
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Auditing Frameworks Need Resource Isolation:
A Systematic Study on the Super Producer Threat

to System Auditing and Its Mitigation
Peng Jiang, Ruizhe Huang, Ding Li, Yao Guo, and Xiangqun Chen,

MOE Key Lab of HCST, School of Computer Science, Peking University;
Jianhai Luan, Yuxin Ren, and Xinwei Hu, Huawei Technologies

https://www.usenix.org/conference/usenixsecurity23/presentation/jiang-peng

Auditing Frameworks Need Resource Isolation: A Systematic Study on the Super
Producer Threat to System Auditing and Its Mitigation

Peng Jiang1, Ruizhe Huang1, Ding Li1*, Yao Guo1, Xiangqun Chen1, Jianhai Luan2, Yuxin Ren2 and
Xinwei Hu2

1MOE Key Lab of HCST, School of Computer Science, Peking University
2Huawei Technologies
*Corresponding author

Abstract
System auditing is a crucial technique for detecting APT at-
tacks. However, attackers may try to compromise the system
auditing frameworks to conceal their malicious activities. In
this paper, we present a comprehensive and systematic study
of the super producer threat in auditing frameworks, which
enables attackers to either corrupt the auditing framework or
paralyze the entire system. We analyze that the main cause
of the super producer threat is the lack of data isolation in
the centralized architecture of existing solutions. To address
this threat, we propose a novel auditing framework, NODROP,
which isolates provenance data generated by different pro-
cesses with a threadlet-based architecture design. Our evalu-
ation demonstrates that NODROP can ensure the integrity of
the auditing frameworks while achieving an average 6.58%
higher application overhead compared to vanilla Linux and
6.30% lower application overhead compared to a state-of-
the-art commercial auditing framework, Sysdig across eight
different hardware configurations.

1 Introduction

Auditing frameworks, such as Linux Audit [79] or Sys-
dig [20], play a vital role in provenance analysis systems
for enterprise security. Many companies build Security Op-
erations Centers (SOC) [2, 6, 9, 10, 15, 25, 35] based on au-
diting frameworks. Moreover, a large body of research work
uses auditing frameworks to develop intrusion detection sys-
tems [6,16,18,19,27,38,41–43,46,56,90,93,108]. We expect
this topic to remain relevant for both industry and academia
due to the amount of related work.

Unsurprisingly, attackers are engaged in compromising au-
diting frameworks. Recent studies have also shown that attack-
ers compromise the kernel module of auditing frameworks
to prevent attack traces from being recorded. Paccagnella et
al. [86] proposed a race condition attack in which an attacker
with root privileges can compromise the kernel module of
auditing frameworks to hide their malicious actions. To pro-
tect the kernel module of auditing frameworks, researchers

have proposed multiple approaches, such as Hardlog [14],
KennyLoggings [86], and QuickLog [45]. There are also
many user-space attacks that mainly involve log tampering
[21, 24, 39, 81]. Meanwhile, several cryptographic-based ap-
proaches have been proposed to secure the user space trans-
mission and storage of logs [8, 28, 52, 85].

In addition to the vulnerabilities mentioned above, this
paper concentrates on the super producer threat. This threat
does not require attackers to have root privileges to launch
attacks on the kernel module. In essence, the attacker can
either disable provenance data collectors or intensify DoS
attacks on the system under observation by creating a super
producer, a process that produces a large number of system
provenance events in a brief span of time, with user privilege.

Specifically, by generating a large amount of provenance
data that auditing frameworks cannot process in time with
a reasonable amount of system resources, a super producer
puts the current auditing framework into the data integrity vs.
efficiency dilemma. On one hand, auditing frameworks may
adopt the pro-performance strategy [20, 26, 79], which drops
system events if there is too much provenance data. However,
under this strategy, attackers may launch the Provenance De-
nial of Service (PDoS) attack, in which the attacker uses the
super producer to evict the events of malicious behaviors from
the event buffers of auditing frameworks. On the other hand,
auditing frameworks may adopt the pro-integrity strategy [1],
which elastically allocates sufficient resources to ensure that
all provenance data can be processed in time. Unfortunately,
this strategy may lead to the Provenance Assisted Denial of
Service (PADoS) attack, in which attackers exploit the pro-
integrity strategy to degrade the performance of the whole
system, amplifying the DoS attack on the server. Notably, the
PADoS attack can even break the protection of cgroup.

The main reason for the super producer threat is that the de-
sign of existing auditing frameworks breaks the resource and
logic isolation of processes, which is critical for modern OSes
to achieve high performance for concurrent tasks. Existing
solutions collect system events by intercepting system calls
in the OS kernel and then processing the collected events in a

USENIX Association 32nd USENIX Security Symposium 355

centralized user-space collector [1,20,26,79]. The centralized
collector handles provenance data equally regardless of the
priority, importance, and resource quota of the processes that
generate the provenance data. Therefore, a super producer can
generate a massive amount of provenance data that occupies
all the processing power of the centralized handler and causes
the “data integrity vs. efficiency dilemma”.

In this paper, we present a comprehensive analysis of the
super producer threat and propose a novel auditing frame-
work, NODROP, that balances the trade-off between “data
integrity and efficiency”. Specifically, NODROP surpasses
existing solutions in two aspects. First, it guarantees the in-
tegrity of provenance data. NODROP records all provenance
data faithfully regardless of the workload. Therefore, a super
producer cannot conceal the traces of attacks by generating
too many system events, thus mitigating the PDoS attack. Sec-
ond, NODROP prevents the super producer from degrading
the performance of the whole system, avoiding the PADoS
attack.

The key insight of our design is to provide isolation to the
provenance data collector so that each process consumes its
own resource quota to handle the provenance data generated
by itself. The logic behind this design is as follows. Like
user-space log events (e.g., log4j events), provenance events
reflect the status of the running processes. Thus, provenance
data should be considered as the logs of the corresponding
processes, instead of the OS. Therefore, each process should
spend its own resource quota to handle the provenance data it
generates.

By isolating the provenance data of each process, we can
naturally mitigate the super producer threat. This way, a pro-
cess that generates a huge amount of provenance data in a
short time can only affect its own performance, since it has
a limited resource quota. It also cannot interfere with the
processing power of other processes. Therefore, the super
producer cannot stop the system from recording provenance
events of attacks by overwhelming the auditing frameworks.

The main challenge of isolating provenance data from dif-
ferent processes is to achieve efficiency. We use a threadlet-
based approach that inserts the provenance data processing
logic into the memory of running applications. This approach
leverages the process isolation strategy of the OS directly,
eliminating the extra overhead of adding a new isolation strat-
egy to the auditing framework. This approach also reduces
process scheduling and its associated cache miss costs.

We thoroughly evaluate NODROP with eight different
hardware configurations and five baselines. Our evaluation
shows that NODROP faithfully records all provenance data,
preventing the PDoS attack. On the contrary, current pro-
performance auditing frameworks (i.e., Sysdig) can drop up to
90% of provenance data while the super producer is running.
NODROP can also prevent the PADoS attack. Specifically,
NODROP only slows down three popular applications by 4.0%
on average, regardless of the workload generated by the su-

per producer. For comparison, existing pro-integrity auditing
frameworks can slow down the applications by up to 59.1%
on average. More importantly, when the super producer in-
creases its workload, the application performance decreases
accordingly with existing auditing frameworks. NODROP is
also efficient compared with the SOTA pro-performance col-
lector, Sysdig. NODROP has, on average, 6.30% less applica-
tion overhead than Sysdig. In summary, our evaluation proves
that NODROP can address the super producer threat while
incurring lower system overhead than existing auditing frame-
works.

To sum up, this paper makes the following contributions:

• To the best of our knowledge, this is the first thorough
systematic study on the super producer threat and related
attacks to auditing frameworks.

• We identify that the root cause of the super producer
threat is the lack of resource isolation in the user space
component of existing auditing frameworks.

• To address the super producer threat, we propose a novel
auditing framework NODROP that efficiently isolates
resources for provenance data handling by enforcing
processes to consume their own resource quota to handle
the provenance data generated by themselves.

• Extensive experiments demonstrate that NODROP can ad-
dress the super producer threat, as well as its efficiency.

Availability: NODROP is available at: https://github.c
om/PKU-ASAL/NoDrop

2 Background

Auditing frameworks are the fundamental part of provenance
analysis [57], which is a technique that monitors system ac-
tivities to detect and investigate attacks [29, 31, 97, 98]. Pop-
ular auditing frameworks include Sysdig [20], LTTng [26],
and Linux Audit [79]. These three auditing frameworks are
the most widely cited in provenance-based detection solu-
tions [29,31,36,41,43,48,55,60,61,97,98,105,106,108,109].
Besides, there are more recent auditing frameworks from
academia, including Camflow [1, 90], Hardlog [14], Kenny-
Loggings [86], and QuickLog [45]. We thoroughly investigate
the auditing frameworks published in industry and academia
in recent years. We summarized the auditing frameworks in
Table 1.

The existing auditing framework has a “centralized” ar-
chitecture [1, 20, 26, 79], as Figure 1 shows. This framework
intercepts provenance events through a kernel module and
digests them based on user-specified rules (e.g., sending the
provenance data to a remote log server or storing it to local
files) in a centralized user-space module, called collector.

356 32nd USENIX Security Symposium USENIX Association

https://github.com/PKU-ASAL/NoDrop
https://github.com/PKU-ASAL/NoDrop

Table 1: A comparison of auditing frameworks. * means the collector is implemented by us. Per-core thread means each CPU
core has a dedicated processing thread for provenance data. Per-core buffer means each CPU core has a dedicated event buffer.

