then the resulting proof statement could be immediately opti-
mized by generating the proof statement and partially evalu-
ating the resulting circuit on its input wires corresponding to
non-sensitive inputs.

CHEESECLOTH supports such cases with a compiler pass
that determines the largest program prefix in which no op-
eration depends on secret inputs. The MicroRAM compiler
then separates the public prefix from the remaining program
suffix and compiles them separately. When the interpreter is
executed by both the prover and verifier, it executes the prefix
and defines a public snapshot of the resulting state, including
both registers and memory. When executed by the prover, the
interpreter then executes the remaining suffix using both the
snapshot and their private input to generate the statement’s
witness. In practice, this simple optimization has significant
impact, reducing the number of execution steps in OpenSSL’s
ZK proof statement from 25M to 1.3M (Sec. 6.3).

The compiler optimization implements a relatively re-
stricted form of partial evaluation and constant folding
(Sec. 2.3). Our initial experience indicates that further ex-
tensions could improve CHEESECLOTH’s performance drasti-
cally: a key technical challenge is that while programs may
perform much processing of public data over the course of
the entire execution, the processing is often interleaved with
computation over sensitive inputs. Evaluating each of the in-
terleaved phases of public computation is sound in principle,
but can only be automated by ensuring that regions of storage
used by public and secret phases are disjoint. Such automa-
tion could potentially be achieved by applying points-to and
shape analyses [47–49], including separation logic [45].

3.3 Witness Checker Generator

The Witness Checker Generator takes as input a MicroRAM
program and generates a ZK circuit, serialized in standardized
formats including R1CS and SIEVE IR. It also accepts non-
deterministic advice as input and outputs the secret witness
to the circuit when run as the prover.

The Witness Checker Generator builds boolean circuits
or arithmetic circuits for the prime field 2128 − 159. As an
optimization, it automatically constant folds gates that are in-
dependent of secret inputs. To scale to large circuits and avoid
running out of memory, it streams the circuit serialization to
a file. This streaming is independent of secret witnesses, so
the same circuit is generated for the prover and verifier.

The nondeterministic advice the Witness Checker Genera-
tor accepts provides a description of a program’s execution
together with the advice necessary to run it. Concretely, the

1 fn transition_func(circuit, current_st, next_st) {
2 let expected_st = current_st.clone();
3 let instr = fetch_instr(circuit, current_st.pc);
4 let arg1 = index(circuit, current_st.regs, instr.op1);
5 let arg2 = index(circuit, current_st.regs, instr.op2);
6
7 let result = circuit.mux(instr.opcode == XOR,
8 xor(circuit, arg1, arg2), ...);
9 expected_st.pc = circuit.mux(

10 is_jump(circuit, instr.opcode),
11 result,
12 circuit.add(current_st.pc, 1));
13 write_index(circuit, expected_st.regs, instr.dest,
14 result);
15
16 circuit.assert(expected_st == next_st); }

Figure 1: Pseudocode for the transition function circuit that
validates a single MicroRAM step.

advice for an execution of T steps contains the initial program
memory, the T MicroRAM states making up the execution
trace, and a mapping from step number to additional advice
given at each step. This additional advice includes memory
ports for what is read or written to memory and stutters that
indicate the execution should pause for the current step.

The Witness Checker Generator produces a ZK circuit that
verifies that the witness describes a valid execution trace for
the program and that a vulnerability occurs. The circuit is split
into four key pieces: (1) the transition function circuit, (2)
the memory consistency circuit, (3) a state transition network,
and (4) public-pc segments. We describe the first two here,
which follow a similar structure to the circuit construction for
TinyRAM [10]. The other two are described later in Sec. 4.1.

Transition function circuit. The transition function circuit
checks a single step of execution. These checks are chained
together to validate the entire execution trace. Fig. 1 shows
pseudocode for the transition function circuit. It takes as input
the circuit’s wire representation of the current MicroRAM
state, the next state, and any additional advice needed for the
current step. The circuit then fetches the instruction to execute
based on the program counter and pulls out the instruction’s
argument values by indexing into machine registers. It cal-
culates the expected result of the step by multiplexing over
the instruction. Finally, the circuit ensures that the calculated
expected state matches the next state provided as advice.

Memory consistency circuit. The memory consistency cir-
cuit is similar to TinyRAM’s except addresses are byte-
addressable instead of word-addressable. Each step may have
a corresponding memory port advice that states the address
and what was read or written to memory. The transition func-
tion circuit verifies that the execution trace matches the mem-
ory port advice. All of the memory ports are sorted by address
and step number. The memory consistency circuit linearly
scans the memory ports to ensure that all reads and writes
to a given address are consistent with the previous memory

6530 32nd USENIX Security Symposium USENIX Association

operation. For example, a read should return the same value
that was previously written to an address. Finally, the memory
consistency circuit checks that the sorted memory ports are a
permutation of the memory ports used by the transition func-
tion circuit. Sec. 5.1 describes how these checks are enhanced
to efficiently detect memory vulnerabilities.

3.4 Security

The threat model for the circuits that CHEESECLOTH gener-
ates differs for each party. The verifier must ensure that the
ZK circuit is only satisfiable when there is a vulnerability in
the input program. The prover must ensure that no informa-
tion is leaked about the witness which includes the triggering
input and execution trace. To enforce this, both the prover and
verifier use CHEESECLOTH to generate the same circuit from
an agreed upon program. The prover independently generates
the witness using the secret exploit. The prover and verifier
collaboratively run the circuit and corresponding witness on
a ZK backend, which validates the exploit while keeping the
vulnerability and triggering input secret.

CHEESECLOTH produces zero-knowledge proofs which en-
sure that no additional information is revealed about the wit-
ness. In particular, circuit generation, which includes the opti-
mizations presented in Sec. 4, is independent of the witness.
Despite this, the proof statement itself can reveal information
about the secret input. For example, in CHEESECLOTH and
TinyRAM the circuit reveals a time bound T on the execution
length. In Pantry/Buffet, the circuit discloses an upper bound
Ti on every loop (and recursive function) in the execution.
In vRAM [53], every instruction run during the execution is
revealed to the verifier. We argue that a formalization of this
information leakage is necessary. Interesting and important
future work will be to define a formal framework to analyze
how secure these encodings are.

