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Brett Falk™
University of Pennsylvania

Abstract

We design and implement GigaDORAM, a novel 3-server
Distributed Oblivious Random Access Memory (DORAM)
protocol. Oblivious RAM allows a client to read and write
to memory on an untrusted server, while ensuring the server
itself learns nothing about the client’s access pattern. Dis-
tributed Oblivious RAM (DORAM) allows a group of servers
to efficiently access a secret-shared array at a secret-shared
index.

A recent generation of DORAM implementations (e.g.
FLORAM, DuORAM) have focused on building DORAM
protocols based on Function Secret-Sharing (FSS). These pro-
tocols have low communication complexity and low round
complexity but linear computational complexity of the servers.
Thus, they work for moderate size databases, but at a certain
size these FSS-based protocols become computationally inef-
ficient.

In this work, we introduce GigaDORAM, a hierarchical-
solution-based DORAM featuring poly-logarithmic computa-
tion and communication, but with an over 100 x reduction in
rounds per query compared to previous hierarchical DORAM
protocols. In our implementation, we show that for moderate
to large databases where FSS-based solutions become com-
putation bound, our protocol is orders of magnitude more
efficient than the best existing DORAM protocols. When
N =231, our DORAM is able to perform over 700 queries per
second.

1 Introduction

To an outside observer, traditional encryption schemes can
effectively hide the contents of a memory, yet encryption
alone does not hide the memory locations being accessed.
In many cases, the access pattern of a file system can leak
sensitive information, even when the contents are encrypted.

Oblivious Random Access Memory (ORAM), introduced by
Goldreich and Ostrovsky [21] is a cryptographic protocol that
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allows a client to read and write from memory while ensuring
the physical access pattern (which is potentially observable to
someone with sufficient access to the machine) is independent
of the virtual access pattern (the underlying data retrieved by
the client). Thus, when memory is accessed using an ORAM
protocol, it is mathematically provable that an observer learns
nothing about the client’s query pattern (beyond the number
of queries).

Oblivious RAM was developed in a model where a sin-
gle client wishes to store and retrieve sensitive data from an
untrusted data store. Originally, the untrusted data store was
conceptualized as untrusted RAM on the same machine as
the client, but today we usually imagine a client storing and
retrieving data from an untrusted cloud provider. In this set-
ting, encryption can hide the data from the cloud provider,
but ORAM is necessary to hide the access pattern]. Thus,
ORAM provides the strongest possible guarantee — hiding
both the data and the access pattern.

Although ORAM was designed in the client-server setting,
a slight variant of ORAM is also useful in the context of se-
cure multiparty computation, where a group of servers need to
access a secret-shared array at a secret-shared location. In this
setting, the secret sharing hides the data, but every participat-
ing server observes the physical access pattern. Distributed
Oblivious RAM (DORAM) provides a method for efficiently
accessing a secret-shared array at a secret-shared index, which
in turn makes it possible to do secure multiparty computa-
tion (MPC) in the RAM model (RAM-MPC). Almost all
existing MPC protocols work in the circuit-model where the
desired computation is first converted to an arithmetic/boolean
circuit before being executed securely. This conversion be-
comes costly (e.g. in the case of private database) since every
“random-access” is replaced with an O(memorySize) “MUX

'Note that most Searchable Symmetric Encryption (SSE) schemes allow
a client to efficiently query encrypted data stored in an untrusted cloud,
but they typically do not hide the access pattern from the cloud provider.
SSE schemes also target a different model, where data payloads may be of
drastically different size (in ORAM all entries are of size D) and queries may
return different number of “matches” [34]
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operation.” RAM-MPC allows random-access programs to
be executed securely without this costly conversion, which in
turn enables much more flexible and efficient secure multi-
party computation protocols [23,39].

1.1 Previous DORAMSs

The efficiency of a (D)ORAM protocol is usually mea-
sured by the communication complexity of each query.
Several recent DORAM protocols (e.g. [18, 32]) achieved
(O((k+D)log(N))) communication and computation. These
asymptotically-efficient protocols are built using the ORAM’s
“hierarchical solution”, introduced in [37,38], which we de-
scribe in Section 4. The downside of these protocols is that
they have high round complexity, requiring O(log(N)) rounds
of communication (with large hidden constants) per query. In
practice, network latency causes bottleneck in performance
of these solutions.

It has been noted that the high round complexity of
the hierarchical solution makes it unsuitable for practical
applications [49], so most DORAM implementations (e.g.
[11,16,23,25,26,43,45,46,49,53]) take a different approach.
These constructions focus on minimizing rounds while com-
promising on either asymptotic computation or asymptotic
communication costs. One common technique (most recently
applied by DuORAM [45]) for creating DORAM protocols
with low round complexity and low communication complex-
ity is Function Secret Sharing (FSS) [10, 19]. While FSS re-
sults in low communication complexity, FSS-based protocols
require O(N) computation, where N is a size of the database.
Thus, protocols like DuORAM shine in high-latency, low-
bandwidth networks at a small database size.

By contrast, our DORAM is designed for low-latency en-
vironments (such as of co-located servers in the same data-
center). This design choice is present in several current de-
ployments, such as Points of Presence (POP) of mutually
distrustful ISP machines present in the same Data Center in
support of BGP protocols [1,44]. These mutually mistrustful
yet co-located machines offer a viable alternative to data clean
rooms, which present a single point of failure (if security of
clean room is breached). As another example, Cybernetica’s
commercial offering “Sharemind” MPC platform is intended
to be run on three servers in nearby data centers [9]. In these
low-latency environments, FSS-based DORAMs quickly be-
comes a bottleneck of performance for large values of N. We
focus on this type of network environment because, these
type of low-latency networks are necessary for RAM-MPC,
which is one of the main motivations for building DORAM
protocols in the first place.”

2 Although MPC can run in high-latency environments [47], in a high-
latency environment MPC can only compute simple functions that would not
benefit from a RAM-model computation.

1.2 Our Contributions
1.2.1 Protocol contributions

In this work, we design and implement a high-performance
DORAM protocol in the (3,1)-security model, i.e., where
there are three semi-honest servers, and no two of them
collude. Two effective techniques for building (D)ORAM
protocols are “the hierarchical solution” (e.g. [4,5, 18,32])
which yields (D)ORAM protocols with low communication
complexity, but high round complexity, and FSS-based DO-
RAMs (e.g. FLORAM and DuORAM) which have very
low round complexity, but high computational complexity.
In this work, we show how to reduce the round-complexity
of the hierarchical solution and give round-efficient hierar-
chical DORAM that scales well beyond the limits of FSS-
based (D)ORAM protocols. Specifically, our DORAM re-
quires O((x? 4+ D)logN) communication and computation
per query. At the cost of practically significant round-cost,
we can easily tweak our protocol to matches the best-known
(D)ORAM complexity [4,5,18,32] of O((k+ D)logN) (Re-
mark 4.1). Our work is the first (D)ORAM protocol achieving
these asymptotics to be implemented.

1.2.2 Code contributions

Implementing our DORAM protocol required over 9,000 lines
of custom C++ code. Additionally, we provide lightweight
client implementation in Python and JavaScript, enabling
users to to utilize DORAM in the client-server setting.

In addition to the implementation of our DORAM protocol,
we contribute (1) a from-scratch competitive implementation
of the [3] general MPC framework which, in many settings,
is the fastest known 3-party MPC protocol.” (2) A custom
(3,1)-garbled circuits protocol built using EMP-toolkit’s 2-
party garbled circuits, which can be imported separately from
ABY3’s [42] large framework, and (3) The first tested cir-
cuit files of the LowMC block cipher [2], featuring a novel
optimization which reduces cache misses.

2 Preliminaries

Notation. We let NV be the number of elements in the DORAM
database, D the size in bits of each element, and k¥ be the
computational security parameter (in practice k = 128, in
theory kK = w(logN)), o the statistical security parameter (in
practice 2740 or 2780),

Secret sharing. Our DORAM protocol makes heavy use
of secret-sharing. Throughout this work, we use [-] to de-
note a “replicated” (or CNF [14]) secret sharing. In a 3-
party replicated sharing, a secret, x is split into three shares
x = x1 ®xy P x3, and participant x gets rwo of the shares —

3The implementation used to benchmark the results in the [3] is propri-
etary, and not publicly available.
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every share except x;. We use [-](*/) to denote a simple XOR-
2-sharing between participants P;, P;

Obliviousness: A computation is data-oblivious if its
control-flow is independent of the input data. An Oblivious
RAM protocol is a protocol for accessing an array (indexed
by 1,...,N), where the algorithm’s control flow, and in par-
ticular, the physical memory accessed, is independent of the
index being queried. ORAM protocols are designed to allow
a client to make a any sequence of queries and are often com-
posed of simpler data structures which are only oblivious on
distinct queries. A data structure (e.g. a hash table) is called
distinct-query oblivious if the control-flow between any two
sequences of distinct queries is indistinguishable, but a se-
quence with repeated queries might result in a control flow
that is distinguishable from a sequence of distinct queries.