Name Computation isolation Data isolation Synchronization Strategy

Sysdig [29, 31, 36, 97, 98, 106] Single thread Per-core buffer Asynchronous pro-performance
Linux Audit [41, 43, 48, 108, 109] Single thread Single buffer Asynchronous pro-performance

LTTng [55, 60, 61, 105] Single thread Per-core buffer Asynchronous pro-performance
Camflow [40, 90, 91] Per-core thread Per-core buffer Asynchronous pro-integrity
KennyLoggings [86] Single thread Single buffer Asynchronous pro-performance

Hardlog [14] Single thread Single buffer Synchronous pro-performance
QuickLog [45] Single thread Single buffer Asynchronous pro-performance

Sysdig-Camflow* Per-core thread Per-core buffer Asynchronous pro-integrity
Sysdig-Integrity* Single thread Per-core buffer Synchronous pro-integrity

NODROP * Per-thread threadlet Per-threadlet buffer Synchronous performance and integrity

Current auditing frameworks mainly differ in how they han-
dle massive amounts of provenance data. They adopt two
strategies: pro-performance and pro-integrity.

Several solutions, such as Sysdig [20], Linux Audit [79],
and LTTng [26], follow the “pro-performance” strategy. The
rationale behind this strategy is that the auditing framework
should minimize the system run-time overhead and maintain
the performance of critical services on the monitored host.
Current solutions limit the CPU usage of the auditing frame-
work by allowing only one collector thread. If this thread
cannot process all the provenance events in time, it will either
stop receiving events or drop them.

Solutions that adopt the “pro-integrity” strategy [1, 90] try
to allocate enough resources to the auditing framework to
handle all the provenance events. For instance, Camflow [90]
uses a multi-threaded model that dynamically allocates com-
putational resources based on the provenance data generation
speed.

3 The Super Producer Threat

The existing auditing frameworks use a centralized architec-
ture that exposes them to the super producer threat. This threat
occurs when an attacker exploits a super producer to consume
the computational resources of other processes, breaking the
logic and resource isolation between them. As a result, current
auditing frameworks face a dilemma between data integrity
and efficiency.

Figure 1 illustrates the super producer threat and the “data-
integrity vs. efficiency” dilemma. The figure shows three
user-space applications (the super producer, the malware, and
the Nginx server) and an auditing framework that processes
all the provenance data of these applications. The arrows
indicate the direction of provenance data flow, and the width
of the arrows reflects the amount of provenance data.

The super producer produces considerable system prove-
nance data that exhausts the collector’s computation capacity.
As a result, the collector either drops the provenance data of

other applications or competes for more computational re-
sources, implicitly breaking the resource quota of each appli-
cation. Thus, it becomes feasible to exploit PDoS and PADoS
attacks.

The pro-performance strategy restricts the resource quota
of the collector to prevent performance degradation of the
whole system [20, 26, 79], but this exposes the system to the
PDoS attack. Figure 1 shows that the collector’s limited re-
sources cannot cope with the high rate of provenance data
generation by the super producer, and the collector will drop
events when overloaded. Moreover, the collector does not sep-
arate the provenance data from different applications, so other
critical provenance events of the malware may be evicted,
enabling the attackers to conceal the malware from detection.

The pro-integrity strategy gives the collector more re-
sources to prevent the loss of provenance data [40,91], but this
exposes the system to the PADoS attack. Figure 1 shows how
the collector consumes more resources to handle all prove-
nance events, while the resources of other applications are
reduced accordingly, resulting in significant performance in-
terference for the whole system. Moreover, since the super
producer indirectly affects the system performance by using
the collector, it only requires moderate resources to generate
a large amount of provenance data. Hence, existing isolation
mechanisms (e.g., cgroups), which limit the resource usage
of the super producer, cannot effectively stop the PADoS at-
tack.

3.1 Research Challenges

Addressing the super producer threat is conceptually challeng-
ing. One possible solution is to suppress the super producer’s
generation speed of provenance data with some specified
threshold. However, this strategy is not systematic. First, it is
hard to set an effective threshold considering the dynamics of
the systems. Second, attackers may use a set of super-producer
processes to avoid reaching the threshold.

Another straightforward solution is to provide isolation in-

USENIX Association 32nd USENIX Security Symposium 357

Figure 1: The design of existing auditing frameworks and the “data integrity vs. efficiency dilemma”.

side the user-space collector. However, this strategy requires
complex user-space logic in the collector, increasing the run-
time overhead and difficulty in adapting to different systems.
Note that simply providing a separate event buffer for differ-
ent processes is not sufficient because other computational
resources, such as the CPU, also need to be isolated. More
importantly, resource isolation or scheduling policy inside
the collector may be inconsistent or conflict with the original
policy made by the OS. Thus, different policies interfere with
each other, causing all of them ineffective.

In summary, we need to redesign the auditing framework ar-
chitecture, which can adaptively suppress the super producer,
isolate provenance data, avoid performance interference, and
respect the OS resource management policies.

3.2 Attack Scenario and Threat Model

We consider a common scenario of a multi-tenant web
server [7] as the potential context for PDoS and PADoS at-
tacks. We suppose that two Internet-facing applications, the
target app and the victim app, from different users, are run-
ning on the server at the same time. These two applications
have their own resource quota (i.e., in separate cgroups).
An auditing framework is running to monitor both the target
app and the victim app. For the PDoS attack, the attacker’s
objective is to disable the auditing framework by attacking
the victim app. Then, the attacker can try to compromise the
target app without leaving traces in the provenance data. For
the PADoS attack, the attacker’s aim is to paralyze the target
app by compromising the victim app.

We define our threat model as follows: the attacker can
transform the victim app into a super producer. This does
not imply that the attacker has to compromise the victim app.
It is enough to generate a large number of requests for a
complex dynamic web application. Moreover, we assume
that the attacker is aware of the auditing framework that is
deployed on the server.

We also make the following assumptions about the security
of the auditing frameworks. First, the kernel modules that
collect provenance data are not vulnerable to attacks. Second,

the provenance data is stored and transmitted securely and
reliably. Third, the user space module that analyzes the prove-
nance data is protected by existing intrusion detection systems
that can alert us if the attacker tries to disable or compromise
the auditing frameworks [20,26]. The protection of the kernel
module, the transmission, and the storage of provenance data
is beyond the scope of this paper.

4 Design of NODROP

This section describes the design of NODROP, which aims
to prevent PDoS and PADoS attacks by attacks by achieving
thread isolation for provenance data processing. Similar to
Sysdig, NODROP captures system call, thread switching, and
system signal events, and allows users to provide custom logic
for processing these events.

4.1 Design Goals
NODROP is designed to address the super producer threat by
satisfying the following properties:
G1 - Zero Data Lost. NODROP must record all provenance
data generated by the system to prevent PDoS attacks.
G2 - Performance Isolation. NODROP must ensure that a
super producer cannot affect overall system performance, pre-
venting attacks such as PADoS.
G3 - Low Overhead. NODROP should not introduce signifi-
cantly higher costs than existing auditing frameworks.

4.2 Design Principles
NODROP is guided by two design principles: self-consuming
execution and synchronized logging buffer.
Self-consuming execution. With NODROP, each thread pro-
cesses its own generated provenance data. This differs from
the centralized processing architecture of current auditing
frameworks and addresses the super producer threat by achiev-
ing resource and data isolation. Each thread uses its own
resource quota to process its provenance data in a dedi-
cated buffer, preventing a super producer from evicting other

358 32nd USENIX Security Symposium USENIX Association

Host ThreadKernel Module Consumer

Start
running

In tim
e order

zzzzzzz

Workflow when
buffer is NOT full

Workflow when
buffer is full

 -

 *

Figure 2: The workflow of NODROP. 1 - 7 are the seven
steps of NODROP to handle a system call event.

threads’ system events or slowing them down by occupying
their resource quota.
Synchronized logging buffer. NODROP allocates a dedicated
logging buffer for each thread and dynamically instruments
provenance data processing logic into each thread when the
buffer is full. This synchronized strategy ensures no prove-
nance data is overwritten or lost, regardless of the super pro-
ducer’s data volume.

These principles are realized through a threadlet-based ap-
proach. A threadlet is a self-contained piece of code that exists
in the memory space of a host thread. NODROP instantiates
provenance data processing logic as a threadlet, inserts it into
the memory of the currently running thread, and consumes
the provenance data stored in the dedicated buffer. This type
of threadlet is referred to as a consumer throughout the paper.

The threadlet-based design of NODROP offers three advan-
tages: (1) It allows NODROP to use each running thread’s re-
source quota to process the provenance data generated by that
thread, without breaking the OS’s resource isolation mecha-
nism or slowing down the entire system. (2) Synchronized
insertion of a threadlet into a running thread’s memory space
provides data isolation, preventing a super producer from ma-
nipulating or overwriting provenance data in other threads.
(3) The threadlet-based architecture is more resource-efficient
and lightweight than a conventional thread, eliminating most
thread switch overhead such as scheduling delay, cache move-
ment, and priority inversion.

In summary, the threadlet-based architecture satisfies three
requirements: 1 all provenance data is collected; 2 a su-
per producer cannot slow down the entire system; and 3
overhead is optimized.

4.3 High-Level Workflow
NODROP consists of two main components: a kernel module
and a user-space consumer. Like other auditing frameworks,
the kernel module intercepts system calls to collect prove-

nance data and stores it in a dedicated logging buffer. The
consumer, implemented as a threadlet, processes the prove-
nance data. In NODROP, provenance data includes three types
of system events: system call, thread switching, and system
signals. This definition is the same as that used by Sysdig [20].

The workflow of how NODROP handles system calls is
shown in Figure 2. When a thread invokes a system call,
the kernel captures it (1) and executes it (2). The kernel
module of NODROP then catches and records the system call
in a dedicated in-kernel logging buffer (3). If the buffer is
not full, NODROP returns control to the host thread (4). If
the buffer is full or the thread exits, control is passed to the
consumer (5). Before transferring control, NODROP checks
if there is a consumer in the running thread’s memory. If not,
it first instruments the consumer into the running thread(5 ∗).
Once the consumer has control, it uses the running thread’s
resource quota to process the transferred provenance data,
providing performance and data isolation between threads
(6). When processing is complete, control is returned to
the original thread (7). The workflow for handling thread
switching and system signals differs from that for system calls
only in how the kernel is entered (1 in Figure 2); all other
steps are the same.