Users must trust that CHEESECLOTH adheres to their se-
curity requirements in the threat model. CHEESECLOTH is
publicly available, but its Trusted Computing Base (TCB) is
large and nontrivial to review. The TCB includes Clang, the
Picolibc standard C library (with 1K LoC added), the Micro-
RAM compiler (19K LoC), the Witness Checker Generator
(10K LoC), and LLVM passes that include float emulation
(4K LoC). Future work of verifying the compilation pipeline
would increase assurance in the system for both parties.

4 Optimizations

This section describes two of CHEESECLOTH’s key optimiza-
tions: constructing executions with public program coun-
ters (Sec. 4.1) and tuning steps based on instruction sparsity
(Sec. 4.2). Sec. 6.4 contains an empirical evaluation of the
optimizations’ effectiveness.

4.1 Public-PC segments

The MicroRAM machine is designed to minimize the size
of the transition function circuit. However, even with Micro-
RAM’s small instruction set, the transition function circuit
is still large. This is due to the fact that the transition func-
tion must support every operation for every step of execution.
What if we could remove all the unused functionality? This
is the approach of vRAM [53], where the circuit is tuned to
check the instruction that is executed at each step. The re-
sulting circuit is much smaller, but unfortunately the trace of
executed instructions is revealed. The values in memory and
registers would still be kept secret, however a verifier could
easily discover where the vulnerable code is in the program.
In this section, we present public-pc segments which generate
much smaller circuits without revealing the trace.

As a reminder, the transition function circuit takes as input
the current state of the MicroRAM machine and produces an
updated state from executing a single instruction (Sec. 3.3).
States are piped through transition function circuits for each
execution step. The idea behind public-pc segments is to
generate highly optimized circuits for basic blocks in the
program where the program counter is made public. State
cannot simply be piped through public-pc segment circuits as
that would reveal what code is executed. Instead, we introduce
a state routing network that conceals which segment receives
the output state of the current segment. Just like the memory
routing network, the routing information for the state routing
network is given by the prover and kept secret. As a further
optimization, we avoid using the state routing network when
possible. For example, when a public-pc segment branches to
two statically known locations, we directly connect the end
state of that segment to the two segments representing those
locations.

For security, CHEESECLOTH does not use the witness dur-
ing circuit generation, so we don’t know how many public-
pc segments to generate for a given basic block. To choose
how many public-pc segments to create for a basic block, we
implemented a compiler pass that uses a naive control-flow
analysis to estimate how many times each basic block will
be called. The analysis takes a global bound specifying how
many times to unroll loops and estimates how many times a
function will be called by counting the number of call sites for
that function in the program. It is possible that too many or
not enough public-pc segments will be generated for a basic
block to support certain executions. As backup, the pipeline
also produces private-pc segments which are normal transi-
tion function circuits with their start and end states coming
from the state routing network. These circuits are significantly
larger, but can execute any part of the program at any point
during execution.

USENIX Association 32nd USENIX Security Symposium 6531

4.2 Sparsity

With the naive CPU unrolling described in Sec. 3.3, every tran-
sition function must contain a memory port, which causes the
memory consistency network to grow at a rate of O(T logT),
where T is the number of steps executed. Unfortunately, most
of those gates are wasted by execution steps that do not access
memory. CHEESECLOTH mitigates this excess by removing
some of the unused memory ports, thereby reducing the size
of the memory consistency circuit.

The key observation for this optimization is that memory
operations are rarely contiguous. Even when a program per-
forms a memory-intensive operation, other instructions are
often interleaved between memory instructions. For example,
when adding the values in a buffer, it takes some steps to
increment the pointer and add the values between memory
reads. This enables us to share one memory port among s
contiguous steps, shrinking the memory consistency network
by a factor of s.

We define the memory sparsity, s, as the number of steps
that share a single memory port. CHEESECLOTH chooses s
based on a static analysis of the code. The analysis determines
the minimum distance between two memory operations in
any possible execution. Across statically-unknown jumps (e.g.
calling a function from a pointer dereference), the analysis
naively considers all the instructions the control flow can
possibly jump to. This memory sparsity number s is then used
by the MicroRAM Compiler and Witness Checker Generator
to generate the optimized circuit.

Given a memory sparsity s, the Witness Checker Generator
will group s consecutive steps and create a single memory
port for all of these steps. A multiplexer connects the single
memory port to the entire group and sends the result, using
nondeterministic advice, to the right step (if any).

If s is larger than the actual sparsity displayed by a trace,
then (if unlucky) multiple memory accesses can fall into
the same group of steps, which has a single memory port.
CHEESECLOTH handles this situation by inserting stutter in-
structions that delay memory operations until they are pushed
into the next group with separate memory ports. Inserting
stutter instructions can be expensive, but reducing the size of
the memory consistency circuit is more beneficial (Sec. 6.4).
In future work, we will explore swapping program instruc-
tions to reduce stutter instructions and determine the optimal
s parameter for most programs.

5 Encoding Vulnerabilities

This section describes how CHEESECLOTH encodes two
prevalent and critical classes of software vulnerabilities: mem-
ory unsafety (Sec. 5.1) and data leakage (Sec. 5.2).

5.1 Memory unsafety

We now describe how CHEESECLOTH efficiently models
memory and represents memory vulnerabilities. In CHEESE-
CLOTH, memory is an array of 264 bytes with half reserved for
the heap and the rest for global variables and the stack. Our
approach is to keep track of valid memory (e.g. allocated ar-
rays) and report a vulnerability (i.e., set bug_flag) when the
program accesses non-valid memory. At the start of the execu-
tion, the only valid memory is where the global variables are
stored and, during execution, malloc makes allocated regions
valid and free makes them invalid again. With this technique
we can catch the following memory errors:

• Uninitialized access. All uninitialized memory is invalid,
so any use triggers a bug.

• Use-after-free. When a region is freed it becomes invalid,
so any use triggers a bug.

• Free-after-free. The implementation of free starts by read-
ing a word from the region to be freed, if the region is not
valid it triggers a bug.