Cuckoo Hashing: A cuckoo hash table is a distinct-query
oblivious data structure for storing key-value pairs [40]. The
cuckoo hash table consists of two arrays (“tables™) Ty and Tj
of size ¢-n, and two hash functions hg and Ay, h; : X — [cn].
A key-value pair, (x,y), can be stored in the table at location
ho(x) in Ty or hy(x) in Ty. It is possible that there is no valid
way to store a series of elements (e.g. if there are xg,x,x2
such that /’lo(xO) = ]’l()(xl) = ho(XQ) and 1 ()Co) =M ()Cz) =
hi(x3)). In this case we say there is a “build failure.” The
probability of a build failure is 1/poly(n), but if we allow a
small “stash” that can hold at most O(log(n)) elements, the
probability of a build failure becomes negligible in n [27,36].
In our DORAM (as in most prior hierarchical (D)ORAM
protocols) we use cuckoo hash tables as a building block for
our oblivious hash tables.

DORAM: A distributed Oblivious RAM protocol is a mul-
tiparty protocol that allows a group of participants holding
a secret-shared array [x;],...,[xy] to access the array at a
secret-shared index, [i], and obtain the sharing [x;], without
revealing any information about the query, i, or the database
X1,...,%,. The theoretical efficiency of DORAM protocol is
often measured by the amortized communication complexity
the servers spend to respond to a single query. In practice,
DORAM protocols may be bottlenecked the amortized com-
munication per query (e.g. [46]), the amortized computation
per query (e.g. [16,45]), or the amortized number of commu-
nication rounds per query (e.g. [18,32]). To compare between
these constructions targeting different points in the solution
space, we measure the practical efficiency of a DORAM pro-
tocol by the number of queries per second that it can process.

SISO-PRFs: A core building block of most DORAM pro-
tocols is a Shared-Input, Shared-Output PRF (SISO-PRF).
A SISO-PRF allows the participants to compute the secret-
sharing of a PRF output on a shared input, under a shared
key. Any regular PRF can be converted into a SISO-PRF by
implementing the PRF under a generic MPC protocol. Sev-
eral PRF protocols have been designed to be “MPC friendly”
(e.g. LowMC [2]). The basic idea which makes SISO-PRFs
useful for DORAM is that servers can generate a random,

shared key, [], and build a hash table where the cleartext tags
(of secret-shared payloads) are SISO-PRF evaluations of the
elements.

3 Secure Multiparty Computation

Secure multiparty computation (MPC) [13, 20, 50, 51] is a
protocol that allows a group of participants to securely com-
pute a joint function on their private inputs without revealing
any information beyond the output of the function. An MPC
protocol is called (n,t)-secure if the protocol involves 7 par-
ticipants, and remains secure if at most ¢ participants collude
(i.e., share private state). Our DORAM protocol works in the
standard (3,1) semi-honest security model, which assumes
that there are three semi-honest servers, and no collusion be-
tween servers. We use the (3,1)-“replicated” MPC protocol
of [3] as a building block. In one crucial place, we also use
a custom implementation of the (3,1) garbled circuit MPC
protocol of ABY3 [33] to reduce round complexity. Our DO-
RAM protocol is also an important tool in building efficient
RAM-MPC protocols, because it allows for MPC computa-
tion in the RAM model of computation, whereas most current
MPC protocols work in the circuit model.

3.1 The Arithmetic Black-Box Model

Our DORAM protocol makes use of several “basic” oper-
ations on secret shared values, e.g. addition, comparisons,
and equality tests. In our protocol descriptions, we use the
Arithmetic Black Box (ABB) model to abstract away the un-
derlying implementations of these operations. In practice, we
use our own implementation of [3]. A formal description of
the ABB model can be found in [18, 24].

In protocols, we wuse our ABB by invoking
Fapg.FunctionalityName, where FunctionalityName
makes it obvious what the functionality achieves. For
instance, we invoke [z] = Fapp-Mult([x], [y]) to multiply
secret shared values x,y and obtain secret shared value z s.t
z = x-y. Although the names are usually self-explanatory,
we provide a complete list of our ABB functionalities in
Appendix A.

4 Construction Overview

Section 4.1 describes known techniques which enabled build-
ing communication and computation efficient “hierarchical”
DORAM which takes many rounds of communication to exe-
cute a single query [18,32]. In Section 4.2 we motivate and
outline several novel techniques which enable us to signifi-
cantly reduce the round complexity of standard “hierarchical”
DORAMS. In Section 9, we show that our round-reduced “hi-
erarchical” DORAM, GigaDORAM, is efficient in practice.
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4.1 The hierarchical solution

OHTable We call an efficient, oblivious to build, distinct-
query oblivious, hash table an OHTable. Oblivious Hash Ta-
bles have three key functionalities: Build, Query and Extract.
FouTable-Build(X) creates an oblivious hash table storing the
elements X, where each element in X is unique. Once the hash
table has been built, FonTable-Query queries the table obliv-
iously, and Foprable-Extract extracts all elements currently
stored in the table which have not been queried.

The hierarchical solution. The key idea of the hierarchi-
cal solution is that it is fairly easy to build a distinct-query
OHTable — for example reading from a cuckoo hash table is
oblivious as long as you never query the same element twice.
With this insight, the hierarchical solution [38] can be seen as
a compiler for bootstrapping a distinct-query OHTable con-
struction into a full-fledged DORAM (that remains oblivious
even if the user makes repeated queries). The hierarchical
solution is a powerful tool, used to build many ORAM proto-
cols, e.g. [4,18,21,22,28,32,37,38,41], and is the technique
used by many of the most (asymptotically) communication
efficient (D)ORAM protocols.

A hierarchical ORAM is made up of a hierarchy of OHTa-
bles, Lo, .. ., LhnumLevels, Of geometrically increasing size. Usu-
ally, we have numLevels = O(logN) and the largest level,
LyumLevels> has size O(N). The smallest level, Ly, is a small
“cache”. The cache itself needs to remain oblivious even if
queries are repeated. But the cache is small, so it can be im-
plemented inefficiently without dramatically increasing the
cost of a given ORAM query. For this reason, the cache is
often set be constant sized (|Lo| = O(1)). This means that
the client can read the entire cache with each query (in time
O(|Lo|)) and this is clearly oblivious. Each larger level, L; for
i > 1 holds a distinct-query OHTable of size O (27).

When a user queries the DORAM, the user queries each
level of he hierarchy sequentially. If the item is found at
level i, a “dummy” element is queried at subsequent levels
Lit1,...,LoumLevels, and the retrieved item is reinserted into
the cache. To maintain obliviousness, if the requested item is
not found anywhere in the hierarchy, a dummy item is inserted
in the cache. When the cache (or any subsequent level of the
hierarchy) is full, all the elements from that level (and smaller
levels) are extracted and rebuilt into the next level of the
hierarchy. If |L; 4| > 2-|L;|, then level i+ 1, can accommodate
all the elements in levels 0,1,...,i. This periodic rebuild
schedule guarantees that no element is ever queried twice at
the same level between rebuilds, because once an element
has been found at level i, it is moved to the cache, and will
always stay in a level j < i, until level i is rebuilt. Since no
element will be queried twice in any given distinct-query
OHTable, the entire construction is oblivious, even if queries
are repeated. The formal proof that the resulting hierarchical
data structure is indeed an ORAM is now standard, and can be
found for example in [38]. With this rebuild schedule, level L;

is rebuilt every O(|L;|) queries. We outline our instantiation
of the hierarchical protocol in Figure 4 in Section 8.

4.2 Reducing numRoundsDORAM

Our protocol is based on a 3-party implementation of the
hierarchical solution (similar to [18]). Although the hierarchi-
cal solution has low asymptotic communication and com-
putation complexity, it has high round complexity which
can make it inefficient in practice.” This inefficiency stems
from the fact that every query to the DORAM forces a
query into every level of the hierarchy, Ly, . .., LoymLevels- Crit-
ically, these queries must be sequential, because if the item
is found at L;, the protocol must query dummy elements at
Lit1,...,LoumLevels- Thus the round complexity of a DORAM
query’ , numRoundsDORAM, can be written as

numRoundsOHTable - numLevels + numRoundsCache (1)

where numRoundsOHTable is the number of rounds to query
L; for 1 <i < numlLevels (which is fixed and independent of 7)
and numRoundsCache is the number rounds it takes to query
the cache, Ly. The main technical contribution of our work
is to optimize the hierarchical solution to reduce its round
complexity.

In light of Equation 1, we can divide our efforts to
reduce round complexity into four parts: (1) reducing
numRoundsOHTable via our novel OHTable, ShufTable, and
SISO-PRF parallelization, (2) generalizing the hierarchical-
solution with a tuneable parameter, baseAmpFactor, to re-
duce numlevels, (3) designing a new oblivious-cache data-
structure, SpeedCache, to reduce numRoundsCache, and (4)
applying additional engineering/implementation-level opti-
mizations.

With these design improvements, we are able to signifi-
cantly reduce the round complexity of the hierarchical solu-
tion, while maintaining similar asymptotic overheads to the
theoretic state-of-the-art, [18]. In addition to its low asymp-
totic complexity and low rounds-per-query, we show that our
DORAM design is actually quite fast in practice (Section 9).

We briefly explain each of our optimizations below and
expend on them in Section 5, 6 and 7 respectively.

(1) Reducing numRoundsOHTable: ShufTable & SISO-
PRF parallelization. To reduce numRoundsOHTable we
present a novel, standalone OHTable, called ShufTable, with
reduced round complexity. We also devise a method to par-
allelize the sequentially-dependent SISO-PRF evaluations
needed to query each level of the hierarchy.