4.4 Design Details

This section describes the detailed design and implementation
of key components in NODROP. Since NODROP ’s kernel
module is similar to that of Sysdig [20], its details are not
discussed. Instead, the focus is on the unique design of the
in-kernel logging buffer (§4.4.1), the user-space consumer
(§4.4.2), and consumer instrumentation (§4.4.3).

4.4.1 In-Kernel Logging Buffer

The in-kernel logging buffer is used to store provenance data
in the kernel, improving the efficiency of auditing frameworks.
When the buffer is full, the consumer consumes provenance
data from the front end. Meanwhile, the kernel module pushes
incoming provenance data to the end of the buffer until the
buffer is full.

NODROP uses a per-thread buffering scheme, allocating
one logging buffer for each thread. This is chosen to meet
design goal G2, which requires isolation of provenance data
from each thread. This buffering scheme naturally distin-
guishes provenance data from every thread.

In NODROP, each system event contains the metadata and
the argument data. The metadata includes the basic attributes
of a system event, such as its type, timestamp, and size of
the system event. The argument data is distinct for different
types of system events. For system call events, each element
in the argument data is the value of a system call parameter.
If the size of the parameter values is large (e.g., the content of
read), NODROP follows the practice of Sysdig by truncating

USENIX Association 32nd USENIX Security Symposium 359

the parameter values that are larger than 80 bytes. For thread
switching, the argument data contains the IDs of the previous
thread and the next thread, respectively. For signals, the argu-
ment data contains the signal ID and the process ID, which
captures the signal.

4.4.2 The Consumer

The consumer is designed as a user-defined threadlet function
for processing provenance data. It has one parameter that
points to a copy of the in-kernel logging buffer in user-space
and returns nothing. The key task for NODROP is to ensure
the efficiency and security of the consumer. To achieve this,
the conventional threadlet is improved.
Kernel interaction. To efficiently and correctly pass the in-
kernel logging buffer to the consumer, NODROP uses mmap
to directly map the buffer from the kernel to user space. This
avoids the overhead of copying data and restricts the consumer
from accessing other in-kernel memory.
Memory protection. The key challenge for the consumer
is to ensure that it cannot be compromised by the host pro-
cess. Since the host thread or other parallel threads are in the
same process as the consumer, they could potentially modify
the consumer’s data. To prevent this, NODROP uses a com-
prehensive approach that combines address space random-
ization, an isolated heap, and MPK to protect the consumer.
Figure 3 summarizes the memory protection mechanisms
used by NODROP. The consumer is located in a randomized
memory region with a dedicated protection key. This region
includes a separate stack, heap, and mapped logging buffer.

First, NODROP randomizes the consumer’s address to pre-
vent attackers from obtaining it, making it more difficult to
compromise the consumer. When the consumer is first instru-
mented, NODROP randomly chooses the threadlet’s loading
address, preventing attackers from obtaining the consumer’s
address before the threadlet is run.

Second, NODROP allocates a dedicated heap and stack for
the consumer to prevent memory-overflow-based attacks (e.g.,
ROP) from the host thread. Isolating the heap is challenging
because an attacker could potentially compromise the heap al-
locator that allocates memory from the consumer’s dedicated
heap region. To prevent this, NODROP pre-loads a customized
heap allocator for the consumer that always allocates memory
from the dedicated heap.

Finally, NODROP enforces memory isolation using MPK, a
hardware primitive that achieves in-process memory isolation
by controlling protection keys and their permissions with
a thread-local register called PKRU [89, 107]. To protect the
consumer, NODROP binds a dedicated key to all consumer
memory. By updating the PKRU value, access permission for
that key is enabled at the consumer entry point and disabled
after it exits. Similar to previous approaches using MPK [89,
107], NODROP ensures that the host thread cannot modify
the PKRU register by scanning executable code to validate

Host HeapHost Heap

Host StackHost Stack

Memory Mapping RegionMemory Mapping Region

Executable Code

(b) Structure of Consumer

(a) Memory Layout of host thread

Dedicated HeapDedicated Heap

Global Data

Dedicated StackDedicated Stack

(c) Memory Protection with MPK

ConsumerConsumer

Host is running

key0: Write+Read
key1: Inaccessible
key0: Write+Read
key1: Inaccessible

Logging BufferLogging Buffer

map to
random
address

ConsumerConsumer

PKRU PERM

ConsumerConsumer

Consumer is running

key0: Write+Read
key1: Write+Read
key0: Write+Read
key1: Write+Read

PKRU PERM

Enter
consumer

Entry point

AccessAccess Leave
consumerkey0

key1 key1

key0

Figure 3: Memory layout of the host thread (a) and structure of
consumer (b). The consumer is mapped at a random address in the
mmap region of the host thread. The consumer has its own 5 MPK-
protected sections: executable code, global data, dedicated heap
plus stack, and the logging buffer mapped from the kernel.

that it contains no PKRU-related instructions. In NODROP, all
consumers in the same process share the same key. Since the
total number of MPK keys is limited, enough keys are left for
later use. Using one MPK key does not compromise NODROP
’s security because MPK protection is thread-local [54, 89].
Privilege escalation. Sandbox or container threads may have
limited execution privileges. However, suppose the consumer
uses the sandbox or container threads as host threads and
inherits the limited privilege. In that case, it cannot perform
necessary processing on the provenance data, such as writing
the data to files or network [16, 18, 38, 46, 56, 90, 93]. To this
end, NODROP elevates the consumer’s privileges by raising
the RLIMIT and CAPACITY to unlimited and disabling the
SECCOMP. NODROP recovers these privileges when switching
back to the sandbox or container thread.
Atomic execution. Because of the privilege escalation, the
sandbox or container thread may abuse the higher privilege
of the consumer, thus breaking the system security policy. To
avoid such abuse and other data-racing between the consumer
and the application thread, NODROP ensures the atomicity
of the consumer execution by disabling all signals while the
consumer is running. NODROP delays the upcoming signals
until the consumer exits. NODROP enables all signals when
switching back to the sandbox or container thread. At this
moment, NODROP delivers the delayed signals to their han-
dlers of the host thread. Therefore, there is never interleaved
execution between the consumer and the sandbox or container
thread.

4.4.3 Consumer Instrumentation

NODROP blocks the running thread and invokes the consumer
(5 in Figure 2) when either the in-kernel logging buffer is
full or the running thread exits. The instrumentation process
of the consumer is described in detail here.

360 32nd USENIX Security Symposium USENIX Association

Threadlet initialization. NODROP prepares and initializes
the consumer execution environment when the running thread
traps into the kernel for the first time (1 in Figure 2). Specif-
ically, NODROP allocates the space of the in-kernel buffer
and a per-consumer control block. The control block stores
the meta information describing a consumer, including its
running state, the address of the user-defined entry function,
memory layout, and protection key.
Consumer loading. When the consumer is first instrumented,
NODROP loads its binary(5 ∗ in Figure 2). The loading pro-
cess is similar to that of the execve system call. The kernel
module reads and parses the consumer’s ELF file, allocates
memory space, and loads all segments into memory, as shown
in Figure 3(b). Additionally, NODROP reserves an MPK key
and initializes the consumer control block. This loading phase
only occurs once for each thread, so its overhead does not sig-
nificantly degrade system performance. Furthermore, existing
in-memory template caching techniques can be leveraged to
further optimize this cost [96].
Consumer invocation.When invoking the consumer (5 in
Figure 2), NODROP’s kernel module maps the logging buffer,
saves the register context of the running thread, updates PKRU
value, elevates the privilege and finally upcalls to the con-
sumer’s entry point.
Consumer exit. We add a new system call that the consumer
uses to exit (7 in Figure 2). This system call does the reverse
of consumer invocation. Concretely, it releases the logging
buffer, recovers the privilege configuration, restores the PKRU
and other registers, and lastly, switches back to the instru-
mented thread.

5 Evaluation

In this section, we evaluate whether NODROP can address the
super producer threat without introducing significantly higher
system overhead than existing approaches. Specifically, we
focus on the following questions:

• RQ 1: Can NODROP avoid dropping provenance data?

• RQ 2: Can NODROP prevent a super producer from slow-
ing down other applications?

• RQ 3: What is the run-time overhead of NODROP?

• RQ 4: Can data reduction techniques address the super-
producer threat?

• RQ 5: Can increasing the buffer size address the super-
producer threat?

To ensure the generalizability of our evaluation, we run
experiments on four hardware configurations: 1 CPU core
with 2GB memory (C1 and C5), 4 CPU cores with 8GB mem-
ory (C2 and C6), 16 CPU cores with 32GB memory (C3 and
C7), and 32 CPU cores with 64 GB memory (C4 and C8).

We also conduct our experiments on both physical and vir-
tual machines, resulting in eight different configurations in
total. C1-C4 represent VM configurations, while C5-C8 rep-
resent PM configurations. All machines run OSes of Ubuntu
18.04. NODROP is also tested on other Linux distribution like
openEuler [82] 20.03 which shows the similar results.

5.1 RQ 1: Event Drop

To answer this research question, we first conducted a con-
trolled measurement study on the number of provenance
events dropped by NODROP and pro-performance solutions
such as Sysdig, LTTng, and Linux Audit. Then, we simu-
lated a realistic web server to evaluate how well NODROP can
prevent PDoS attacks.

In the controlled experiment, we launched a bash script
to mimic a super producer that generates a large amount of
provenance data in a short period. The script forks n pro-
cesses, where n is the number of CPU cores, and each process
repeatedly invokes the write system call and performs the
count++ operation. We adjusted the proportion of the write
and count++ operations to control the generation speed of
system call events over 30 seconds. We ran the experiment
on four hardware configurations, on both virtual and physical
machines. The percentage of dropped events represents the
potential success rate of a PDoS attack.