• Out-of-bounds access. If the program accesses an address
out of bounds, that new location might (see below) not be
valid and this triggers a bug.

It is clear that a normal execution with such bound check-
ing might miss out-of-bounds access bugs, when the access
happens to fall on another valid region, and free-after-free/use-
after-free bugs, if an intermediate malloc makes the region
valid before the bug is triggered. However, we only need
to show that the bug exists in one execution, so we imple-
ment a malloc guided by nondeterministic advice; this lets
the prover choose the allocation layout to ensure the bug is
triggered.

While the techniques described here are specific to heap
memory bugs, the same ideas can be applied to the stack.

5.1.1 Encoding dynamic memory allocation

An implementation of malloc with nondeterminism poses
its own challenges. If left unchecked, the prover could manu-
facture an execution that triggers a false bug. For example the
prover could malloc overlapping regions such that if one is
freed and the other one is accessed, a false bug is triggered.
Thus, our implementation of malloc and free (Fig. 2) fo-
cuses on verifying that the nondeterministic choices are legal.
If foul play is detected, the execution is flagged as invalid
with inv_flag and will not be accepted by the verifier.

To ensure that malloc never returns overlapping regions,
we predetermine aligned non-overlapping regions of differ-
ent sizes for malloc to choose from. Concretely, we divide
memory into 26 pools of size 258, then subdivide pool i into
regions of size 2i. malloc rounds up the requested size to the
next power of two, then returns the start of an unallocated
region of that size. For example, malloc(15) must return a
region in the 4th pool and be 16-byte aligned. In fact, we can

6532 32nd USENIX Security Symposium USENIX Association

1 void* malloc(size_t size) {
2 // Get pointer from advice
3 char* addr = __cc_malloc(size);
4 /* Compute and validate the size of the allocation
5 * provided by the prover. */
6 size_t region_size = 1ull << ((addr >> 58) & 63);
7 /* The allocated region must have space for ‘size‘
8 * bytes, plus an additional word for metadata. */
9 __cc_valid_if(region_size >= size + sizeof(uintptr_t),

10 "allocated region size is too small");
11 /* ‘region_size‘ is always a power of two and is at
12 * least the word size, so the address must be a
13 * multiple of the word size. */
14 __cc_valid_if(addr % region_size == 0,
15 "allocated address is misaligned for"
16 "its region size");
17 /* Write 1 (allocated) to the metadata field, and
18 * poison it to prevent tampering, invalidating the
19 * trace if the metadata word is already poisoned
20 * (this happens if the prover tries to return the same
21 * region for two separate allocations). */
22 uintptr_t* metadata = (uintptr_t*)
23 (addr + region_size - sizeof(uintptr_t));
24 __cc_write_and_poison(metadata, 1);
25
26 // further computation...
27 return (void*)addr; }

Figure 2: Implementation of non-deterministic malloc.

easily verify that malloc has allocated a correct region just by
looking at the pointer returned: the first 6 bits determine the
pool and the rest the alignment.

Finally, malloc must not return the same pointer twice
without it being freed in between. To do so, we add to each
region one word reserved for metadata that is marked and
made invalid when the region is allocated. If the region was
allocated again, the invalid metadata would be made invalid
again which makes the trace invalid by setting inv_flag.

Furthermore, an implementation of malloc/free that
tracks the validity of all memory locations would be quite
inefficient. Luckily, the prover knows exactly where the bug
will happen and thus the malloc/free implementation only
needs to track the status of that location. At the beginning
of the execution, the prover commits to a secret location
stored in the global variable __cc_memory_error_address
and then malloc/free only track the validity of that loca-
tion. In particular, if an allocated/freed region does not con-
tain __cc_memory_error_address then malloc/free do
not check for errors, and run in constant time.

5.2 Data leakage

A straightforward approach to proving leakage would be to
directly encode the definition of noninterference in the ZK
circuit. This could be accomplished by verifying two program
executions where only sensitive inputs are distinct but public
outputs differ. However, such an approach would result in a
statement of twice the size required for validating a single

execution. Instead, we might hope to prove a leak using a
single execution in which storage is annotated with labels
(Sec. 2.2). However, such systems traditionally have only
been designed to prove that a program may leak information,
which is unacceptable for definitively proving a leak without
providing a violating execution directly (Sec. 2.2.1).

Specifying leakage To identify sensitive sources and sinks,
the instructions source and sink are added to the MicroRAM
instruction set, and are directly wrapped by user-level func-
tions taintSource and taintSink, respectively. source an-
notates that a given byte of data carries sensitive data; sink
annotates that a given byte is output to a channel. Instantiat-
ing the general definitions of information flow and leakage
(Sec. 2.2) for this extended ISA, a MicroRAM program leaks
if it has two executions whose inputs only differ at addresses
given to source, but result in different values at an address
given in calls to sink. Leakage is established by the prover
and verifier collaborating to extend the subject program to
call the taintSource and taintSink to annotate sensitive
sources and sinks.

Proving leakage To soundly and precisely prove leakage, we
propose a novel labeling system that tracks what program stor-
age may and must hold secret. There are four labels, denoted
and partially ordered as

⊥⊑ ℓ0, ℓ1 ⊑⊤

with a least-upper bound (i.e., join) operation denoted ⊔. La-
bels ℓ0 and ℓ1 annotates data that must belong to one of two
principals; ⊤ denotes that the data’s sensitivity is unknown;
⊥ denotes data that must not be influenced by a principal.
With this labeling scheme, leakage of ℓ-labeled data written
to a ℓc-labeled sink must occur when ℓ ̸=⊤∧ ℓ ̸⊑ ℓc.

MicroRAM state is extended so that every register and
byte of memory is associated with a label, similar to previ-
ous leakage monitors [20, 43, 50, 51]. Two additional labels
model effects of instructions other than register arithmetic.
The control context label γ is maintained to be ⊥ if the pro-
gram execution has not branched on secret data, and ⊤ other-
wise; similarly, the storage context label σ is maintained to
be ⊥ if the program has not stored to a secret address, and ⊤
otherwise.