4The (3,1)-DORAM of [18] and the 2-server ORAM of [32] use the
hierarchical solution to achieve amortized communication complexity of
O((x+ D)logN). We remark, however, that both these protocols have high
round complexity, and have never been implemented.

SDORAM also incurs round costs when building a level L; and extracting
from a level L;. Since the protocols are only invoked every |L;| queries and
have small, constant, round costs (where our final protocol has |Lg| = O(x)),
their round cost has negligible impact on the performance of DORAM.
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The key ideas in these optimizations revolve around how
to handle queries for elements that are not in the table. This
type of query happens frequently in a hierarchical ORAM,
because although each element is only stored at one level of
the hierarchy, each ORAM query results in a query to the
OHTable at every level of the hierarchy. Prior solutions for
handling these “dummy”” queries were round-intensive (e.g.
the Oblivious Sets in [18]), so we develop a new method.

As in prior works, our OHTable, ShufTable inserts dummy
elements (d;, L)...,(d;, L) along with the real elements, and
retrieves a dummy when the queried element is not stored
in the table. Assuming the SISO-PRF has already been eval-
uated, ShufTable requires only 5 rounds of server-to-server
communication per query. The main ingredient that enables
this round-savings is a novel “persistent shuffling” trick (Sec-
tion 5.1)° which allows to efficiently evaluate a random per-
mutation under MPC. Our OHTable, like those in prior DO-
RAM constructions, requires an equality-check on secret-
shared values. We implement this equality check using a
custom implementation of a 3-party garbled circuit [33]. This
increases the asymptotic communication of each level’s query
from O(k) to O(k?), but decreases the round complexity at
each level by O(logx). In practice, when k € {128,256}, this
dramatically improves real-world performance.

More details can be found in section 5.2 and the protocol
is given in Figure 2.

Remark 4.1. If one were focused on optimizing asymptotic
communication complexity, this step could be replaced by an
constant-overhead-MPC-based equality check (e.g. using [3]),
which would give us best known (same as [18,32]) asymptotic
communication and computation complexity O((k + D)log).

In the hierarchical solution, each a query into the OHTable
at level i, requires evaluating a SISO-PREF, but the query into
table L; depends on whether the item was found at a lower
level. Thus, hierarchical based (D)ORAMSs wait until after
L;.Query is performed to evaluate the SISO-PRF for L.

With ShufTable and most other OHTables, there are essen-
tially two types of queries that can be made at any level a
“real” query (if the desired element has not yet been found) or
a “dummy” query (if the element was found at a lower level).
A simple observation we make is that we can evaluate [[r;],
the PRF evaluation needed to make a real query at L;, and
[di], the PRF evaluation needed to make a dummy query at L;,
in parallel for all i € [numLevels]. Then, after L; is evaluated
and it is determined under MPC whether the queried element
was found, we can multiplex between [r;1+1] and [di41] un-
der MPC, which takes only one round. Since the outputs
of the SISO-PRF are secret-shared and since multiplexing
in MPC hides whether the table is queried for a dummy or
a real element, the DORAM remains oblivious. This opti-
mization decreases the rounds per query dedicated to evalu-

6 [30] presents various efficient shuffling protocols, but none of their
shuffles allows for the efficient evaluation of a reverse permutation at a point.

ating the SISO-PRF from numRoundsPRFEvalnumLevels to
numRoundsPRFEval/ + numLevels.

Unfortunately, the above change increases communica-
tion per query by ~ 2x. To resolve this issue, we upgrade
ShufTable with a “just-in-time” mechanism to detect if an
element is stored in the table, replacing the retrieved element
with a dummy if necessary. Due to this mechanism only [r;]
is needed to query the OHTable at L;.

In practice this optimization is noticeable, saving ~ 100
rounds of interaction per query.

To further reduce rounds, in practice, we parallelize the
query of the cache, Ly with the evaluation of the PRFs for
Ly,...,LyumLevels- Note that if we knew multiple queries in
advance, we would be able to further batch evaluations, but
we do not assume that in this work.

Overall, these optimizations have a significant im-
pact of the efficiency of our protocol. We decrease
numRoundsOHTable from the 45 of [18] to amortized 5 +
numRoundsPRFEval/numLevels = 7. Additionally, we re-
duce the number of expensive SISO-PRF evaluations neces-
sary by a factor of four when compared to [18] which is the
state-of-the-art in low SISO-PRF hierarchical DORAMs.

(2) Generalizing the hierarchical solution to reduce
numLevels. Above, we described our techniques for reduc-
ing the round complexity of queries to individual OHTables.
Yet in the hierarchical solution, every ORAM query requires
querying each level of the hierarchy sequentially. Thus a hier-
archy of depth numLevels immediately adds a multiplicative
factor of numLevels to the round complexity of the protocol.
Since round complexity is one of the main performance bot-
tlenecks in (D)ORAM protocols, there is a strong motivation
to reduce numLevels.

In most hierarchical (D)ORAMs, level i in the ORAM hier-
archy had size 2/ - |Lg|, resulting in numLevels = O(log, N).
In Section 6 we show that by introducing a new parameter,
baseAmpFactor > 2, and setting |L;;1| = baseAmpFactor -
|L;|, we can reduce the round complexity of the protocol
with minimal impact on the communication complexity,
which we find to be less expensive in practice. This sim-
ple change immediately reduces numLevels from log,(N)
to log, (N)/log, (baseAmpFactor). While this modification
is conceptually simple, it requires a more nuanced rebuild
schedule.

Empirically, we find that the optimal value for
baseAmpFactor is much greater than 2. For instance,
at N =230 and the network conditions we test we found that
baseAmpFactor = 128 is optimal. That is, each level is 128
times larger than the previous (smaller) level.

(3) Optimizing the cache: SpeedCache. In the hierarchi-
cal ORAM solution, the top level (i.e. Ly, the “cache”) needs
to support oblivious accesses (compared to lower levels in
the hierarchy which only need to be distinct-query oblivious).
For this reason, Ly is usually implemented as a simple read-
all-to-read, append-to-write array. This is obviously oblivi-
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ous, but its query complexity increases linearly with the size
of the cache. In particular, if the cache stores ¢ key-value
pairs (([x1], [v1]),-- -, ([x], [:])), querying the cache is of-
ten implemented by sequentially checking whether the query,
[x], is equal to [x;] (costs O(loglog|x;|) sequential rounds)
and if so updating return value to [y;]. Unfortunately, this
simple implementation has multiplicative depth 7, meaning
numRoundsCache = O(|Ly| - loglog |x;|).

In Section 7, we outline a simple Cache protocol Speed-
Cache that allows us to query the cache in [loglog|x;|]+ 1
rounds of communication (which is independent of |Lo|).
Since our SpeedCache protocol has a round complexity that
is independent of the cache size, we are somewhat free to in-
crease the cache size, which has other benefits (e.g. reducing
numLevels by log, |Lo|).

(4) Gadget implementations: Minimizing the round com-
plexity of our SISO-PRF is crucial for the overall efficiency
of our protocol, so we provide the first circuit file of the
LowMC [2] block cipher within our custom MPC implemen-
tation. Our circuit file features a novel optimization we call
“wire threading” that allows us to reduce the number of L1-
cache misses during evaluation. We multithread the MPC
evaluation of LowMC, allowing us to evaluate the PRF 6.7M
times per second. See Appendix C for further details.

We adapt the Alibi reinsertion technique [17] for “caching
the stash” to the distributed setting, and we provide the first
implementation of Alibi. See Appendix D for further details.

5 ShufTable: reduce numRoundsOHTable

In this section, we present ShufTable, a novel, oblivious
distinct-query, hash table (OHTable). With ShufTable we
have numRoundsOHTable ~ 7 (compared to [18] which re-
quired 45 rounds of communication for each OHTable query).

In Section 8 we use the hierarchical solution and [17] to
compile ShufTable into an efficient DORAM. The resulting
DORAM requires only a constant number of rounds per query,
whereas prior hierarchical DORAM protocols (e.g. [18]) had
a round complexity that scaled with N.

In Section 5.1 we present the ‘“Persistent shuffle proto-
col,” a method that enables Ilspufrubie, the new OHTable
protocol we present in Section 5.2. Leveraging features of
Ishurrable-Query, in Section 5.3 we show how to amortize the
round cost of SISO-PRF evaluations across L, ..., LyumLevels-

5.1 Persistent shuffle Protocol

Like many DORAM protocols, our DORAM construction
relies on an efficient oblivious shuffle, which allows players
holding a secret shared list, [X] = [Xi],...,[Xx] to shuffle
[X] under some random permutation 7 € S, such that nothing
about T is learned by any player.

As presented in [30], there is an efficient, linear-
communication (3,1)-oblivious shuffle which works as fol-

lows. The players Py, P, P; reshare [X] to Py, P>, who shuffle
their secret shares according to some random agreed upon
permutation, and reshare the shuffled list to P>, P;, who shuf-
fle and reshare to Ps, P; who shuffle and reshare to Py, P,, P3.
Since the composition of permutations is not known to any
single player, the final permutation is oblivious. Unfortunately,
at the end of the [30] protocol, information about the permu-
tation, T, is not accessible to the players. In our Persistent
shuffle (described in Figure 1), we augment the shuffling pro-
tocol to also output a secret sharing of 7.