Figure 4(a), 4(b), 4(c), and 4(d) show the results for cases
with 1 CPU core and 2GB memory, and 32 CPU cores with
64 GB memory, on both virtual and physical machines. The
results for other configurations are similar to those shown in
Figure 4, but due to space limitations, we have included them
in our GitHub repository. The x-axis represents the number
of system call events generated by the kernel per second,
while the y-axis represents the number of system call events
processed per second by the user-space component. The gap
between y and x represents the number of events dropped.
The diagonal line in the figure is the ideal line, indicating that
no events have been dropped. The blue dot-dashed line and
magenta dash line represent Sysdig and LTTng, respectively.
We have omitted the line for Linux Audit for clarity, as it
drops nearly all events while the super producer is running.

Our evaluation shows that NODROP drops ZERO events
while a super-producer is running. In Figure 4, the line for
NODROP overlaps with the diagonal line, indicating that
no events have been dropped. In contrast, existing pro-
performance solutions drop most of the generated system
events, allowing for a high success rate for PDoS attacks.
Specifically, on machines with 1 CPU core and 2 GB memory,
Sysdig drops 31% and 33% of system call events on virtual
and physical machines, respectively. On 32-core machines,
Sysdig drops 98.5% and 98.9% of system call events on vir-
tual and physical machines, respectively. Similarly, LTTng
drops 71.9% of total system call events on a 32-core virtual
machine and about 60% of total events on a 32-core physical

USENIX Association 32nd USENIX Security Symposium 361

0

0.4

0.8

1.2

1.6

0 1.6

(a) 1CPU + 2GB on VM

R
ec

ei
ve

d
Ev

en
ts

 (1
 M

illi
on

/s
ec

)

NoDrop
Sysdig
LTTng

0 1.6

(b) 32CPU + 64GB on VM

0.4 0.8 1.2
Generated Events (1 Million/sec)

0 1.6

(c) 1CPU + 2GB on PM

0.4 0.8 1.2
Generated Events (1 Million/sec)

0 1.6

(d) 32CPU + 64GB on PM

0.4 0.8 1.2
Generated Events (1 Million/sec)

0.4 0.8 1.2
Generated Events (1 Million/sec)

Figure 4: The number of events dropped by NODROP and baselines with different hardware configurations. The x-axis is the number of
generated events in 30 seconds, and the y-axis is the number of events handled by the auditing framework.

machine. LTTng does not drop events on machines with 1
CPU core and 2 GB memory because it adopts a dynamic
buffer mechanism that can hold more events than Sysdig.
However, as we will show in the next section, this design also
causes LTTng to introduce more system overhead than Sysdig.
For Linux Audit, since it is not as well optimized as Sysdig
and LTTng [26], it drops nearly all system call events when
the super producer reaches 1% of its highest event generation
speed.

5.1.1 Preventing PDoS in realistic web-apps:

We evaluated whether NODROP can prevent PDoS attacks by
simulating a production-level web-server. We used the ’web-
serving’ benchmark from CloudSuite as the implementation
of the victim app. This benchmark hosts a production-quality
social networking engine, which we hosted with Apache 2.4,
MariaDB 10.1, PHP 7.4, and Elgg 3.3. The target app was
implemented as a static website that provides a "ping lookup"
service to users, but it had a command line injection vulnera-
bility that allowed attackers to run remote code. We hosted
the target app in a different process of Apache and evaluated
PDoS in two widely adopted resource isolation methods: (1)
the target app and victim app were scheduled and isolated by
the default Linux configuration, which focuses on maximizing
system utilization while providing fairness and performance
isolation in a best-effort way; and (2) the target app and victim
app were in different cgroups with isolated CPU utilization.
All applications were deployed on an Intel Xeon Silver server
with 16 CPU cores, 128 GB memory, and a 10 TB HDD.

Our implemented PDoS attack consists of three steps. First,
we simulate 20 visitors accessing the victim app and turn it
into a super producer. Second, the attacker waits for three
to five minutes to ensure that the auditing frameworks are
overloaded. Third, the attacker initiates a command & control
connection to the target app by exploiting a command line
injection vulnerability. We consider the PDoS attack success-
ful if the auditing frameworks do not record any provenance
data about the command & control connection. For each au-
diting framework, we conduct 120 PDoS attacks and count
how many of them are successful.
Results: Our experiment shows that NODROP can prevent
PDoS attacks, while all three baseline methods are vulnerable
to the PDoS attack. The attack success rates for these baseline

Table 2: Attack success rate of the PDoS attack (#successful/ #at-
tempts)

Sysdig LTTng Linux Audit NODROP

Default 120/120 107/120 120/120 0/120
Cgroup 115/120 107/120 120/120 0/120

 0

 20

 40

 60

 80

 100

1 4 16 32R
ec

ei
ve

d
Ev

en
t R

at
io

 (%
)

of Cores

NoDrop (PM)
Sysdig (PM)
LTTng (PM)

Sysdig-Camflow (PM)
NoDrop (VM)
Sysdig (VM)
LTTng (VM)

Sysdig-Camflow (VM)

Figure 5: Summary of how the auditing frameworks drop
events with different hardware configurations. The line of
NODROP overlaps with the 100% events received line, indi-
cating no event has been dropped across all configurations.

methods are higher than 90% in all cases, with at least 107
out of 120 PDoS attacks being successful. These results are
shown in Table 2 for both isolation methods. Furthermore,
using cgroup does not prevent the PDoS attack because the
victim app does not exceed its quota, and the collector is
unable to isolate provenance events internally.

5.2 RQ 2: Application Slowdown
To answer this research question, we implemented realistic
PADoS attacks using realistic web applications. In the PADoS
attack, we assumed that the target app and the victim app were
running in different cgroups. We implemented the target app
and the victim app in different cgroups to allow for absolute
isolation between them. An auditing framework was running
in both cgroups to monitor the target app and the victim app.

We implemented the victim app using the same script as
in §5.1, and we implemented the target apps using three
widely used web applications: Nginx [49], Redis [71], and
OpenSSL [95]. By leveraging the script, we were able to
control the generation speed of provenance data in the super
producer (the victim app). We evaluated Sysdig, Linux Audit,
and LTTng to show how they affected the performance of the
target app. To adopt a pro-integrity strategy, we implemented
two additional versions based on Sysdig. The first one, called
Sysdig-Camflow, optimized Camflow using a more efficient

362 32nd USENIX Security Symposium USENIX Association

kernel module from Sysdig while preserving the per-core
thread user-space collector from Camflow. The second one,
called Sysdig-Integrity, integrated synchronized event pro-
cessing [14] into Sysdig to ensure the integrity of provenance
data. Sysdig-Integrity blocked the currently running process
when its event buffer was full and woke it up once the buffer
had been processed. In this way, Sysdig-Integrity ensured
zero event loss and was a guaranteed pro-integrity solution.

We also reported the performance of applications on a
vanilla machine as the "No Consumer" to show the baseline
performance of the system without any auditing frameworks
in the user space. To measure the system performance of our
applications, we ran their corresponding benchmark scripts
and reported the official performance scores reported by the
scripts. This avoided statistical data bias that could have re-
sulted from poorly self-implemented benchmark scripts.

Figure 7 shows detailed results for Nginx with 1 CPU
core and 32 CPU cores on virtual machines. The results for
other configurations are similar, but we have included them
in our GitHub repository due to space constraints. The x-axis
of Figure 7 represents the workload of the super producer,
namely the speed of generated events per second, while the
y-axis represents the official performance score reported by
the benchmark scripts. Since the number of consumer threads
in Sysdig-Camflow equals the number of CPU cores, Sysdig-
Camflow and Sysdig are identical on a single-core machine.
Therefore, we merged the lines for Sysdig-Camflow and Sys-
dig in Figure 7(a). Overall, our experiment showed that an
attacker could paralyze the target app by turning the victim
into a super producer in a different cgroup.

Our experiments showed that (1) NODROP prevents the
PADoS attack, (2) existing pro-integrity solutions suffer from
the PADoS attack across different hardware configurations,
and (3) pro-performance collectors also slow down the tar-
get app. For all three web applications on all eight hardware
configurations, when the workload of the super producer in-
creased, NODROP maintained stable application performance
regardless of the increasing workload from the super produc-
ers. For example, in Figure 7, NODROP was at most 5.1%
slower on a single-core virtual machine and at most 0.5%
slower on a 32 CPU cores virtual machine than the ideal "No
Consumer" baseline. This overhead was also lower than that
of the baselines. This result proves that NODROP is robust
against PADoS attacks. In other words, an attacker cannot
slow down applications in different cgroup by running a
super producer.

We also notice that the pro-performance collectors can also
be vulnerable to the PADoS attack. On the single-core virtual
and physical machines, Sysdig, LTTng, and Linux Audit also
decrease the performance of the target app proportionally
to the event generation speed of the super producer. This is
because Sysdig, LTTng, and Linux Audit limit the resource
usage of their user-space component by allowing only one
user-space thread. Thus, Sysdig, LTTng, and Linux Audit be-

have the same as Sysdig-Camflow on a single-core platform,
making them de facto pro-integrity collectors. Linux Audit
has the worst performance because it relies on Netlink [99]
to pass events from the kernel to the user-space component,
which leads to a less efficient kernel module than other audit-
ing frameworks.

5.2.1 CloudSuite Setting

To further evaluate how well NODROP can prevent PADoS
attacks in a production environment, we also implemented
PADoS attacks using the CloudSuite setting that we used in
§5.1.