Each assignment x:=e sets the label of x to L(e)⊔ γ⊔σ

(where L(e) is the label of e, defined below); thus, if the pro-
gram has branched on secret data or written to a secret address,
the label of x is set to ⊤. If e is an arithmetic/logical opera-
tion f (y), then L(e) is ⊥ when L(y) is ⊥ and ⊤ otherwise;
L(e) = L(y) if f is a bijection: our current implementation
conservatively only labels single-register expressions (i.e.,
copy sources) as L(y). If e is a load *p, then L(e) is L(*p).
Conditional branches update γ and memory stores update σ

according to the labels’ descriptions; we omit formal descrip-
tions here, due to space constraints.

USENIX Association 32nd USENIX Security Symposium 6533

Plenty of natural programs leak but cannot be proved to
do so by this labeling system, potentially because a leakage
happens after branching or storing to a ⊤-labeled value, or
because a secret value is propagated over an operation not
recognized as a bijection. Such cases restrict the situations in
which the labeling scheme can be applied to prove leakage,
but do not threaten its validity when it claims that a given
program leaks. These cases might be addressed in future
work that refines instruction interpretations using valid logical
axioms (e.g., the fact that for each value x, x+0 = x).

6 Evaluation

We evaluate CHEESECLOTH with three case studies that
demonstrate ZK proofs of real world software vulnerabili-
ties. The vulnerabilities scale by code size and execution
trace length to showcase the capabilities of CHEESECLOTH.
We also benchmark the optimizations (Sec. 4) to evaluate
their effectiveness.

Tab. 1 presents the results of using CHEESECLOTH to pro-
duce ZK proofs for our case studies which include GRIT,
FFMPEG, and OpenSSL. For each case study, we report the
size of the program in terms of the number of MicroRAM
instructions, the number of execution steps required to demon-
strate the vulnerability, and the number of multiplication gates
in the resulting boolean ZK circuit. We prove satisfiability of
the ZK circuit using the Diet Mac’n’Cheese [9] interactive
ZK protocol, as implemented by the Swanky [23] library. We
record the protocol running time and communication cost
between the prover and verifier. All measurements were per-
formed on a 128 core Intel Xeon E7-8867 CPU with 2 TB
of RAM running Debian 11, although our implementation
uses considerably less memory. While CHEESECLOTH is ag-
nostic to the ZK backend, we use Diet Mac’n’Cheese for our
evaluation since it is the fastest interactive backend currently
available. Interactive ZK backends work in the deployment
scenario of CHEESECLOTH as the prover and verifier can both
be online to run the ZK proof of vulnerability.

6.1 Memory unsafety in GRIT

The GBA Raster Image Transmogrifier (GRIT) [35] converts
bitmap image files to a graphics format that is readable by
the Game Boy Advance. A bitmap image includes headers, a
palette array indicating the colors in the image, and the pixels
for the image. For 24bpp images, GRIT’s parser assumes the
palette size is zero and allocates a buffer without space for
the palette. When populating the buffer, it checks the image
header for the number of palette entries without checking that
this matches the assumed palette size that was used during
allocation. As a result, a malformed 24bpp image can write
an arbitrary amount of data (up to the length of the file) past
the allocated buffer.

To demonstrate this memory error, we construct a 24bpp
exploit image with 0x3000 bytes of pixel data and 12 bytes
of palette data. On Linux, the 12 byte overflow overwrites
heap metadata and triggers an assertion failure in the memory
allocator. When run through CHEESECLOTH, we generate a
ZK proof that a memory error is triggered within six thousand
steps of GRIT’s execution without revealing the triggering
image or where the error occurred in the code.

6.2 Memory unsafety in FFmpeg

FFmpeg is a tool for recording, converting, and streaming
audio and video [2], and is used in popular software projects
such as Chrome, Firefox, iTunes, VLC, and YouTube. FFm-
peg is written in C and has been plagued by vulnerabilities
that compromise memory safety, enabling attackers to exe-
cute code and share local files over the network. Versions of
FFmpeg prior to v1.1.2 contained a vulnerability [1] caused
by the memory error in the function gif_copy_img_rect,
which copies the frame of a GIF file between buffers. Previ-
ous versions of gif_copy_img_rect insecurely calculated a
pointer to the end of a memory buffer by directly using the
input image’s height. This calculation allowed an attacker to
provide a carefully crafted GIF which causes FFmpeg to write
to memory outside of an array’s bounds.

To prove memory unsafety of FFmpeg in ZK, we manually
crafted a GIF image that exploits the described memory vul-
nerability. We passed this image and a program module that
invokes FFmpeg’s video decoder to CHEESECLOTH, which
generated a proof of an out-of-bounds access. The only facts
revealed about the exploitative GIF are are that it triggers an
out-of-bounds access within 76K steps of execution.

Preprocessing FFmpeg on public inputs There was poten-
tial to aggressively optimize FFmpeg’s proof statement, which
was ultimately achieved by applying CHEESECLOTH’s con-
stant folding transformation pass after manual program parti-
tioning. The need for partitioning arose due to the interleaving
of public and secret computation in the GIF modules, which
executes by: (1) demultiplexing a given secret GIF file into
a sequence of data packets; (2) initializing the state of the
decoder, using public configuration settings; (3) executing the
codec that contains the vulnerability.

Although phase (2) computes entirely over public data, it
would not be optimized by CHEESECLOTH’s constant folding
pass because the pass halts upon detecting computation that
uses secret data, and thus would not optimize any program
segment after phase (1). To address this issue, we manually
partitioned the program by phase, applied CHEESECLOTH’s
constant folding pass to each, and linked the resulting opti-
mized MicroRAM code. In general, our case study of FFmpeg
motivates the further study and design of more aggressive con-
stant folding passes, which might apply more sophisticated
static program analyses (Secs. 2.3 and 3.2.3).

6534 32nd USENIX Security Symposium USENIX Association

Program Code size (K instrs) Execution steps (K) Mult gates (M) Protocol time Protocol communication
GRIT 3 5 324 2m 42s 416 MB
FFmpeg 24 79 8,435 1h 10m 10 GB
OpenSSL 340 1,300 159,666 23h 41m 203 GB

Table 1: Results for generating and running a ZK proof of software vulnerability for each case study.