Cost of the Persistent shuffle protocol. The Persistent
shuffle protocol requires 4 rounds of communication and
each round requires n(|X;| + logn) bits of communication.
For comparison, shuffling n elements using Persistent shuffle
is 6 times less bandwidth than evaluating a SISO-PRF (using
LowMC) on those elements, so shuffling contributes only
minimally to the overall communication cost of our DORAM.

Lemma 5.1. Persistent shuffle (described
in Figure 1 fulfills the functionality
Fapg-ObliviousShuffle( o | DistributeShuffle = True)

where the players input [X] and receive as output [n(X)]
and [K] = [Ki],...,[Ky] s.t =(i) = K;. It also guarantees
that & is uniformly sampled from S, and unknown to all
players.

Proof. In step 1, the 3 participants reshare the shares of the
vector X to and the indices L= (1,2,...,n) to two participants.
By the security of Fapp.ReshareReplicatedTo2Sharing, each
individual participant learns nothing about X (in fact each
player’s shares are uniformly random). In steps 2 & 3, pairs
of players locally shuffle their shares and reshare to the next
pair. In this case, the security of Fapp.Reshare2To2Sharing
ensures that each player learns nothing about the underlying
data (the shuffled values). As in step 1, each player receives
uniformly random shares and nothing else. In step 4, pairs of
players call Fapp.Reshare2SharingToReplicated, and again,
each player’s view of the protocol is a collection of uniformly
random shares.

The final list is a sharing of n(X), where T = 73, ©
T(23) © Ty 2. Every player knows two of the three permuta-
tions, so the resulting permutation is uniformly random from
the perspective of any player. O

5.2 ShufTable construction

In this section, we describe and evaluate Ilspufrable . Build and
IIshurrable -Query, the component of our new Oblivious Hash
Table ShufTable. The pseudocode for Protocol ITshysraple 1S
presented in Figure 2.

Parameters. ITsh,rraple is parameterized by N, the size of
the address space, D, the size of each payload, k, the com-
putational security parameter, n, the number of real elements
stored in the table, numDummies, the number of dummy el-
ements stored in the table, and stashSize, the minimum size
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Setup: Each pair of players F;, P; agree on a random permutation 7y; j, € S,. The players also generate a sharing [L] =

[11,-.., ]

Protocol:

1. The players reshare to the first shufflers, calling
[X]("?) = Frpp.ReshareReplicatedTo2Sharing([X], {P, P»})

and
[L]®Y) = FApp.ReshareReplicatedTo2Sharing([L], {P3, P; })

2. Shuffle & Reshare to next shuffling pair #1:

(@) Py, P let [X'](12) = [T(1.2) (X)](1?). Note that since P;, P; hold [X]("/) they can obtain [n(X)](*/) for a known &
by locally shuffling their list of secret shares. Py, P, reshare X’ to the next shufflers, calling

[X"]?3) = F,pp.Reshare2To2Sharing([X']""?) {P,, P3}).
(b) P3P let [L']GD) = [7:{*311 }(L)](M). Py, P, reshare L' to the next shufflers, calling

[L"]?3) = Fapp Reshare2To2Sharing([L']*V), {Py, P3})

3. Shuffle & Reshare next shuffling pair #2:
(@) P, Pslet [X")23) = [M12,33 (X")]?3). Py, P; reshare X" to the next shufflers, calling

[X"]®1 = F4pp.Reshare2To2Sharing([X']>%) {P;, P }).
(b) P, Pslet [L"]>3) = [71:{*21_3} (L"))>3). Py, P; reshare L” to the next shufflers, calling
m(1,2) _ . m(1,2)
L")\ = Fapp-Reshare2To2Sharing([L"]\" { Py, P, }).

4. Shuffle & Reshare back to all players #3:

(a) P3P let [X”’](3=1) = [n{3’1}(X”)](371). P;, Py reshare X" back to the entire group, calling
[X""] = Reshare2SharingToReplicated([x""]3:1)).

(b) PPy let [L")01:2) = [n{_llz}(L”)](l*z). Py, P, reshare L back to the entire group, calling
[L""] = Reshare2SharingToReplicated([L"]")).

Output: The output of the protocol is [x(X)], [t~ (L)].

Figure 1: The Persistent shuffle protocol, Fapp.ObliviousShuffle([X], DistributeShuffle = True)
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Ishufrable-Build: The players (refers to Py, P>, P3) hold ([X1],[Y1]),- - -, ([X:], [¥u])-

1. The players create dummies to satisfy queries that were not found, letting [¥;] = [ L], [Xi] = [L] fori € {n+1,...,n+
numDummies}.

2. The players generate a k-bit secret-shared PRF key, evaluating [k] = Fapp.RandomElement(k).

3. The players create pseudorandom tags for all the addresses, evaluating [Q;] = Fapp.PRFEval([],[X;]) for i €
{1,...,n} and [Q;] = [L] fori € {n+1,...,n+numDummies}.

4. Players obliviously shuffle the lists before revealing O to P to hide information about the elements in the table/stash,
executing [Q], [X],[¥], [/] = Fasg-ObliviousShuffle([Q], [X], [¥], DistributeShuffle = True) (c.f. Section 5).

(a) The players locally create [DI;] = [jn4:] for all i € [numDummies]. If DI; = k, that implies X; =n+iand ¥; = L.
That is, the kth element of (X,¥) is the ith dummy. We use DI in step 4 of query to return a dummy if needed.

5. Revealing Q; to P; so that it can build a CHT U Stash containing X; using fast, local random accesses without learning
X;, the players call Q; = Fapp.RevealTo(P}, [Q;]) fori € {I,...,n+ numDummies}

6. P locally constructs the Cuckoo hash table and list of stashed indices CHTUStash =
BuildCHTWS((Qilli)e|n), stashSize). CHTstores Qf|i for n — stashSize such different i’s where || represents
bit-wise appending.

(a) Py secret shares CHT between P> and Ps, running [CHT](??) = #,pg . InputTo2Sharing(CHT, P>, P3). Py, P; will
use CHT to satisfy queries.

(b) P sends Stash, a cleartext list of stashSize-many indexes, s.t. i € Stash indicates that ([X;], [¥;]) is stashed. If
i € Stash then X; # L. Output X*" = {[X;] }icstash and Y@ = {[¥;] }icstash. These will be reinserted into the
cache when Ilghyfraple.Build is called as part IIporam (Figure 4).

7. The players shuffle the data under under a permutation, %, only known to P, and P3, executing [[}? | [[f/ ] =
Fapg.ObliviousShuffle(([X],[¥]), RevealTo = {2,3}). This “rebalances the information asymmetry,” allowing P>, P
to guide P; to respond to queries (see step 5 of query) s.t. P; cannot use his privileged information from IIgpyfraple.Build,
not learning anything about the query.

Ishurrable-Query: The players hold [Qguery] = Fans.PRFEval([X;], [k]) (Section 5.3). Each step corresponds to a single
round of communication. We pack parallelizable/silent instructions into the same step.

1. First, the players compute [r] = Faps.RandomElement (k) (silent generation of random K-bit secret share) and then
compute [g] = [Qquery] + [useDummy] - [r] (one MPC multiplication). useDummy is an artifact of the hierarchical
solution that indicates if X; was already found in previous level.

2. The players reveal enable Py, P; to query [CHT](?3) by revealing ¢ to them, evaluating, ¢ = Fagp.RevealTo([¢], P>, P3).

3. Py, Py input [CHT[h;(¢)]]®?), [CHT[h2(q)]]®?) their secret-shares of locations in CHT where ¢ might be stored, calling
I, | i,] = Fashare-Reshare2to3WithoutCheck ([T [, (Q)]]) for b= 1,2.

4. The players evaluate QueryCircuit using (3,1) garbled circuits (see [33]), evaluating [ =
Fagss.EvalCircuit(3,1)GC(QueryCircuit, Inputs = [} ], [#],[45]. []. [4]. [Dl]), revealing | only to P,,Ps.
QueryCircuit returns 7] if ¢} = g, returns i, if Q5 = g, and returns DI, otherwise.

5. P»,P; send j = 7i(l) to P|. The parties set Youput] = [[f/]ﬂ and append j to list queriedDblhatldxs

IshufTable-EXxtract: Output ([[)?,ﬂ, [[1?,]}) for i € ([n + numDummies] — queriedDblhatldxs)

Figure 2: Ishysrable. Build and Igpyfraple.Query.
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of a stash in cuckoo hash table storing n elements such that
the probability of a build failure is less than our statistical
security parameter, G.

On each query, we must be able to retrieve either (1) the ele-
ment being queried or (2) a new dummy element that has never
been queried (if the desired element is not in the OHTable).
Hence, the number of queries to each ShufTable is bounded
by min{numDummies, n}. Thus we set numDummies ~ n.

Since our construction uses a Cuckoo hash table (CHT), it
as also implicitly parameterized by c, the number of slots in
CHT table, and ¢, the number of such tables. Instantiations of
these variables are discussed in Section 9.

Input-Output behavior of Ilgpyfraple-Build. The parties,
P, Py, P, input E = {([X1],[V1]),---, ([Xu],[¥a])} where
n < N to Ishufrable-Build. Protocol Ighysraple.Build, outputs
secret shares of CHT held by Py, P5, [CHT]23), and [X], [¥].
special shuffling of the elements under a permutation some-
what known to P, P3 (Step 7 of Ilshufrable-Build). The data
structure, ShufTable, stores a subset of the elements sent
to the build protocol A C E. Ilshurrable-Build also outputs
Stash = E '\ A, with |Stash| < stashSize. In the greater DO-
RAM protocol (Section 8), Stash will be inserted into the
cache, Ly. As long as Xi,...,X, are distinct (as assured
by the hierarchical solution), the parties learn nothing of
(X1,11),...,(Xn,Y,) or which elements belong to Stash.