Our implemented PADoS attack consisted of three steps.
First, similar to PDoS, the attacker used 20 visitors to gener-
ate a flood of remote requests to the victim app. We further
adjusted the workload of visitors to generate increasing pres-
sure on the victim app. Second, the attacker waited for five
minutes to ensure that the auditing framework had enough
resources. Third, the attacker started a normal DoS attack on
the target app. In this case, the required workload for the DoS
attack on the target app was substantially reduced.

In our experiment, we measured the performance reduction
of the target app to evaluate the effectiveness of the PADoS
attack. To accurately measure the performance of the target
app, we also used wrk [94] to issue HTTP requests to the target
app and reported the number of returned HTTP responses as
its performance metric.

Results: Our evaluation showed that pro-integrity collec-
tors could substantially decrease the performance of the target
app and, thus, amplify possible DoS attacks. We showed the
performance of the target app in Figure 6. Note that the re-
quest sending rate on the x-axis represents the speed at which
requests reach the victim app, not the request processing speed
of the app. To better understand how pro-integrity collectors
decrease the performance of the target app, we plotted the
case of Sysdig and the case of no provenance collectors (No
Consumer) in Figure 6 as baselines.

With the default Linux configuration (Figure 6(a)), we ob-
served that pro-integrity collectors accelerated the DoS attack,
requiring less workload to slow down the target app. Specif-
ically, the curve for No Consumer remained flat when the
system had sufficient spare resources to digest attack traffic.
When the workload exceeded 34K packets/s, however, the
whole system became overloaded, and the performance of the
target app rapidly decreased. However, when provenance col-
lectors were present, the target app had smaller turning points
(for Sysdig, Sysdig-Camflow, and Sysdig-Integrity, these turn-
ing points were 32K, 15K, and 15K, respectively) and much
lower performance than No Consumer. This was because
pro-integrity collectors consumed too many system resources
and competed with other applications, overloading the server
more easily. In general, Figure 6(a) shows that pro-integrity
collectors can amplify DoS attacks since they blindly compete

USENIX Association 32nd USENIX Security Symposium 363

0
5

10
15
20
25

0 50

(a) default Linux configuration

O
th

er
 U

se
r

Pe
rf.

 (1
K

re
qs

/s
ec

)

10 20 30 40
Packets Sending Rate (1K packets/sec)

0
5

10
15
20
25

0 50

(b) under cgroup restrictions

O
th

er
 U

se
r

Pe
rf.

 (1
K

re
qs

/s
ec

)

10 20 30 40
Packets Sending Rate (1K packets/sec)

No Consumer
NoDrop
Sysdig

Sysdig-Camflow
Sysdig-Integrity

Figure 6: The performance of the target app(static page) in the case CloudSuite with a different workload from the super producer.The x-axis
is the packet sending rate of the super producer, and the y-axis is the performance score of wrk, measured in the number of returned HTTP
responses. Higher is better.

6

8

10

12

14

16

0 600

(a) 1CPU + 2GB on VM

150 300 450
per-CPU Event Speed (1K/sec)

20

30

40

50

60

70

0 600

(b) 32CPU + 64GB on VM

N
gi

nx
 P

er
f.

(1
K

re
qs

/s
ec

)

150 300 450
per-CPU Event Speed (1K/sec)

No Consumer
NoDrop
Sysdig
LTTng

Sysdig-Camflow
Sysdig-Integrity

Audit

N
gi

nx
 P

er
f.

(1
K

re
qs

/s
ec

)

Figure 7: The performance of Nginx on different platforms and hardware configurations under various workloads from the super
producer. The x-axis is the speed of generated events in 30 seconds, and the y-axis is the performance of Nginx, measured in the
number of requests per second.

for resources with other applications.

Figure 6(b) reports the results under cgroup restrictions.
The target app and the victim app had 20% and 80% CPU
utilization limitations, respectively. Consequently, the super
producer could not use up all system resources, and the tar-
get app was not impacted. The flat line for No Consumer in
Figure 6(b) indicates this, showing that the DoS attack was
ineffective. However, pro-integrity collectors compromised
the isolation of cgroup and greatly influenced the target app.
In the case of Sysdig, Sysdig-Camflow, and Sysdig-Integrity,
the worst performance loss for the target app reached 40.1%,
55.6%, and 83.7%, respectively. Please note that placing a
cgroup limitation on provenance collectors would cause a
PADoS attack as studied above. In contrast to existing prove-
nance collectors, NODROP preserved cgroup isolation and
successfully protected the target app from DoS attacks.

5.3 RQ 3: Runtime Overhead

This research question evaluated the runtime overhead of
NODROP by measuring its impact on the OS and on running
applications, both with and without a super producer. We used
Sysdig as a baseline, repeated measurements ten times, and
employed statistical methods, including the Wilcoxon signed-
rank test, to test for significant differences between Sysdig
and NODROP. We used p-value [22] as our evaluation metric
and concluded that results were statistically significant when
p < 0.05.

5.3.1 OS Overhead

Similar to evaluations in other auditing frameworks [86], we
used lmbench [76] to measure the OS overhead of NODROP.
On average, the OS overhead of NODROP was 35% higher
than vanilla Linux across eight different hardware configu-
rations. We also showed the relative overhead percentage
compared to Sysdig for four configurations in Table 3 and left
the results for other configurations in our GitHub repository.

Our experiments show that the OS overhead of NODROP
is similar to that of Sysdig. On average, the OS overhead of
NODROP is 0.2% lower than Sysdig across eight different
hardware configurations. Overall, we cannot find a statisti-
cally significant difference between Sysdig and NODROP. We
conclude that the differences between the OS overhead of
NODROP and Sysdig are mainly due to the randomness of
a dynamic system. The OS overhead measures the perfor-
mance of the kernel modules of NODROP and Sysdig. Since
NODROP implements its kernel module in the same way as
Sysdig, their OS overhead should be the same.

5.3.2 Application Overhead

To answer this research question, we conducted macro-
benchmarks to measure the performance of seven applications,
both with and without a super producer. These applications
can be divided into two categories: the first category includes
I/O-intensive benchmarks such as Nginx [49], Redis [71], and
Postmark [53], as well as two other applications, Django [63]
for Python and http [30] for Golang. The second category
includes CPU-intensive benchmarks, namely OpenSSL [95]
and 7-ZIP [84].

364 32nd USENIX Security Symposium USENIX Association

Table 3: Performance scores of lmbench. All values are shown as
percentages relative to Sysdig. The negative value means NODROP

is faster than Sysdig.

Configurations C1 C4 C5 C8 Ave

Syscall Tests

NULL syscall -8.1% -17% -8.3% -7.9% -10.3%
stat -9.0% +5.5% -1.8% -0.6% -1.5%
fstat +4.2% -1.7% +1.7% +1.6% +2.3%
open/close file -6.1% -2.9% -0.3% -1.8% -2.8%
read file +7.4% +7.1% +4.5% +7.2% +6.6%
write file +7.7% +7.2% +12.5% +12.1% +9.9%

File Access

file create (0K) -15.8% -7.1% -10.0% +2.7% -7.5%
file delete (0K) +0.5% +3.0% -0.7% -0.9% +0.5%
file create (10K) +0.1% +2.9% -3.7% -0.8% -0.4%
file delete (10K) +4.7% +1.5% -0.9% -0.4% +1.2%
pipe +3.0% +0.8% +6.9% +1.3% +3.0%
AF_UNIX +3.8% -10.5% +5.3% +10.1% +2.2%

We use the official benchmark tools with their default set-
tings for different hardware configurations to evaluate their
performance. We repeat each experiment 10 times and mea-
sure the average metrics reported by the benchmarks of each
application. Specifically, We use wrk [94] configured with
1,000 concurrent connections to benchmark Nginx. For Redis,
we use the redis-benchmark configured to send 1,000,000
requests and measure the speed of operation get. For Post-
mark, we use the built-in benchmark with the configuration
of manipulating 500 files concurrently and launching 100,000
transactions. We rely on the Phoronix Test Suite, one of
the most comprehensive benchmark suites of web applica-
tions [64, 101], to benchmark Django and http. For OpenSSL,
We use the built-in speed benchmark configured to utilize
all CPU cores and measure the time to compute one rsa4096
signature. For 7-ZIP, we use the built-in benchmark config-
ured to utilize all CPU cores and measure the compression
speed in MIPS. We report the relative cost of NODROP to
Sysdig for four configurations in Table 4a (without the super
producer) and Table 4b (with the super producer). We also
measure the overhead relative to the vanilla Linux with no
auditing framework running at all. We leave the results of
other configurations in our GitHub repository.

On average, the overhead of NODROP is 6.58% higher than
vanilla Linux and 6.30% lower than Sysdig across eight dif-
ferent configurations. Our statistical analysis confirms the
validity of our data. Both Sysdig and NODROP introduce over-
head compared to vanilla Linux since they record and con-
sume provenance events. However, the overheads of NODROP
to vanilla Linux are relatively less, with overheads less than
15% for all applications except Postmark. The reasons for the
difference in application overheads between NODROP and
Sysdig depend on hardware configurations and application
categories.

For single-core machines (C1 and C5 in Table 4a and

Table 4b), NODROP is more efficient because it eliminates
the process scheduling overhead. With a single-core, the OS
needs to periodically switch to the Sysdig process for prove-
nance data processing, which leads to higher application over-
head.

For multi-core machines, NODROP shows relatively high
performance because it not only eliminates the process switch-
ing cost of Sysdig but also avoids cross-core data transmission.
With multiple cores, the kernel module collects the prove-
nance data on the same core as the running application. How-
ever, the Sysdig process accesses the data in parallel on a
different core. This introduces a notable overhead of cache
coherence across the two cores due to the shared provenance
data buffer. On the contrary, NODROP processes the prove-
nance data on the same core as the in-kernel collector, avoid-
ing the cost of cross-core data transmission.