1 void process_heartbeat(SSLRequest *req) {
2 unsigned int len = parse_heartbeat_len(req);
3 unsigned char *heartbeat = get_heartbeat(req);
4 unsigned char *response = malloc(len);
5 memcpy(response, heartbeat, len);
6 write(response, len); }

Figure 3: Pseudocode depicting the Heartbleed vulnerability.

6.3 Leakage in OpenSSL

OpenSSL [3] is a widely deployed open-source cryptographic
library that contains implementations of the SSL and TLS pro-
tocols. OpenSSL versions 1.0.1 to 1.0.1f contained a devastat-
ing vulnerability dubbed Heartbleed, discovered in 2014 [5],
that could be exploited by a remote attacker to completely leak
information stored over the protocol’s execution, including
other clients’ sensitive information and private keys.

Comprehensive descriptions of SSL and OpenSSL are be-
yond the scope of this paper; for the purposes of our work,
it suffices to note that SSL parties support multiple requests,
including both requests to store data from the another party
and to reply to a heartbeat signal: a signal sent only to obtain
a response to ensure that the other party is still responsive.

The heartbeat request and response is critical to the opera-
tion of the Heartbleed vulnerability. A well-formed request
consists of a data buffer d and a length field n < |d|. A correct
response to such a request returns the first n bytes contained
in d. However, a party could potentially transmit an ill-formed
request, in which n > |d|. The correct response to such an
ill-formed request is to reject it.

The implementation of OpenSSL (illustrated by the pseu-
docode function process_heartbeat in Fig. 3) crucially
failed to implement this aspect of the protocol and instead re-
turned the n bytes of memory contiguous with the input buffer.
process_heartbeat takes a heartbeat request from a client
and echos the provided heartbeat string back. It does so by
first parsing the length of the heartbeat string from the client’s
request. The function then gets a pointer to the heartbeat string
in the request. Next, it allocates a response buffer and copies
len bytes from the heartbeat string into the response buffer,
which is sent back to the client. Since process_heartbeat
does not check the provided heartbeat length against the actual
length of the heartbeat string, if the claimed length is larger
than the actual length, memory beyond the client’s request is
sent back to the client. This is practically exploitable and has
been demonstrated to reveal sensitive in-memory data like
cryptographic keys and passwords.

1 int login_handler(
2 SSLConn *c, char *password, int len) {
3 ...
4 label l = getLabel(c);
5 for (size_t i = 0; i < len; i++)
6 taintSource(password + i, l);
7 ... }
8 int ssl3_write(
9 SSLConn *c, char *buf, int len) {

10 ...
11 label l = getLabel(c);
12 for (size_t i = 0; i < len; i++)
13 taintSink(buf + i, l);
14 ... }

Figure 4: Versions of the OpenSSL functions
login_handler and ssl3_write that we augmented
with operations that specify information sources and sinks.
Passwords are tainted with the label of the current connection,
and leaks are detected if data written to the network has a
label from a different connection.

Using CHEESECLOTH, we proved in ZK that OpenSSL
version 1.0.1f leaks arbitrary user information in 1.3M steps
of execution, propagating data purely over register copies,
loads, and stores; while the statement reveals a bound on
the amount of computation required to perform the leak and
information about the types of instructions used to perform the
leak (described below), it gives no direct indication of what
validation is missing in the function for processing heartbeat
requests, or that heartbeat requests are involved in the leak at
all. We describe the statement proved, along with technical
challenges and solutions, in more detail below.

Specifying OpenSSL’s leakage A primary challenge of our
work was to provide a scheme for identifying sensitive sources
and sinks such that:

1. A verifier with only an understanding of the data that a
subject program handles should be able to inspect the mod-
ified program and definitively conclude that it correctly
defines information sources and sinks.

2. Any modifications to the program to enable the definition
of sources and sinks must not reveal additional information
about the leak’s triggering input.

Our mechanism for defining sensitivity of sources and
sinks consists of the designated functions taintSource and
taintSink (Sec. 5.2). We found that such a library served
well for specifying information flow in in OpenSSL; pseu-
docode of C functions modified in the OpenSSL codebase

USENIX Association 32nd USENIX Security Symposium 6535

Program
Mult gates without
public-pc segments (M)

Mult gates without
sparsity (M)

GRIT 548 (41%) 332 (2%)
FFmpeg 9,330 (10%) 8,691 (3%)
OpenSSL 170,302 (6%) 165,417 (3%)

Table 2: The number of multiplication gates in the F2 circuit
with the different optimizations disabled, as well as the per-
centage increase over the baseline numbers from Tab. 1.

to label sources and sinks are given in Fig. 4. The function
login_handler, given an SSL connection c and a buffer
password presumed to contain len bytes of sensitive infor-
mation to be transmitted over c, labels len addresses be-
ginning with password with the label of c. The function
ssl3_write, given an SSL connection c and buffer buf pre-
sumed to output len bytes, denotes sinks at the output channel
with the label of c for len addresses beginning with buf.

The modifications to login_handler and ssl3_write il-
lustrate the utility of first-order labels that can be operationally
collected and set, as opposed to operations that set addresses
as only high sources or low sinks, even in a setting in which
the information belongs to only one principal is of interest.
By using first-order labels, we were able to write small speci-
fication functions that unified the labels between a network
connection and a given buffer, and then succinctly modified
the original program logic in contexts that readily provided a
connection and related buffer.

Proving OpenSSL’s leakage Once OpenSSL has been suit-
ably modified to call the taintSource and taintSink func-
tions, its leakage can be proved by generating a statement
whose solution corresponds to an execution of a server run-
ning OpenSSL that leaks sensitive data from one connection
to another connection. We have generated such a statement
where the server first responds to a public login request where
the password is marked as sensitive. The server then handles
a secret malicious heartbeat request that returns the password
from the previous request’s connection.