Input-Output behavior of Ilghufrable-Query. For the #’th
query where 1 < ¢ < numDummies, the players input [x;]
t0 IshufTable-Query. Ishurrable-Query, outputs [Y;] if x; = X;
for (X;,Y;) € A and [_L] otherwise (and outputs [found] ac-
cordingly). The security guarantee is that for any sequence of
distinct queries, x1,...,X;, P, P>, P; do not learn whether Y;
or L was outputted, j, or Y.

Performance analysis. The cost of [Tgpyfrable.Build is dom-
inated by the cost of n SISO-PRF evaluations.” With our im-
plementation of LowMC, this requires a total of 2304 bits
of communication at ¥ = 128 and the computation of many
XORs. Despite this cost, ITshufrable-Build is very efficient,
since via multi-threading LowMC (Section C) we are able to
evaluate 6.7M SISO-PRFs/s in our tests.

The time needed to evaluate ITghyrraple-Query is driven by
its round complexity, since we must sequentially invoke this
protocol numLevels times during ITporam-Query. Each step
of the query requires equality checks on secret shared ele-
ments, which we execute using 3-party garbled circuits. ®

Lemma 5.2. Ispsrupicimplements the distinct-query oblivi-
ous hash table functionality.

Proof. We begin by showing that the view of each player
during IIspyfrable.Build is independent of the input data X, Y.

"For comparison, [18] requires more than twice as many SISO-PRF
evaluations (2n + numDummies) for each OHTable build.

8We use 3-party garbled circuits rather than the (constant-round) 3-party
BMR protocol [8] implemented in EMP because 3-party garbled circuits are
significantly more bandwidth efficient than BMR. 3-party garbled circuits
require honest majority, while BMR does not.

During Ishyfrable.Build, P>, Pz only receive secret shares and
operate on those secret shares using MPC. Since secret shares
are sampled from a (individually) uniformly random distribu-
tion, P», P3’s views are independent of underlying data X,Y.

During ITghyfrable.Build, other than operating on secret
shares, P; receives the list O in the clear. By assumption,
X has no repetitions, so the PRF “tags” Q appear uniformly
random and independent to a computationally bounded ad-
versary. Since Q is a uniformly random shuffle of Q which
Py does not know, P; cannot decipher any information about
X from seeing Q. Moreover, when deciding which elements
to place in Stash (by deciding on which indexes to place
there), P, cannot tell which elements from (X;,Y;) he is plac-
ing in stash (except that they aren’t dummies since Q; # ).
Thus, P;’s view is independent of X, Y and the stash contains
uniformly random real elements.

Next we show that in ITgyyfrape.-Query the view of each
player is independent of the query X;, the output, or X,Y pre-
viously stored. During ITshyfrable-Query, other than operating
on secret shares, P», P; learn g in the clear. ¢ is either a random
or a pseudorandom element which is thus computationally
independent from P,, P3’s view (because P», Pz did not see
O which P; used to build CHT UStash). Thus, P>, P3 do not
learn anything by seeing g. Additionally, P>, P; learn /, an
index into the A-shuffled list which depends on X;’s presence
at the level (see step 4 of Ilshurrable.-Query). Yet, since [ is
entirely determined by 7, which P, P3 don’t know, and more-
over, since they do not know which indexes of ¥ correspond
to dummies, / is sampled from a distribution indistinguishable
from random relative to the individual view of P», P3.

Finally, during ITshysrable-Query, other than operating on
secret shares, Py learns / in the clear. Yet, although P; knows
which elements from ¥ are dummies, due to an additional
oblivious shuffle, he does not know which elements of ¥ are
dummies (or were stashed, or were stored in the table, etc).
Hence [ is independent of P;’s view.

Thus, on distinct queries and when i # j] — X; # X,
P, P, and P5’s views are independent of the data stored and
queried, and hence ShufTable is distinct-query oblivious. [l

5.3 Parallelizing sequential SISO-PRF evalua-
tions

In the hierarchical ORAM construction, each query requires
searching every level in the hierarchy, and the OHTable query
at a given level requires evaluating a SISO-PRF.

In previous constructions (e.g. [18,32]) these SISO-PRF
were evaluated sequentially, because when performing the
OHTable query for an index, x, at level i, the SISO-PRF input
will be [x] or a dummy element depending on whether x was
found in a smaller level of the hierarchy.

Since there are only two possible SISO-PRF inputs at each
level, rather than evaluating the PRF sequentially, the players
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could evaluate both the “dummy query”
[[aiﬂ = "TABB.PRFEVZJ.I([[N—‘F tiﬂ, [[k]])

and the “real query”

[[blﬂ = .q’—ABB .PRFEval( [[Xqueryﬂa [[k]])

foralli € {1,...,numLevels} in parallel before querying L,
then multiplex the result using MPC (which costs only a
single round) before evaluating L;.Query.

This trick will reduce the round complexity, but requires
doubling the number of SISO-PRF calls per query. Since
round-complexity is often the bottleneck, this improves prac-
tical performance.

In our protocol, however, we can leverage the design of
ShufTable to parallelize the SISO-PRF calls without increas-
ing communication.

The crucial observation is that we have designed ShufTable
to require only [b;], regardless of found. That is, since pre-
vious OHTables stored and retrieved their dummy elements
from some data structure, obtaining the index of each dummy
from a; was needed. We observe that it is not necessary: using
the (3, 1) garbled circuits of [33] we “just-in-time” detect if ¢;
is stored in the table and output a dummy index if necessary
(ITshufrable-Query, step 4). Thus, if found;_;, for ShufTable
it is sufficient to set ¢; to be some uniformly random x-bit
value r (Ilshufrable-Query, step 1), which, except from with
negligible probability, will not be stored in the table and will
yield the desired dummy-output. This “just-in-time” trick is
largely enabled by the Persistent shuffle trick we present in
Section 5.1.

Thus to parallelize the SISO-PRF, we evaluate [b;] =
Fass-PRFEval([Xguery ], [k]) for all i € {1,...,numLevels}
in parallel before querying L;. Hence we can parallelize the
SISO-PREF evaluations across the table without increasing the
total number of SISO-PREF calls. This can be seen in Step 1.b
of IIporam-ReadAndWrite, Figure 4.

This optimization reduces numRoundsDORAM by
(numLevels — 1) - numRoundsPRFEval. In our implementa-
tion numLevels ~ 5 and numRoundsPRFEval = 9, so this
saves us ~ 45 rounds per DORAM query.

6 Reducing the depth of the hierarchy

In most hierarchical ORAM solutions, each level is twice
as large as the level above it, i.e., |Li1i| = 2-|L;|]. Since
we must have |LyymLeves] = O(N) and generally |Lo| is
a small constant, this means that numLevels = O(logN).
In our protocol, we introduce a tuneable “base amplifi-
cation factor” denoted baseAmpFactor, and set |Li| =~
baseAmpFactor - |L;|. This change reduces numLevels by a
factor of log,(baseAmpFactor) (but increases communica-
tion by a factor of baseAmpFactor/log(baseAmpFactor)).

In our testing, we find that increasing baseAmpFactor dra-
matically improves practical performance because latency
is significantly more time-expensive than bandwidth (Sec-
tion 9). For instance, for GigaDORAM we found that in-
creasing baseAmpFactor with N to maintain that |Lo| ~
2% and numlLevels ~ 4 yielded the best performance. For
N = 230, this meant setting baseAmpFactor = 27, which is
much larger than all previous protocols, which implicitly set
baseAmpFactor = 2.

In  most hierarchical ORAM schemes (where
baseAmpFactor = 2), when levels Ly,...,L; are full,
they are reshuffled and rebuilt into L;; | Since

i

Y 1Ll = Y 2ILo| = (27~ 1) |Lo|

Jj=0 j=0

this rebuild schedule works nicely when baseAmpFactor = 2.
In our generalization, we also rebuild levels when they are
full, but for baseAmpFactor > 2 we have that
i
baseAmpFactor' ™! . |Lo| > Z baseAmpFactor/|Ly|
j=0

thus, we must slightly adjust our rebuild schedule. In particu-
lar we must accommodate for “partial rebuilds.” We formalize
this procedure in protocol IIporam.Rebuild presented in Sec-
tion 8, Figure 4.

Since rebuilding level i+ 1 costs
O (x-|Lol- baseAmpFactorHl) communication  and
computation, the total amortized (re)build cost of the
DORAM is at most

log(N) .
log(baseAmpFactor) 0 ((K+D) . |L0| . baseAmpFactorlH)

= |Lo| - baseAmpFactor’

(x+ D) - baseAmpFactor - log(N)
=0
log(baseAmpFactor)

Since the original amortized (re)build cost of all O(logN) lev-
els of the DORAM is O ((k + D) log N), the cost of decreasing
numLevels by a factor of log, (baseAmpFactor) is a factor of
O(baseAmpFactor)/log(baseAmpFactor)) increase in com-
munication and computation.