As shown in Tables 4a and 4b, NODROP offers lower run-
time overhead than Sysdig for applications with many I/O-
intensive processes, such as Nginx, Redis, and http. If there
are more I/O-intensive processes than CPU cores, the Sysdig
auditing processes will compete for computational resources
with the monitored applications. In other words, the audit-
ing processes of Sysdig will interrupt the monitored apps in
the same manner as NODROP. However, NODROP employs
threadlets by design, which add less scheduling overhead than
Sysdig. The fewer the number of CPU cores, the greater the
scheduling overhead for Sysdig. Thus, NODROP is typically
more effective when there are fewer CPU cores. Moreover,
we find that as the number of CPU cores increases, the appli-
cation’s event generation speed decreases due to changes in
application architecture. As a result, NODROP offers lower
runtime overhead in C4 compared to C1.

For CPU-intensive applications such as 7-ZIP, OpenSSL,
and Django, they generate almost no system call events. There-
fore, when there is no super producer, the overheads of both
NODROP and Sysdig compared to vanilla Linux are much
smaller, averaging less than 2% across all configurations.
When a super producer is running, the overhead of NODROP
remains while the overhead of Sysdig increases. This is be-
cause the centralized Sysdig auditing process needs to process
a large number of events generated by the super producer and
will persistently compete for computational resources with
the monitored application.

Sysdig may introduce less runtime overhead to the mon-
itored process when there are spare CPU cores available to
host the centralized auditing processes. In this case, there is no
resource competition between the monitored and auditing pro-
cesses. This is also the case for Postmark in C4 of Tables 4a
and 4b since our Postmark benchmark is single-threaded. Al-
though NODROP shows higher runtime overhead for Postmark
compared to Sysdig, it spares the core that would otherwise
be used to host the Sysdig auditing process and prevents event
dropping.
Kubernetes-managed application. To monitor IO-bound

USENIX Association 32nd USENIX Security Symposium 365

(a) Benchmark WITHOUT super producer.

Application Collector C1 C4 C5 C8

Nginx
NODROP 9.80 3.60 11.35 4.84
Sysdig 55.30 5.50 37.64 7.20
DIFF -29.30 -1.80 -19.10 -2.20

Redis
NODROP 8.90 3.10 8.66 2.42
Sysdig 21.00 5.00 21.00 5.70
DIFF -11.10 -2.00 -10.20 -3.10

Postmark
NODROP 25.50 19.10 30.60 20.65
Sysdig 96.30 8.60 95.80 13.50
DIFF -36.00 9.70 -33.30 6.30

Django
(Python)

NODROP 1.30 2.00 1.30 -0.20
Sysdig 1.10 2.30 1.10 0.30
DIFF 0.30 -0.30 0.20 -0.50

http
(Golang)

NODROP 14.10 2.20 14.66 2.71
Sysdig 78.90 2.20 65.70 2.20
DIFF -36.20 0.10 -30.80 0.50

OpenSSL
NODROP 0.60 0.10 0.20 0.70
Sysdig 0.60 0.10 0.20 0.60
DIFF 0.10 0.00 0.00 0.10

7-ZIP
NODROP 0.30 0.80 1.20 0.70
Sysdig 0.20 0.70 1.20 0.70
DIFF 0.10 0.10 0.00 0.00

PostgreSQL
NODROP 7.05 3.80 10.20 4.70
Sysdig 15.20 4.70 17.40 4.90
DIFF -7.61 -0.80 -6.50 -0.19

(b) Benchmark WITH super producer.

C1 C4 C5 C8
10.00 3.20 13.15 1.96
51.93 6.28 58.70 3.20

-27.60 -2.90 -28.70 -1.20
3.70 1.20 4.23 0.27

56.17 7.66 61.10 3.80
-33.60 -6.00 -35.30 -3.40
15.10 33.50 14.30 30.20
65.37 6.37 68.58 7.43

-30.40 25.50 -32.20 21.20
1.20 3.30 1.50 1.40

41.14 2.18 47.74 0.90
-28.30 1.10 -31.30 0.50

5.80 4.80 9.80 3.20
47.56 0.48 47.38 0.10

-28.30 4.30 -25.50 3.10
0.80 3.20 0.17 0.08

47.37 5.09 43.30 1.40
-31.60 -1.80 -30.10 -1.30

0.40 1.50 0.20 1.20
50.30 4.86 38.02 3.16

-33.20 -3.20 -27.40 -1.90
11.60 4.50 12.20 6.20
22.30 4.86 25.02 6.30
-9.50 -0.34 -11.40 0.00

Table 4: We measured the processing time per request/transaction for seven representative applications and a Kubernetes-
based PostgreSQL. For each application, the first two lines show the relative runtime overhead (%) compared to vanilla
Linux, where a lower value indicates performance closer to that of vanilla Linux. The third line shows the relative
overhead between NODROP and Sysdig, with values smaller than 0 indicating that NODROP outperforms Sysdig. For
brevity, we denote this as DIFF. We report the mean values across 10 runs, with p-values less than 0.05 shown in bold.

applications and complex systems, we combine PostgreSQL
Operator with Pgpool-II to deploy a PostgreSQL cluster with
query load balancing and connection pooling capability on
Kubernetes [12]. We deploy a Pgpool-II pod that contains a
Pgpool-II container and a Pgpool-II Exporter container. The
Pgpool-II container Docker image is built with streaming
replication mode. We set the replicas to 1, so we have three
pods in total. To test the replication functionality, we use
a benchmark tool called pgbench [11], which comes with
the standard PostgreSQL installation, and we measure the
processing time per transaction. We repeat each test 10 times
for all configurations, and each test lasts for 20 seconds.

Since we implemented the privilege escalation as men-
tioned in §4.4.2, NODROP is able to monitor system behav-
iors inside the Docker container. The results are shown in Ta-
bles 4a and 4b. We find that for each configuration, NODROP
introduces less than 15% overhead compared to vanilla Linux.
On average, NODROP introduces 3.34% lower overhead than
Sysdig. These results show that NODROP is suitable for mon-

itoring Kubernetes-based deployments.

5.4 RQ 4: Effectiveness of Data Reduction
Several log reduction and partitioning techniques, such as
CPR [110], LogGC [66], ProTracer [75], and KCAL [73], do
not solve the data integrity vs. performance dilemma because
they add high computation overhead, amplifying PADoS at-
tacks. To validate their ineffectiveness, we modified Sysdig’s
code by inlining the CPR algorithm into the kernel and called
it Sysdig-CPR.

Design of Sysdig-CPR: Since the CPR algorithm is an
offline algorithm that depends on the global properties of
graphs, we maintain a temporary graph in an extra 8M ker-
nel buffer for each CPU core. The design of Sysdig-CPR is
similar to Sysdig-Integrity, which blocks the currently run-
ning process when the event buffer (kernel and userspace
shared buffer) is full and wakes it up once the buffer has
been processed. Sysdig-CPR does two additional things: it
wakes up a kernel thread to run the CPR algorithm when

366 32nd USENIX Security Symposium USENIX Association

Table 5: Dropping rate of auditing frameworks with maximum
buffer size.

Configuration C1 C4 C5 C8
Linux Audit 99.2% 99.6% 99.1% 99.4%
Sysdig 19.3% 86.1% 25.5% 88.1%
LTTng 0% 49.5% 0% 52.1%

the kernel buffer is full and copies the reduced events to the
shared buffer for consumption; and it notifies the userspace
component to consume the buffer. Sysdig-CPR is available at:
https://github.com/nodropforsecurity/sysdigcpr

Results: Our measurement follows the configurations of
§5.2. We omit Sysdig-CPR for clarity in Figure 7 as well as
our GitHub repository because we find that the performance
curves of Sysdig-CPR in all configurations are stuck on the
horizontal axis. In our experiment, the kernel CPR can handle
2,000 events per second per core, which is consistent with
the original paper [110]. Although it can reduce most of the
events (more than 70%), the super producer can easily gener-
ate 100,000 events per second. This means that the system will
take several seconds to handle the generated events, which
greatly blocks the running applications.

5.5 RQ 5: Effectiveness of Increasing Buffer
Size

One possible approach to avoid event dropping in system
auditing frameworks [3, 4, 104] is to increase the buffer size.
However, this approach is ineffective. We applied this ap-
proach to Sysdig, LTTng, and Linux Audit and evaluated
them as follows. For each CPU core, we set the maximum
applicable buffer size, which is 768M for Sysdig and LTTng
and 77,000 messages for Linux Audit. We cannot increase the
buffer size even larger because the system will crash when
the buffer size exceeds the threshold. In our measurement
shown in Table 5, Sysdig, LTTng, and Linux Audit still drop
events with the same super producer configuration in §5.1.
The dropping rate is 88%, 52%, and 99% for Sysdig, LTTng,
and Linux Audit when the generation speed per core reaches
1.6 million per second. Moreover, as reported by the devel-
opers of Sysdig, increasing the size of the ring buffer may
significantly slow down the whole system [5,104]. According
to our experiment, when increasing buffer size from 8M to
768M, the events generation speed decreases by 35% under
the same stress test.

6 Related Work

Provenance analysis has been widely applied in different secu-
rity tasks, such as APT attack investigation [18, 32–34, 50, 51,
56, 70, 75, 90, 91, 93] and detecting stealthy security risks [19,
27, 37, 40–43, 46, 69, 77, 78, 83, 92, 102, 103, 108]. There are

also methods for precisely and clearly interpreting events to
explain applications’ behaviors [17, 44, 62, 65, 72, 74, 80, 111].
NODROP benefits these tasks by providing a more reliable
data source. Attackers regularly engage in anti-forensic ac-
tivities to cover their tracks [2]. Several cryptographic-based
approaches are proposed to secure logs [8, 28, 52, 85, 86],
but none discuss the security of the user-space component of
auditing frameworks.

Threadlet is a short sequence of instructions with self-
contained memory [58, 59, 67, 87, 88]. NODROP borrows this
concept but implements it differently as a piece of code in-
strumented to a host thread. NODROP provides protections
such as MPK, address randomization, and heap isolation.