Using CHEESECLOTH we prove OpenSSL’s leakage by val-
idating the previously described execution which is derived
from one of its originally disclosed exploits. The leakage is
detected through the source and sink annotations according to
our proposed must-leak labeling scheme (Sec. 5.2) and the ver-
ifier only learns an upper bound on the length of the malicious
request. We found that the labeling scheme enabled leakage to
be proved much more efficiently, reducing the overall circuit
size by 30.6% over the two trace approach. CHEESECLOTH
proved the vulnerability of OpenSSL in approximately 37
hours, using 460 GB of protocol communication.

6.4 Optimizations
Tab. 2 contains the improvements yielded by our key opti-
mizations (Sec. 4). We ran the GRIT and FFmpeg case studies

with each optimization disabled and report on the number of
multiplication gates in the resulting ZK circuit. In addition,
we provide the percentage improvement over the baseline
numbers from Tab. 1. The public-pc optimization reduced
gate size by 41% in the shorter GRIT execution and 6% for
OpenSSL. While this is an improvement, these results indi-
cate there is still room for improvement in our analysis that
determines the number of public segments to generate for
longer executions. The sparsity optimization with s = 2 offers
modest improvements of 2%–3% in gate size.

7 Related Work

CHEESECLOTH advances the state of the art as the first tool
to achieve tractable metrics for real world programs at the
scale of FFmpeg and OpenSSL, with the latter requiring 1.3M
cycles of execution. We build upon prior work in ZK program
execution and proof of vulnerability. BubbleRAM [29] pro-
vided the first, exciting steps toward proofs of vulnerability
in ZK. It is an efficient framework for proving vulnerability,
leveraging novel protocols for converting between compu-
tations in arithmetic and boolean fields, efficiently handling
both read-only and read-write memory, and proving satis-
faction of circuits with explicit disjunctions with the Stack
protocol [30]. Although our current statement compiler par-
tially overlaps with BubbleRAM because it implements an
older scheme for modeling RAM computations [10], most
of our paper’s key contributions, namely securely optimizing
circuits for basic blocks and the novel scheme for generating
statements of application leakage, are largely independent of
the contributions of [29,30] and the approaches could be com-
posed. In particular, Stack was evaluated on code snippets
representative of a practical CVE of up to 50 LoC; due to
its efficient support of disjunctions, it could scale to prove
that one of many more such snippets is vulnerable, but it
is likely to strongly benefit from CHEESECLOTH’s program
optimizations if any particular code segment increased in size.

Reverie [27] is a framework for proving exploits in micro-
processor code, consisting of a circuit generator that compiles
a given program to an arithmetic circuit and an instantia-
tion [37] of the “MPC in the Head” protocol [34]. The eval-
uation of Reverie demonstrates that it can be used to prove
Capture the Flag (CTF) exploits that require up to 51K cy-
cles on an MSP430 microprocessor. This is significantly less
than the 1.3M cycles required for Heartbleed. The Reverie
compiler proves exploits as predicates over CPU states. This
requires encoding vulnerabilities as violations of reachability
properties like executing a designated instruction that signals
an error condition. It is possible to encode memory errors in
Reverie as a reachability problem, but this would be less effi-
cient than our encoding. Furthermore, it is impossible to prove
the information leakage from Heartbleed with a predicate over
states since leakage is a two trace property.

Recent work on static program analysis in ZK [21] has

6536 32nd USENIX Security Symposium USENIX Association

presented techniques for proving over-approximations of all
program executions without revealing further details of the
program, and instantiates the framework on an abstract do-
main for information flow based on taint tracking. The static
analysis itself is designed to prove that a program may leak
information: thus, it cannot yield results that directly imply
that a program must leak, although in many cases it could pro-
vide evidence that could strongly inform an analyst’s belief
that a program may in fact leak information.

Our MicroRAM machine is inspired by TinyRAM [10] but
departs from their design in several important ways discussed
in Sec. 3.1. There are also some key differences in scope
and capabilities. TinyRAM is designed to express correct-
ness of any nondeterministic computations while MicroRAM
focuses on vulnerable programs. For example, the SNARKs
for C [10] approach cannot encode proofs of memory-safety
vulnerability in ZK directly. Instead, they encode knowledge
of the existence of a complete, concrete vulnerability trace,
which includes copies of exact values in all local variables
and the values in memory at each point in the trace and the
bug must be evident in the execution’s return value. Our ap-
proach encodes memory vulnerabilities directly, resulting in
a significantly more succinct witness. In particular we can
disregard the trace after the bug is found and we don’t rely on
the program’s return value.

Furthermore, TinyRAM does not scale to proofs of vulner-
abilities in practical programs and has only been evaluated on
programs with less than 1.2K low-level instructions and 11K
execution steps [10]. In contrast, the optimizations proposed
in this work enable us to support programs with more than
340K lines of low-level code and 1.3M steps (Tab. 1). Beyond
scalability, MicroRAM supports a much broader subset of the
C language, including most of the standard C library.

Pantry and Buffet [17, 52] represent computation as arith-
metic constraints; a solution to the constraints is a valid trace
of the computation. After implementing the memory consis-
tency approach of TinyRAM, they report results orders of
magnitude better than TinyRAM. Buffet supports all features
in the C language, with the exceptions of goto statements and
function pointers. To translate computation into a constraint
system, Pantry and Buffet must unroll loops to publicly re-
vealed bound (although the original work does not explicitly
discuss encoding recursive functions, we hypothesize that
they would be encoded similarly, using bounded function in-
lining). The constraint system must include every branch of
conditionals and every iteration of every loop (multiplica-
tively with nested loops) which could lead to blowups in the
constraint system, however the authors suggest that this would
only happen in degenerated cases and would not be common
in practice. A variant Pantry/Buffet that uses zero-knowledge
techniques to keep the state private with the same efficiency
benefits. When presenting our approach, we compare facts
about private inputs that it reveals to those revealed from
public loop bounds (Sec. 3.4).

vRAM [53] has achieved further efficiency with an inge-
nious universal preprocessor that generates a smaller circuit
tailored to verifying a specific program on chosen inputs.
Unfortunately, such tailored circuits can reveal significant
information about the input provided. Our public-pc optimiza-
tion (Sec. 4.1) attempts to balance the gains of a tailored
circuit and the privacy requirements of the prover.