7 SpeedCache: Larger, optimized cache

tL)

Most hierarchical (D)ORAMs use a constant-sized “cache,
i.e., |[Lo| = O(1). Since each ORAM query performs a lin-
ear scan over the cache (implying a linear communication,
computation, and number of rounds), a large cache can sig-
nificantly hurt both asymptotics and practical performance.
In our protocol, we use the Alibi reinsertion technique to
“cache-the-stash” from Cuckoo hash tables at each level of the
ORAM hierarchy. This means that we must have a moderately
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large cache size, otherwise reinserting the stashes would fill
the stash and trigger an infinite chain of table rebuilds.

Thus we increase the cache size to |Lg| = Q(stashSize).
This has the additional advantage of eliminating “small” levels
from the ORAM hierarchy since |L;| > |Lo| for every level in
the hierarchy.’

In order to facilitate our new, larger cache without hurting
round complexity, we create, SpeedCache, that can be queried
using O((D+1ogN) - |Ly|) communication and only requires
[loglog N + 1 rounds of communication (that is, independent
of the number of elements in the cache — only dependent on
the size of the address space). We implement our SpeedCache
protocol in the 3-party MPC framework of [3]. We present
the protocol, IlspeedCache, in Figure 3.

Since the SpeedCache protocol just uses MPC to compute
on secret-shared values, the security of the SpeedCache pro-
tocol follows immediately from the security of the underlying
MPC protocol.

Experimentally we find that it is optimal to maintain
|Lo| =~ 2% a constant, rather than scaling |Lo| with N. Note
that 2! > log(N) for any conceivable value of N. Concretely,
setting |Lo| ~ 2° as we do in practice allows us to reduce
numLevels by =~ 8/log,(baseAmpFactor). We found that
changing |Lo| useful for adapting the performance of GigaDO-
RAM to different network settings. For instance when latency
is high, a larger |Ly| yields better performance.

An alternative approach would be to implement the triv-
ial linear-scan cache (see Appendix B) via garbled circuits
in a constant number of rounds. When |Lo| ~ 2'0 we esti-
mate this would make Ly.Query up to 100x slower than our
implementation of SpeedCache.

8 Full DORAM protocol ITpgram

We give the GigaDORAM protocol, IIporam, in Figure 4.
Round-complexity: With our optimizations the final round
complexity of [Iporam.Query is

numRoundsDORAM =
numLevels - numRoundsOHTable
+ max (numRoundsCache, numRoundsPRFEval) + 1
= numLevels- 5+ max (loglog(N) +2,9) +1
~554+94+1=35 (when N = 231)

The term max (loglog(N)+2,9) occurs because Ly.Query
(loglog(N) + 2 rounds) and the SISO-PRF pre-evaluations (9
rounds — see Section 5.3, Appendix C) can be evaluated in par-
allel. Hence, compared to the over 2500-round-per-query [18]
construction we draw inspiration from, GigaDORAM has a

9Because cuckoo hash tables have higher build-failure probability when
the table size is small, many hierarchical (D)ORAMs had two types of
tables, one for the “small” levels and one for the “large” levels (e.g. [18,32]).
Because our L is sufficiently large, we do not incur this complexity.

~ 70x reduction in round complexity. Our overall commu-
nication and computation complexity is comparable to that
of [18,32] and previous hierarchical DORAMs.

Lemma 8.1. Protocol Ipograny securely realizes the DORAM
functionality in the semi-honest (3,1)-setting.

Proof. Protocol IIporawm is a straightforward application of
the hierarchical solution to our building blocks, IshufTable
and ITgpeedcache in the distributed setting. The security of the
hierarchical solution is standard (see e.g. [38]).

The proof proceeds as follows. Since ShufTable will be
oblivious as long as no queries are repeated, we must show
that even if the client makes repeated queries into the DO-
RAM, no OHTable is ever queried twice between rebuilds.

To see this, suppose the user makes a series of queries,
X1,...,X% and x;, = x;, with i; <. Suppose x;, was initially
at level £. In this case, after query x;,, the key-value pair
(xi,,yi,) will be inserted into the cache. As later queries come
in and the cache becomes full (x;;,y;+1) may get pushed to
lower levels of the hierarchy. After sufficiently many queries,
levels i =1,...,£—1 will be rebuilt into level /. If query x;,
happens before level £ is rebuilt, x;, will be found at a level
above level ¢, and at level ¢ a (new) dummy element will be
queried. If query x;, happens after level £ has been rebuilt,
then at this point x;, has never been queried against this new
OHTable. O

9 Evaluation

In this section we evaluate the practical performance of Gi-
gaDORAM and compare its performance to previous DO-
RAM implementations. To make the comparisons fair, when-
ever possible we evaluated on the same hardware setup. To
make our results easily reproducible, we test on AWS, using
cSn.metal instances with 72vCPUs and 192GiB memory.

We measure only writes in our experiments because “reads
vary across works (e.g. DuORAM separates “dependent” and
“independent” reads) and for all constructions, writes are at
least as expensive as reads. For each construction at each N
we averaged performance across multiple write (up to 100K
writes in faster networks). All experiments were on D = 64
bit payloads as in DuORAM’s testing.

To compare fairly with previous works, we re-benchmark
all previous DORAMs with existing implementations (with
the exception of proprietary [26]) on the same hardware setup
we used to test GigaDORAM. To the best of our knowledge,
this is the most comprehensive Distributed ORAM benchmark
to date.'” See Appendix E for details.

’

10We do not benchmark [29], because it is based on the proprietary Share-
mind software, and is focused on batch queries. As noted in that work, in
the single-query setting those techniques are not expected to give significant
improvements over straightforward “ORAM in MPC” schemes.
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(%) symbolizes the invariant that when Igpeedcache-Query is called i # j = x; #x;Vx; =x; = L.

HspeedCache.Init(): The players set the query counter ¢ = 0. No communication.

IIspeedcache-Store([x], [y]): Let [x;] = [x] and [y;] = [y]. No communication.

Ispeeacache-Query([x]): ([x1], [y1]),-- -, ([x], [v:]) are stored where x; is unique. Note that this invariant, (x), inductively
holds: On Init () trivially holds. On Store(x) at the end of ITporam-ReadAndWrite, if x was stored at Ly, it was zeroed-out
in Step 4 of Ispeedcache-Query (below) and thus (%) holds. On alibi-reinsertion from L; since L; Build([X], [Y]), (x) holds
because X is guaranteed to be a unique list and thus its reinserted subset also unique.

1. Using MPC, the players compute equality-indicators [;] for all i € [¢] s.t b; = 1 iff x = x;. This takes [loglog N] rounds
and tlog N communication, because each x; is log N bits.

2. Using MPC, the players zero-out all the non-queried elements, computing the bit-vector product [x;] = [x]] - [6;] and
[vi] = [yl - [b:] for all i € [¢]. This takes a single round and n(log N + D) communication.

3. The players output @7, [y;] which is [y;] if x = x;, else [_L] This costs no communication or rounds.

4. Preparing for the next query, the players zero-out (put a dummy) at the location where x; was found (if it was found) by

setting [x;] := [x;] @ [x] for all i € [n].

Ispeeacache-Extract: Output ([x(], [y1]), ..., ([x], [v:]), set = 0. No communication.

Figure 3: The SpeedCache protocol, ITspeedcache

9.1 Low-latency tests

One of the primary applications of DORAM is in heavy-
compute large-scale MPC computations (where random ac-
cess could outperform circuit-based computations). Thus we
focus on low-latency network environments where large scale
MPC becomes practical.''

With this motivation, we begin by benchmarking GigaDO-
RAM in a realistic low-latency regime. Specifically, we de-
ploy to three cluster-placed AWS c5n.metal instances.'” In
this setup, In cluster placement at region us-west-2. Via
ping -c 20 we measure latency of min/avg/max/mdev =
0.229/0.236/0.244/0.003 ms."?

Figure 5 shows that in this low-latency environment Gi-
gaDORAM outperforms all other DORAM:s for 22 < N <
23!, GigaDORAM perform 700 — 900 queries/sec for all mea-
sured N, with oscillations which depend on the size of the
hierarchical cache L.

1 Although MPC is possible under poor network conditions [48], it is
only possible when the circuits are fairly simple and thus would not benefit
significantly from random access. To put this in perspective, [48] benchmark
computing the AES circuit under MPC. In GigaDORAM, we compute AES
(or LowMC) under a circuit-based MPC multiple times for each query. Thus
no DORAM that makes use of a SISO-PRF could not possibly improve the
performance of a simple computations like AES.

12For some comparisons (e.g. [25,45]) we used existing Docker setups to
simulate three parties on a single c5.metal machine in which case we adjust
the network via the tc command (see Section E).

13We observed latency fluctuating according to usage, although AWS does
not make such policies public.

14The “oscillations” seen in our performance are due to the fact log, |Lo| =
N — baseAmpFactor - (numLevels — 1) and the fact that baseAmpFactor

9.2 Testing in restricted networks

Previous DORAM papers benchmarked [16, 26, 45] under
artificial restrictions to the network. For example, [45] bench-
marked restricted their bandwidth to 100Mb/s with a latency
of 30ms. These network conditions are lower than you would
expect from geographically separated machines. For exam-
ple, we measured 20ms ping from us-east-1 to us-west-2,
servers in different AWS regions should enjoy several Gbit
connections [7], and it is possible to achieve 1ms ping times
across different cloud providers" . Still, we compare the per-
formance of GigaDORAM to other DORAMSs under worse
network conditions (which may be unavoidable in some ap-
plications).