7 Discussion

NODROP may allow a malicious process to compromise the
consumer residents in its memory. To this end, we adopt a
comprehensive solution that combines address randomization,
dedicated heap, MPK protection, and ensuring the atomic
execution of the consumer, as discussed in §4.4.2. Thus, al-
though the consumer shares the same memory space as user
applications, they are still protected. We notice that MPK
is available in most of the latest Intel server and client-side
CPUs. ARM, AMD, RISC-V, PowerPC, and Itanium CPUs
[13, 23, 47, 68, 107] also have similar mechanisms.

Although NODROP prevents attackers from slowing down
other applications, the attacker can still slow down a process
by injecting the super producer logic into the process directly.
We consider the thread model of this attack too strong for
NODROP. Indeed, as long as the attacker can compromise a
process, it is straightforward to slow down the process. How
to protect a running process from hijacking is beyond the
scope of this paper.

Windows provides the ETW [100] framework for prove-
nance collection, but it only has a kernel module and leaves
the user-space logic for customization. Thus, we cannot find
an “official” user-space component for ETW. Nevertheless,
the super producer vulnerability is about process scheduling
and isolation, which is general to both Linux and Windows.

8 Conclusion

This paper is the first to identify the super producer threat to
existing auditing frameworks. Through thorough experiments
and case studies, we find attackers can either disable existing
auditing frameworks or paralyze the whole system with a
super producer. Based on our discovery, we propose a novel
auditing framework, NODROP, that addresses the super pro-
ducer threat by providing resource isolation. Our evaluation
shows that NODROP prevents the super producer threat while
introducing 6.30% lower application overhead on average
across eight different hardware configurations than Sysdig.

USENIX Association 32nd USENIX Security Symposium 367

https://github.com/nodropforsecurity/sysdigcpr

9 Acknowledgement

We sincerely thank our Shepherd and all the anonymous re-
viewers for their valuable comments. This work was partly
supported by the National Key Research and Development
Program (No. 2022YFB4501802), the National Natural Sci-
ence Foundation of China (No. 62172009, No. 62141208)
and Huawei Research Fund.

References

[1] camflow > developer information. https://camflo
w.org/#query.

[2] Capec-268: Audit log manipulation. https://capec.
mitre.org/data/definitions/268.html.

[3] Document falco syscall buffer size adjustment de-
scribed in blog. https://github.com/falcose
curity/falco/issues/813.

[4] Falco on gke - dropped syscall events. https://gith
ub.com/falcosecurity/falco/issues/669.

[5] Falco on gke - dropped syscall events. https://gith
ub.com/falcosecurity/falco/issues/669#iss
uecomment-635476220.

[6] falco security > developer information. https://st
ackshare.io/falco-security.

[7] Multitenant web applications. https://learn.micr
osoft.com/en-us/azure/dotnet-develop-mul
titenant-applications.

[8] Secure logging with syslog-ng. https://archive.
fosdem.org/2020/schedule/event/security_s
ecure_logging_with_syslog_ng/.

[9] Vmware carbon black. https://www.vmware.com/p
roducts/whats-new/carbon-black.html.

[10] What is a security operations center (soc)? https:
//www.splunk.com/en_us/data-insider/what-
is-a-security-operations-center.html.

[11] pgbench documentation. https://www.postgresql
.org/docs/current/pgbench.html, 2020.

[12] pgpool documentation. https://www.pgpool.net
/docs/pgpool-II-4.2.3/en/html/example-ku
bernetes.html, 2020.

[13] Inc. Advanced Micro Devices. AMD64 Architecture
Programmer’s Manual Volume 2: System Program-
ming. Advanced Micro Devices, Inc., 2021.

[14] Adil Ahmad, Sangho Lee, and Marcus Peinado. Hard-
log: Practical tamper-proof system auditing using a
novel audit device. In 2022 IEEE Symposium on Secu-
rity and Privacy (SP), pages 1554–1554. IEEE Com-
puter Society, 2022.

[15] Ali Anafcheh. Intrusion detection with ossec. 2018.

[16] Adam Bates, Kevin Butler, Alin Dobra, Brad Reaves,
Patrick Cable, Thomas Moyer, and Nabil Schear.
Retrofitting applications with provenance-based se-
curity monitoring. arXiv preprint arXiv:1609.00266,
2016.

[17] Adam Bates, Wajih Ul Hassan, Kevin Butler, Alin Do-
bra, Bradley Reaves, Patrick Cable, Thomas Moyer,
and Nabil Schear. Transparent web service auditing
via network provenance functions. In Proceedings of
the 26th International Conference on World Wide Web,
pages 887–895, 2017.

[18] Adam Bates, Dave (Jing) Tian, Kevin R.B. Butler, and
Thomas Moyer. Trustworthy Whole-System prove-
nance for the linux kernel. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 319–334,
Washington, D.C., August 2015. USENIX Association.

[19] Konstantin Berlin, David Slater, and Joshua Saxe. Ma-
licious behavior detection using windows audit logs.
In Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security, pages 35–44, 2015.

[20] Gianluca Borello. System and application monitoring
and troubleshooting with sysdig. 2015.

[21] Kevin D Bowers, Catherine Hart, Ari Juels, and Nikos
Triandopoulos. Pillarbox: Combating next-generation
malware with fast forward-secure logging. In Inter-
national Workshop on Recent Advances in Intrusion
Detection, pages 46–67. Springer, 2014.

[22] William Jay Conover. Practical nonparametric statis-
tics. Wiley series in probability and statistics. Wiley,
New York, NY [u.a.], 3. ed edition, 1999.

[23] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual. https://www.intel.
com/content/www/us/en/developer/articles/t
echnical/intel-sdm.html, 2021.

[24] dark laboratorys. A better generation of logcleaners.
https://web.archive.org/web/20070218231819
/http://darklab.org/~jot/logcleaning/logcl
eaner-ng_1.0_lib.html.

[25] Jessica DeCianno. Indicators of attack vs. indicators
of compromise. CrowdStrike, 2014.

368 32nd USENIX Security Symposium USENIX Association

https://camflow.org/#query
https://camflow.org/#query
https://capec.mitre.org/data/definitions/268.html
https://capec.mitre.org/data/definitions/268.html
https://github.com/falcosecurity/falco/issues/813
https://github.com/falcosecurity/falco/issues/813
https://github.com/falcosecurity/falco/issues/669
https://github.com/falcosecurity/falco/issues/669
https://github.com/falcosecurity/falco/issues/669#issuecomment-635476220
https://github.com/falcosecurity/falco/issues/669#issuecomment-635476220
https://github.com/falcosecurity/falco/issues/669#issuecomment-635476220
https://stackshare.io/falco-security
https://stackshare.io/falco-security
https://learn.microsoft.com/en-us/azure/dotnet-develop-multitenant-applications
https://learn.microsoft.com/en-us/azure/dotnet-develop-multitenant-applications
https://learn.microsoft.com/en-us/azure/dotnet-develop-multitenant-applications
https://archive.fosdem.org/2020/schedule/event/security_secure_logging_with_syslog_ng/
https://archive.fosdem.org/2020/schedule/event/security_secure_logging_with_syslog_ng/
https://archive.fosdem.org/2020/schedule/event/security_secure_logging_with_syslog_ng/
https://www.vmware.com/products/whats-new/carbon-black.html
https://www.vmware.com/products/whats-new/carbon-black.html
https://www.splunk.com/en_us/data-insider/what-is-a-security-operations-center.html
https://www.splunk.com/en_us/data-insider/what-is-a-security-operations-center.html
https://www.splunk.com/en_us/data-insider/what-is-a-security-operations-center.html
https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/pgbench.html
https://www.pgpool.net/docs/pgpool-II-4.2.3/en/html/example-kubernetes.html
https://www.pgpool.net/docs/pgpool-II-4.2.3/en/html/example-kubernetes.html
https://www.pgpool.net/docs/pgpool-II-4.2.3/en/html/example-kubernetes.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
 https://web.archive.org/web/20070218231819/http://darklab.org/~jot/logcleaning/logcleaner-ng_1.0_lib.html
 https://web.archive.org/web/20070218231819/http://darklab.org/~jot/logcleaning/logcleaner-ng_1.0_lib.html
 https://web.archive.org/web/20070218231819/http://darklab.org/~jot/logcleaning/logcleaner-ng_1.0_lib.html

[26] Mathieu Desnoyers and Michel R Dagenais. The lttng
tracer: A low impact performance and behavior moni-
tor for gnu/linux. In OLS (Ottawa Linux Symposium),
volume 2006, pages 209–224. Citeseer, 2006.

[27] Min Du, Feifei Li, Guineng Zheng, and Vivek Sriku-
mar. Deeplog: Anomaly detection and diagnosis from
system logs through deep learning. In Proceedings of
the 2017 ACM SIGSAC conference on computer and
communications security, pages 1285–1298, 2017.

[28] Jake Edge. Forward secure sealing. https://lwn.ne
t/Articles/512895/.

[29] Pengcheng Fang, Peng Gao, Changlin Liu, Erman Ay-
day, Kangkook Jee, Ting Wang, Yanfang Fanny Ye,
Zhuotao Liu, and Xusheng Xiao. Back-propagating
system dependency impact for attack investigation. In
USENIX security 2021.

[30] Athenas Jimenez Gabriela Cervantes. Go benchmarks.
https://openbenchmarking.org/test/pts/go
-benchmark, 2022.

[31] Holger Gantikow, Christoph Reich, Martin Knahl, and
Nathan L Clarke. Rule-based security monitoring of
containerized workloads. In CLOSER, 2019.