8 Conclusion

Due to sustained successes in the development of ZK pro-
tocols, recent techniques have reached the cusp of proving
knowledge of realistic vulnerabilities and proving subtle ex-
ploits in low-level code. This paper describes how a host of
core techniques from compiler design—namely, conservative
instruction profiling and under-approximating information-
flow tainting—can be implemented in an optimizing proof-
statement generator to produce proofs of vulnerability in com-
modity software that can only be triggered by using a consid-
erable amount of time and space.

Our practical experience has produced a zero-knowledge
proof of memory unsafety in FFmpeg and a proof of leakage
in OpenSSL that directly used the Heartbleed exploit as a
witness and demonstrates that zero knowledge proofs of vul-
nerability in critical application software are now practical.

Availability and Ethical Considerations

CHEESECLOTH is open source and available online2.
CHEESECLOTH aids in responsible disclosure by produc-
ing zero-knowledge proofs of the existence of vulnerabili-
ties while keeping the vulnerabilities and exploits secret. All
vulnerabilities used in our evaluation have been previously
disclosed publicly, and fixes are widely deployed. Thus, the
work presented in this paper does not constitute an unethical
disclosure of potentially harmful information. A black hat
researcher could use CHEESECLOTH as part of the process to
sell a vulnerability, however CHEESECLOTH’s involvement is
unlikely to change the fact that the vulnerability will still be
sold and abused.

Acknowledgments

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. HR001120C0085. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of
the Defense Advanced Research Projects Agency (DARPA).
Approved for Public Release, Distribution Unlimited.

2https://github.com/GaloisInc/cheesecloth

USENIX Association 32nd USENIX Security Symposium 6537

https://github.com/GaloisInc/cheesecloth

References

[1] CVE-2013-0864. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2013-0864.
Accessed: 2022-10-10.

[2] FFmpeg. https://ffmpeg.org/. Accessed: 2022-09-
01.

[3] OpenSSL: Cryptography and SSL/TLS toolkit. https:
//openssl.org/. Accessed: 2022-09-05.

[4] Picolibc: C libraries for smaller embedded systems.
https://keithp.com/picolibc/. Accessed: 2022-
10-10.

[5] The Heartbleed Bug. https://heartbleed.com/. Ac-
cessed: 2022-09-05.

[6] zkInterface: SIEVE intermediate representation
(IR) proposal. https://hackmd.io/@danib31/
BkP9HBp2L. Accessed: 2022-10-10.

[7] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D
Ullman. Compilers: principles, techniques, & tools.
Pearson Education India, 2007.

[8] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthura-
makrishnan Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 2087–
2104, Dallas, TX, USA, October 31 – November 2, 2017.
ACM Press.

[9] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and
Peter Scholl. Mac’n’cheese: Zero-knowledge proofs for
boolean and arithmetic circuits with nested disjunctions.
In Malkin and Peikert [38], pages 92–122.

[10] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. SNARKs for C: Veri-
fying program executions succinctly and in zero knowl-
edge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages
90–108, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany.

[11] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. TinyRAM architecture
specification, v0.991. https://www.scipr-lab.org/
doc/TinyRAM-spec-0.991.pdf, 2013.

[12] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowledge
for a von Neumann architecture. In 23rd USENIX Secu-
rity Symposium (USENIX Security 14), pages 781–796,
2014.

[13] Nick Benton. Simple relational correctness proofs for
static analyses and program transformations. ACM SIG-
PLAN Notices, 39(1):14–25, 2004.

[14] Alexander R. Block, Justin Holmgren, Alon Rosen,
Ron D. Rothblum, and Pratik Soni. Public-coin zero-
knowledge arguments with (almost) minimal time and
space overheads. In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 168–197, Durham, NC, USA, November 16–19,
2020. Springer, Heidelberg, Germany.

[15] Alexander R. Block, Justin Holmgren, Alon Rosen,
Ron D. Rothblum, and Pratik Soni. Time- and space-
efficient arguments from groups of unknown order. In
Malkin and Peikert [38], pages 123–152.

[16] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K.
Jakobsen, and Mary Maller. Arya: Nearly linear-time
zero-knowledge proofs for correct program execution.
In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part I, volume 11272 of LNCS, pages
595–626, Brisbane, Queensland, Australia, December 2–
6, 2018. Springer, Heidelberg, Germany.

[17] Benjamin Braun, Ariel J Feldman, Zuocheng Ren, Sri-
nath Setty, Andrew J Blumberg, and Michael Walfish.
Verifying computations with state. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 341–357, 2013.

[18] Michael R Clarkson and Fred B Schneider. Hyperprop-
erties. Journal of Computer Security, 18(6):1157–1210,
2010.

[19] Dorothy E Denning. A lattice model of secure informa-
tion flow. Communications of the ACM, 19(5):236–243,
1976.

[20] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N Sheth. Taint-
droid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS), 32(2):1–29, 2014.

[21] Zhiyong Fang, David Darais, Joseph P Near, and Yupeng
Zhang. Zero knowledge static program analysis. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 2951–
2967, 2021.

[22] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Os-
trovsky, Xiao Wang, and Chenkai Weng. Constant-
overhead zero-knowledge for RAM programs. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS
2021, pages 178–191, Virtual Event, Republic of Ko-
rea, November 15–19, 2021. ACM Press.

6538 32nd USENIX Security Symposium USENIX Association

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0864
https://ffmpeg.org/
https://openssl.org/
https://openssl.org/
https://keithp.com/picolibc/
https://heartbleed.com/
https://hackmd.io/@danib31/BkP9HBp2L
https://hackmd.io/@danib31/BkP9HBp2L
https://www.scipr-lab.org/doc/TinyRAM-spec-0.991.pdf
https://www.scipr-lab.org/doc/TinyRAM-spec-0.991.pdf

[23] Galois, Inc. swanky: A suite of rust libraries for secure
computation. https://github.com/GaloisInc/
swanky, 2019.

[24] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mar-
iana Raykova. Quadratic span programs and suc-
cinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645, Athens, Greece, May 26–
30, 2013. Springer, Heidelberg, Germany.