Performance without cluster-placement. Figure 5 shows
the performance of GigaDORAM when the machines are
cluster-placed. When the machines were not cluster-placed
(but still in the same AWS region) the number of queries / sec
drops by about 33% (Table 1).

Performance and breakeven points in varying laten-
cy/bandwidth. Using the tc (as in [16, 45]) we vary the
latency and bandwidth to search for the breakeven point be-
tween GigaDORAM and DuORAM (which is the best previ-
ous DORAM in high-latency low-bandwidth environments).

Figure 6.a shows that the performance of GigaDORAM
degrades dramatically with latency while the performance

is a power of 2, and thus for certain values of N we cannot reasonably set
|Lo| as small as we’d like.

https://medium. com/@sachinkagarwal/public-cloud-inter-r
egion-network-latency-as-heat-maps-134e22a5£ff19
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HDORAM.IIlit( [[Y]] ):

1. The players input the address of each payload [X;] = TReplicatedeC.InputConstant(i) fori =1 to N. The players build
the top level LoymLevels = FouTable-Build([X], [Y],N) and initialize the cache Lo.Init(). The players set the query
counter t = 0.

IMporam-ReadAndWrite([Xquery [s[Ynew], [isWrite]): |Lo| is the size of the cache and is tracked externally.

1. The players increment the query counter, , initialize numLevels-bit Alibi data accumulator [eaccum] = [O"UmEeVels],
D-bit payload accumulator [Yaccum] = [-L], and one-bit flag [found] = 0. Then, the players do the following in parallel
(This step takes max{numRoundsCache, numRoundsPRFEval} rounds):

(a) query the Cache, [Yaccum], [found] = Lo.Query([Xguery]). The players extract [eaccum] from [Yaccum] (by silently
copying the last numLevels-bits).

(b) For each level £ € numLevels evaluate [a¢] = Faps.PRFEval([k¢], [Xquery])
2. For each ¢ from 1 to numLevels, if there is an OHTable at level L;:

(a) Set the bit [useDummy] = [¢][¢] & [found], i.e., locally XOR the ¢th bit of the share of ¢ with the share of found.
Query L;, calling [[¥/], [found,] = L¢.Query([a,], [useDummy]). This step takes numRoundsOHTable rounds.

3. Set [Ynew] <= Freplicacampc -IfThenElse([isWrite], [Ynew], [Yaccum])- Set the Alibi mask of [Yiew], [Ynew-¢] to 0. Call
Frinear-Store([X], [Ynew])- This takes 1 round.

(a) Silently extract the numLevels-bit value [[¢;] from [¥;] and update [esccum] < [€accum  ¢¢]. Update the value of
[found] to found V found, Additionally, In parallel with the first round of the next iteration of the loop, update
[Yaccum] <= Freplicateampc -If ThenElse([found,], [Y¢], [Yaccum])- This step takes one round.

4. If t = |Lp|, run the subroutine ITporam.Rebuild().

IIporam-Rebuild(): We define a level L; for 1 < i < numLevels in the DORAM to be full if it contains a ShufTable
with (baseAmpFactor — 1) - baseAmpFactor’ - |Ly| elements. Ly is full if it has been written to |Lo| times since it was last
initialized. Suppose that £ is the largest number such that levels Ly, ... L, are full while Ly, is not, instead containing
A -baseAmpFactor’|Ly| elements for some A € {0, ...,baseAmpFactor — 2} If £ = numLevels, then necessarily A = 1.

1. By concatenating the output of Lg.Extract() and L;.Extract() for i € [¢+ 1], the players prepare lists [X], [Y] of length
(A+1)- baseAmpFactor’ - |Lo| containing all the elements to be (potentially) placed in Ly .

2. If £ < numLevels:
In parallel, relabel the dummies, calling [X}] - Freplicacampc-ReplacelfNull([X;], [N + j]) and [Y;] = [¥;] (syntac-
tically convenient) for j € [(A + 1) - baseAmpFactor’ - |Lo|] (this is so P; does not learn how many dummies were
queried at the previous level).

3. If £ = numLevels: The players “cleanse out the dummies” by shuffling, [X], [f] = #agp.ObliviousShuffle([X], [Y]).
and then revealing which element is dummy by calling Fapp.Reveal(Fapp.Equals([X;], L)) for all ;.

The above will reveal exactly N 0’s and N 1’s (because we started with N “real” elements which we have maintained
and we made N queries since last build L mevels- Since stale elements are relabeled (step 2.A) the invariant holds).
Compact the [X] and [¥'] shares corresponding to 0’s into arrays [X*] and [Y*].

4. The players reinitialize the cache by calling Ly = FLinear-Init(|Lo|) and build Ly, by calling [XS@"], [ys@sh] =
Ly Build([X*], [Y*])

5. For i from 1 to stashSize, update the Alibi bit [e][¢ + 1] = of [Y*®] to 1, then call Fiincar-Store([XN], [YS@sh]).
The players reset t = 0.

Figure 4: The complete DORAM protocol, IIporam
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—e—  PFEDORAM [26]

—+— Square Root ORAM [53]

Circuit ORAM [46]

FLORAM-CPRG [16]
FLORAM [16]
3PC-ORAM [25]

log(N) | Standard Q/s | Cluster Q/s | Slowdown
20 543 812 33%
23 573 910 37%
26 597 877 32%
29 589 891 34%

Figure 5: Number of queries/second vs. log number of ele-
ments (V). Each query is a write of random data to a random
index. Preprocessing costs are accounted for. The number of
queries per second is an estimate of (at least) hundreds of
queries. All constructions were run in AWS cluster placement
network environment.

of DuUORAM degrades dramatically with log(N). In partic-
ular, we see that at log(N) = 20, for latency 8ms GigaDO-
RAM outperforms DuORAM while for 8ms latency DuO-
RAM edges out GigaDORAM. Atlog(N) =25 GigaDORAM
outperforms DuORAM for all sub-40ms latency.

Figure 6.b shows that the performance of neither con-
struction degrades substantially with bandwidth. Our exper-
iments show DuORAM outperforming GigaDORAM for
log(N) = 20 and GigaDORAM outperforming DuORAM for
log(N) = 25. Again, we see the performance of DuORAM
degrading significantly with log(N) while GigaDORAM’s
performance hardly changes.

9.3 The cost of GigaDORAM

Running large computations in AWS can be quite expensive,
but due to its high query/sec, GigaDORAM is cost efficient.
Including both network and compute costs, GigaDORAM
can handle about over 120,000 queries per dollar with cur-

Table 1: Benchmarking GigaDORAM using 3 different
cSn.metal machines standard placement vs cluster placement
in us-west-2. We benchmarked over 100,000 queries, using
lowMC as our SISO-PRF.

Queries/second
[
(=}
T
Il

wn
T
i
<9
H/
/
| |
Il

‘%
|
|

Queries/second

oo
4
£
¢
&
7

Bandwidth (Gbit/sec)

—e— GigaDORAM (log(N) = 20)
= DuORAM (log(N) = 20)

- ®- GigaDORAM (log(N) = 25)
DuORAM (log(N) = 25)

(b)

Figure 6: (a) Number of queries/second vs. latency in millisec-
onds for fixed 1Gbit network (b) Number of queries/second
vs. Bandwidth in Gbit for fixed 8ms latency. Executed on a
single c5.metal via multiple processes restricted in communi-
cation via the tc. Preprocessing costs are accounted for. The
number of queries per second is an estimate of 5000 queries
for GigaDORAM and 128 for DuORAM.

rent AWS pricing, which is 10x DuORAM [45], which is to
the best of our knowledge, the previously most cost efficient
DORAM. See Appendix F for the calculations.
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log(N) | AES Q/s | LowMC Q/s | Slowdown
20 393 812 51%
23 405 910 55%
26 401 877 54%
29 417 891 53%

Table 2: Benchmarking GigaDORAM using AES to imple-
ment a SISO-PRF instead of LowMC. We run the benchmark
in the same setting as Figure 5.

9.4 Replacing LowMC with AES

For reference, we also evaluated GigaDORAM using AES
instead of LowMC as our SISO-PRF. The AES circuit we
has about 10x the ANDs and 10x the AND-depth as the
LowMC circuit we use, and is thus less efficient to evaluate
under MPC. Table 2 shows approximately a 2x slowdown to
GigaDORAM when using AES instead of LowMC.

10 Conclusion

In this work we introduce GigaDORAM, the most efficient
and scalable DORAM construction to date. At N = 23!, our
DORAM can perform over 700 queries per second, making
GigaDORAM orders of magnitude faster than prior DORAM
constructions in low-latency environments. We give a custom
C++, open source implementation of GigaDORAM. We hope
GigaDORAM will enable the first somewhat practical RAM-
MPC applications and open a new realm of possibilities for
privacy-preserving cloud data-stores.
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A ABB Functionalities

The basic ABB operations we use are described in Figure 7.

B The naive cache protocol

The naive cache protocol works as follows

r< 1L
fori=1,...,tdo
if x=1x; then
r<y;
end if
end for
Return: r

This protocol has multiplicative depth, 7, thus implement-
ing this under the MPC of [3] leads to a protocol with
numRoundsCache = |Ly|. It is possible to implement this
with a garbled-circuit-based approach, (e.g. 3-party garbled
circuits [33] or BMR [8]). This results in a constant-round
MPC protocol, but the communication complexity is large —
too inefficient for our application.

Ispeedcache, (described in Figure 3), parallelizes the equal-
ity tests of the naive protocol leading to a low-depth circuit,
that we implement using the 3-party MPC of [3].

C LowMC

In this section, we discuss LowMC, an MPC-friendly block-
cipher we use to instantiate Fapg.PRFEval.

LowMC. LowMC (Low Multiplicative Complexity) [2] is a
family of block cipher that is built with MPC, ZK, and FHE in
mind. LowMC has a variety of instantiations which trades low
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o [x]) = Fapp.InputTo2Sharing(x, P;, P;). A single player shares creates an additive sharing of a secret, x, amon
p g J g Y g g
participants i and j.

* []%)) = Fapp.ReshareReplicatedTo2Sharing([x], { P, P;}). Convert a 3-party CNF sharing of a secret, x, to a two-party
DNF sharing of the same secret, x, held by participants i and ;.

« [x]@""/) = Fxpp.Reshare2To2Sharing([x] "), { Py, Py }). Convert a two-party DNF sharing of a secret, x, held by partic-
ipants i and j, to a two-party DNF sharing of the same secret, x, held by participants i’ and j’.

* [x] = Fapg-Reshare2SharingToReplicated([x]“/)). Convert a two-party DNF sharing of a secret, x, held by participants
i and j to a three-party CNF sharing of the same secret, x.

[k] = Faps-RandomElement(k). Generate a three-party CNF sharing of a uniformly random field element (whose
value is unknown to the participants).

* x = Fapp-RevealTo(P;, [x]). Reveal a secret-shared value, [x], to participant P;.

We also abstract away a few more sophisticated operations:

* [y] = Fass.PRFEval([x], [k]). Evaluate a SISO-PRF with secret-shared key, [], on secret-shared input, [x], to obtain
a secret-shared output, [[y]. In our instantation, we instantiate the Fapg.PRFEval(-,-) functionality by evaluating the
LowMC block cipher [2] under MPC. Specifically, in our custom implementation of a (3,1)-MPC protocol (based
on [3]).

* [QueryCircuit(xy,...,x;)] = Faps.EvalCircuit(3,1)GC(QueryCircuit, Inputs = ([x1],...,[x/])). Evaluate a 3-party
garbled circuit on secret-shared inputs [x;], ..., [x;], and returns a sharing of the output of the circuit computation. We
use a custom implementation of the 3-party Garbled Circuit protocol outlined in ABY3 [33].

¢ [Y] = Fass-ObliviousShuffle([X]). This functionality implements a linear-communication, three-party shuffle of se-
cret shared values [30]. So Y = m(X) for some random permutation, unknown to the participants. We also use a modified
protocol to output a sharing of the permutation as well. [Y], [L] = Fapp-ObliviousShuffie([X], DistributeShuffle =
True). In this setting, ¥ = 71(X) as before, and L=mn"1(1,2,...,n). We describe how to implement this novel “Persistent
shuffle” in Section 5.1.

Figure 7: The ABB functionalites used in our DORAM protocol.

log(N) | # of bytes sent
20 5.86-10°
25 5.64-10°
30 6.73-10°

Figure 8: The number of bytes sent by a single GigaDORAM machine for
100,000 queries, using LowMC as the PRF at varying values of log(N) at the
same values of baseAmpFactor, numLevels, in which our main benchmark
was conducted (see Figure 5).
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number of AND gates and a low circuit AND-depth.'® The
instantiation of LowMC we use has 46837 total gates, out of
which 1134 are ANDs, stacked into 9-AND-depth circuit. By
contrast, AES has a total of 36663 gates, out of which 6400
are ANDs, stacked into a 60-AND-depth-circuit. I7 Since the
AND-depth of the circuit is equal to the number of rounds
to evaluate the circuit under MPC, using LowMC instead of
AES saves 51 rounds of communication for each query.

We provide the first circuit files for LowMC and encode
them in the popular Bristol fashion.'® The traditional Bristol
fashion requires that each virtual “wire” to be only assigned
once, requiring more memory for the computation than neces-
sary. Threading wires through the circuit (i.e., reusing mem-
ory) we are able speed up the computation of LowMC under
the [3] MPC by a factor of 2.

Although LowMC has less analysis than AES, it’s security
has been been adapted into the Picnic signature scheme [12],
a 3rd round candidate in the NIST post-quantum digital sig-
nature contest [35]. Additionally, there have been several
thorough cryptanalysis attempts [6,15,31] motivated by an on-
going Microsoft-funded challenge, none discovering an attack
which made the community doubt the security LowMC."”

D Alibi reinsertion

We ensure that IIghyfraple.Build has negligible failure prob-
ability (in N) by outputting a small stash, Stash, which we
reinsert into the cache. Naively, for all ([X;],[Y;]) € Stash
we could call Ly.Append([X;], [Y¥]), “reinserting” ([X;], [¥:])
which could not fit in L;’s CHT into the cache. Yet, as
proved in [17], the naive reinsertion technique above com-
promises the obliviousness of (D)ORAM. Intuitively, if we
reinsert ([X;], [¥i]) to Lo from L; and then query [X;], in the
aggregate, an eavesdropper could tell that we should have
queried [X;] to L;, but instead queried a dummy because we
found ([X;],[¥:]) at some previous level (it was reinserted).
Roughly speaking, our goal (%) is to append some data to
([X:], [¥i]) such that when ([X;], [Yi]) is reinserted from L;
and found at L for k < j, we will know to continue query-
ing Liy1,...,L; as if we did not find ([X;], [¥;]), and query
Lit1,...,LoumLeveis as if we found ([Xi],[¥i]) at L;. To do
this, we store [ex.] € {0,1}"mLevels a5 the last numLevels
bits of ¥; (it is assumed that D > numLevels) where ex, [j] = 1
iff ([X;],[Y;]) was reinserted from L;. We set ey, = Qnumbevels
every time we query ([X;], [¥;]). When querying for [x] and
finding it at Ly where ¢,[j] = 1 from L;, under MPC we “de-
cide” to query according to (x). The full details of how the
Alibi bits are used can be found Figure 4.

161 owMC provides a script to calculate this tradeoff https://github.c
om/LowMC/lowmc/blob/master/determine_rounds.py.

17We refer to Bristol Fashion AES circuit file from https://homes.es
at.kuleuven.be/~nsmart/MPC/MAND/aes_128.txt

8nttps://homes.esat.kuleuven.be/~nsmart/MPC/

19https://lowmcchallenge.github.io/

E Benchmarking previous DORAMs

We benchmark the (3,1) semi-honest (most efficient) DuO-
RAM variant [45] via their convenient Docker setup on a
single c5n.metal machine. We use the set-networking.sh
script they provide to set .229ms latency and 25Gbit band-
width simulated network between Docker containers. We do
not restrict the number of cores their process can use, and
DuORAM used all 96 vCPUs during preprocessing.

We benchmark FLORAM, FLORAM-CPRG, Circuit
ORAM, and Square Root ORAM [16,46, 53] via the obliv-
¢ [52] based setup given by [16].”" We benchmark the above
2-party constructions between two cluster-placed cSn.metal
machines. For backwards compatibility with obliv-c, we run
tests on Ubuntu 18.04.6 LTS. We do not restrict the network
via the tc command as was done in [16].

Bingsheng Zhang kindly benchmarked the proprietary PFE-
DORAM [26] on a comparable network to ours. Zhang exe-
cuted the protocol via separate processes on the same Intel(R)
Core 17 8700 CPU 3.2 GHz, 6 CPUs, 32 GB Memory, 1TB
SSD machine.Bandwidth between the processes was not lim-
ited and latency was restricted to 0.05ms.

We benchmark 3PC-ORAM [25] via the dockerization
graciously provided by the DUORAM [45] team”'. Like other
constructions, we ran 3PC-ORAM with 0.229ms latency and
25Gbit bandwidth.

F The cost of running GigaDORAM

The c5n.metal machines we rent cost $3.888 per hour, and
running DORAM requires 3 different machines. GigaDO-
RAM. Given that we get ~ 800 queries per second, (Figure
5), we get 800-3600/(3.888 -3) = 246914 queries per USD.

If we benchmark in the same region, all communication is
free. If we benchmark in different regions, according to AWS
the charge per Gigabyte in and out of AWS is $0.01.”> Accord-
ing to Table 8 it is reasonable to conservatively estimate that
GigaDORAMrequires 3 -7 - 10° /100,000 = 210,000 bytes
per query = 210,000/2%° = 2.10~* Gigabytes per query.
Multiplying by the dollar cost, we get that GigaDORAM
requires 2-107*..02 = 4-107° USD per query.

Summing up communication and computation, we get that
we have 1/246914 +4-107% = 8.05- 1076 which gives ap-
proximately 120,000 queries per dollar.

By comparison, DuORAM [45] reports 8900 - 10~ dollars
for 128 queries (computation cost) giving 128,/8900- 1076
queries per dollar. For communication DuORAM gets 5 -
107° dollars per 128 queries, giving 128/5- 107, This gives
128/8905 - 10% = 14,374 ~ 15,000 queries per dollar.

20See https://gitlab.com/neucrypt/floram/
2lpttps://git-crysp.uwaterloo.ca/iang/circuit-oram-docker
22https ://aws.amazon.com/ec2/pricing/on-demand/
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