[25] Joseph A Goguen and José Meseguer. Security poli-
cies and security models. In 1982 IEEE Symposium on
Security and Privacy, pages 11–11. IEEE, 1982.

[26] Oded Goldreich, Silvio Micali, and Avi Wigderson.
Proofs that yield nothing but their validity or all lan-
guages in np have zero-knowledge proof systems. Jour-
nal of the ACM (JACM), 38(3):690–728, 1991.

[27] Matthew Green, Mathias Hall-Andersen, Eric Hen-
nenfent, Gabriel Kaptchuk, Benjamin Perez, and Gijs
Van Laer. Efficient proofs of software exploitability for
real-world processors. Cryptology ePrint Archive, 2022.

[28] Jens Groth. On the size of pairing-based non-interactive
arguments. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 305–326, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany.

[29] David Heath and Vladimir Kolesnikov. A 2.1 khz zero-
knowledge processor with bubbleram. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 2055–2074, 2020.

[30] David Heath and Vladimir Kolesnikov. Stacked garbling
for disjunctive zero-knowledge proofs. In Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, pages 569–598. Springer,
2020.

[31] David Heath, Yibin Yang, David Devecsery, and
Vladimir Kolesnikov. Zero knowledge for everything
and everyone: Fast ZK processor with cached ORAM
for ANSI C programs. In 2021 IEEE Symposium on
Security and Privacy, pages 1538–1556, San Francisco,
CA, USA, May 24–27, 2021. IEEE Computer Society
Press.

[32] Allen D Householder, Garret Wassermann, Art Manion,
and Chris King. The CERT guide to coordinated vulner-
ability disclosure. Technical report, Carnegie-Mellon
Univ, Pittsburgh, PA, United States, 2017.

[33] Zhangxiang Hu, Payman Mohassel, and Mike Ro-
sulek. Efficient zero-knowledge proofs of non-
algebraic statements with sublinear amortized cost. In

Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages
150–169, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

[34] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Zero-knowledge from secure multiparty
computation. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 21–30,
2007.

[35] Jasper Vijn. GRIT: Gba raster image transmogrifier.
https://github.com/devkitPro/grit, 2022.

[36] Neil D Jones, Carsten K Gomard, and Peter Sestoft. Par-
tial evaluation and automatic program generation. Peter
Sestoft, 1993.

[37] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang.
Improved non-interactive zero knowledge with appli-
cations to post-quantum signatures. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 525–537, 2018.

[38] Tal Malkin and Chris Peikert, editors. CRYPTO 2021,
Part IV, volume 12828 of LNCS, Virtual Event, Au-
gust 16–20, 2021. Springer, Heidelberg, Germany.

[39] Payman Mohassel, Mike Rosulek, and Alessandra Sca-
furo. Sublinear zero-knowledge arguments for RAM
programs. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part I, volume
10210 of LNCS, pages 501–531, Paris, France, April 30 –
May 4, 2017. Springer, Heidelberg, Germany.

[40] Andrew C Myers. Jflow: Practical mostly-static in-
formation flow control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 228–241, 1999.

[41] Andrew C Myers and Barbara Liskov. A decentralized
model for information flow control. ACM SIGOPS Op-
erating Systems Review, 31(5):129–142, 1997.

[42] Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumen-
tation. In Proceedings of the 28th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, PLDI ’07, page 89–100, New York, NY, USA,
2007. Association for Computing Machinery.

[43] James Parker, Niki Vazou, and Michael Hicks. Lweb:
Information flow security for multi-tier web applications.
Proc. ACM Program. Lang., 3(POPL), jan 2019.

[44] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable com-
putation. In 2013 IEEE Symposium on Security and

USENIX Association 32nd USENIX Security Symposium 6539

https://github.com/GaloisInc/swanky
https://github.com/GaloisInc/swanky
https://github.com/devkitPro/grit

Privacy, pages 238–252, Berkeley, CA, USA, May 19–
22, 2013. IEEE Computer Society Press.

[45] John C Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings 17th Annual
IEEE Symposium on Logic in Computer Science, pages
55–74. IEEE, 2002.

[46] Andrei Sabelfeld and Andrew C Myers. Language-
based information-flow security. IEEE Journal on se-
lected areas in communications, 21(1):5–19, 2003.

[47] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Parametric shape analysis via 3-valued logic. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 24(3):217–298, 2002.

[48] Marc Shapiro and Susan Horwitz. Fast and accurate
flow-insensitive points-to analysis. In Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 1–14, 1997.

[49] Bjarne Steensgaard. Points-to analysis in almost lin-
ear time. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 32–41, 1996.

[50] Deian Stefan, Alejandro Russo, John C Mitchell, and
David Mazières. Flexible dynamic information flow
control in haskell. In Proceedings of the 4th ACM Sym-
posium on Haskell, pages 95–106, 2011.

[51] G Edward Suh, Jae W Lee, David Zhang, and Srinivas
Devadas. Secure program execution via dynamic infor-
mation flow tracking. ACM Sigplan Notices, 39(11):85–
96, 2004.

[52] Riad S Wahby, Srinath TV Setty, Zuocheng Ren, An-
drew J Blumberg, and Michael Walfish. Efficient RAM
and control flow in verifiable outsourced computation.
In NDSS, 2015.

[53] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios
Papadopoulos, and Charalampos Papamanthou. vRAM:
Faster verifiable ram with program-independent prepro-
cessing. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 908–925. IEEE, 2018.

6540 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Zero-Knowledge Proofs
	Information Flow
	Labeled Programs and Executions

	Partial Evaluation

	Cheesecloth Implementation
	MicroRAM
	Beyond TinyRAM

	MicroRAM Compiler
	Standard library
	Generating advice
	Preprocessing public inputs

	Witness Checker Generator
	Security

	Optimizations
	Public-PC segments
	Sparsity

	Encoding Vulnerabilities
	Memory unsafety
	Encoding dynamic memory allocation

	Data leakage

	Evaluation
	Memory unsafety in GRIT
	Memory unsafety in FFmpeg
	Leakage in OpenSSL
	Optimizations

	Related Work
	Conclusion