[32] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li,
Kangkook Jee, Zhenyu Wu, Chung Hwan Kim, San-
jeev R Kulkarni, and Prateek Mittal. {SAQL}: A
stream-based query system for {Real-Time} abnormal
system behavior detection. In 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[33] Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu,
Sanjeev R Kulkarni, and Prateek Mittal. {AIQL}: En-
abling efficient attack investigation from system moni-
toring data. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), pages 113–126, 2018.

[34] Ashish Gehani and Dawood Tariq. Spade: Support
for provenance auditing in distributed environments.
In Priya Narasimhan and Peter Triantafillou, editors,
Middleware 2012, pages 101–120, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[35] Andrés Santiago Gómez Vidal. Improvements in ids:
adding functionality to wazuh. 2019.

[36] Martin Grimmer, Martin Max Röhling, D Kreusel, and
Simon Ganz. A modern and sophisticated host based
intrusion detection data set. IT-Sicherheit als Voraus-
setzung für eine erfolgreiche Digitalisierung, 2019.

[37] Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xi-
angyu Zhang, and Dongyan Xu. Leaps: Detecting
camouflaged attacks with statistical learning guided

by program analysis. In 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, pages 57–68. IEEE, 2015.

[38] Jiaping Gui, Xusheng Xiao, Ding Li, Chung Hwan
Kim, and Haifeng Chen. Progressive processing of
system-behavioral query. In Proceedings of the 35th
Annual Computer Security Applications Conference,
pages 378–389, 2019.

[39] Steve Hales. Last door log wiper. https://packetst
ormsecurity.com/files/118922/LastDoor.tar.

[40] Xueyuan Han, Thomas Pasquier, Adam Bates, James
Mickens, and Margo Seltzer. UNICORN: Runtime
Provenance-Based Detector for Advanced Persistent
Threats. In Network and Distributed System Security
Symposium (NDSS’20). Internet Society, 2020.

[41] Xueyuan Han, Xiao Yu, Thomas Pasquier, Ding Li,
Junghwan Rhee, James Mickens, Margo Seltzer, and
Haifeng Chen. SIGL: Securing software installations
through deep graph learning. 2020.

[42] W. U. Hassan, A. Bates, and D. Marino. Tactical prove-
nance analysis for endpoint detection and response
systems. In 2020 IEEE symposium on security and
privacy (SP), pages 1172–1189, 2020.

[43] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang
Chen, Kangkook Jee, Zhichun Li, and Adam Bates.
Nodoze: Combatting threat alert fatigue with auto-
mated provenance triage. In Network and Distributed
Systems Security Symposium, 2019.

[44] Wajih Ul Hassan, Mohammad Ali Noureddine, Pub-
ali Datta, and Adam Bates. Omegalog: High-fidelity
attack investigation via transparent multi-layer log anal-
ysis. In Network and Distributed System Security Sym-
posium, 2020.

[45] Viet Tung Hoang, Cong Wu, and Xin Yuan. Faster
yet safer: Logging system via Fixed-Key blockcipher.
In 31st USENIX Security Symposium (USENIX Secu-
rity 22), pages 2389–2406, Boston, MA, August 2022.
USENIX Association.

[46] Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang,
Birhanu Eshete, Rigel Gjomemo, R Sekar, Scott Stoller,
and VN Venkatakrishnan. SLEUTH: Real-time Attack
Scenario Reconstruction from COTS Audit Data. In
26th USENIX Security Symposium, 2017.

[47] IBM Corporation. Power isa version 3.0b. IBM web-
site, 2021.

[48] Muhammad Adil Inam, Wajih Ul Hassan, Ali Ahad,
Adam Bates, Rashid Tahir, Tianyin Xu, and Fareed Zaf-
far. Forensic analysis of configuration-based attacks.

USENIX Association 32nd USENIX Security Symposium 369

https://lwn.net/Articles/512895/
https://lwn.net/Articles/512895/
https://openbenchmarking.org/test/pts/go-benchmark
https://openbenchmarking.org/test/pts/go-benchmark
 https://packetstormsecurity.com/files/118922/LastDoor.tar
 https://packetstormsecurity.com/files/118922/LastDoor.tar

[49] NGINX Inc. Nginx 1.21.1. https://www.nginx.co
m/, 2022.

[50] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang,
Mattia Fazzini, Taesoo Kim, Alessandro Orso, and
Wenke Lee. Rain: Refinable attack investigation with
on-demand inter-process information flow tracking. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[51] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan
Downing, Taesoo Kim, Alessandro Orso, and Wenke
Lee. Enabling refinable {Cross-Host} attack investiga-
tion with efficient data flow tagging and tracking. In
27th USENIX Security Symposium (USENIX Security
18), 2018.

[52] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Lat-
ifur Khan. Sgx-log: Securing system logs with sgx. In
Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, ASIA CCS
’17, page 19–30, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[53] Jeffrey Katcher. Postmark: A new file system bench-
mark. TR3022, 1997.

[54] The kernel development community. Memory protec-
tion keys. https://www.kernel.org/doc/html/la
test/core-api/protection-keys.html, 2022.

[55] Wael Khreich, Babak Khosravifar, Abdelwahab
Hamou-Lhadj, and Chamseddine Talhi. An anomaly
detection system based on variable n-gram features
and one-class svm. Information and Software
Technology, 91:186–197, 2017.

[56] Samuel T. King and Peter M. Chen. Backtracking
Intrusions. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, SOSP
’03, pages 223–236, New York, NY, USA, 2003. ACM.
event-place: Bolton Landing, NY, USA.

[57] Samuel T King and Peter M Chen. Backtracking intru-
sions. In Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles, pages 223–236,
2003.

[58] Peter M Kogge. Of piglets and threadlets: Architec-
tures for self-contained, mobile, memory programming.
In Innovative Architecture for Future Generation High-
Performance Processors and Systems (IWIA’04), pages
130–138. IEEE, 2004.

[59] Peter M. Kogge. Multi-threading semantics for highly
heterogeneous systems using mobile threads. In 2019
International Conference on High Performance Com-
puting & Simulation (HPCS), pages 281–289, 2019.

[60] Iman Kohyarnejadfard, Daniel Aloise, Michel Dage-
nais, and Vahid Azhari. Anomaly detection in microser-
vice systems using tracing data and machine learning.
2021.

[61] Iman Kohyarnejadfard, Mahsa Shakeri, and Daniel
Aloise. System performance anomaly detection us-
ing tracing data analysis. In Proceedings of the 2019
5th International Conference on Computer and Tech-
nology Applications, pages 169–173, 2019.

[62] Yonghwi Kwon, Fei Wang, Weihang Wang,
Kyu Hyung Lee, Wen-Chuan Lee, Shiqing Ma,
Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela F
Ciocarlie, et al. Mci: Modeling-based causality
inference in audit logging for attack investigation. In
NDSS, volume 2, page 4, 2018.

[63] Michael Larabel. Pyperformance benchmark. https:
//openbenchmarking.org/test/pts/pyperforma
nce, 2022.

[64] Michael Larabel and Matthew Tippett. Phoronix test
suite. Phoronix Media, [Online]. Available: http:
//www.phoronix-test-suite.com/. [Ac-
cessed October 2022], 2011.

[65] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu.
High accuracy attack provenance via binary-based exe-
cution partition. In NDSS, volume 2, page 4, 2013.

[66] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu.
Loggc: Garbage collecting audit log. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, CCS ’13, New York, NY,
USA, 2013. Association for Computing Machinery.

[67] Sheng Li, Amit Kashyap, Shannon Kuntz, Jay Brock-
man, Peter Kogge, Paul Springer, and Gary Block. A
heterogeneous lightweight multithreaded architecture.
In 2007 IEEE International Parallel and Distributed
Processing Symposium, pages 1–8, 2007.

[68] ARM Limited. ARM Architecture Reference Manual
ARMv7-A and ARMv7-R edition. ARM Limited, 2011.

[69] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang,
Xinyu Xing, and Dan Meng. Log2vec: A heteroge-
neous graph embedding based approach for detecting
cyber threats within enterprise. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1777–1794, 2019.

[70] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee,
Zhichun Li, Zhenyu Wu, Junghwan Rhee, and Prateek
Mittal. Towards a timely causality analysis for enter-
prise security. In NDSS, 2018.

370 32nd USENIX Security Symposium USENIX Association

 https://www.nginx.com/
 https://www.nginx.com/
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://openbenchmarking.org/test/pts/pyperformance
https://openbenchmarking.org/test/pts/pyperformance
https://openbenchmarking.org/test/pts/pyperformance
http://www.phoronix-test-suite.com/
http://www.phoronix-test-suite.com/

[71] Redis Ltd. Redis 6.0.9. https://redis.io/, 2022.

[72] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim,
Junghwan Rhee, Xiangyu Zhang, and Dongyan Xu.
Accurate, low cost and instrumentation-free security
audit logging for windows. In Proceedings of the 31st
Annual Computer Security Applications Conference,
pages 401–410, 2015.

[73] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung
Lee, Xiangyu Zhang, Gabriela Ciocarlie, Ashish
Gehani, Vinod Yegneswaran, Dongyan Xu, and
Somesh Jha. Kernel-supported cost-effective audit
logging for causality tracking. In Proceedings of the
2018 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’18, page 241–253, USA,
2018. USENIX Association.

[74] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xi-
angyu Zhang, and Dongyan Xu. {MPI}: Multiple per-
spective attack investigation with semantic aware exe-
cution partitioning. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 1111–1128, 2017.

[75] ShiQing Ma, Xiangyu Zhang, and Dongyan Xu. Pro-
tracer: Towards practical provenance tracing by alter-
nating between logging and tainting. In 23nd Annual
Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-
24, 2016. The Internet Society, 2016.

[76] Larry W McVoy, Carl Staelin, et al. lmbench: Portable
tools for performance analysis. In USENIX annual
technical conference, pages 279–294. San Diego, CA,
USA, 1996.

[77] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo,
and VN Venkatakrishnan. Poirot: Aligning attack be-
havior with kernel audit records for cyber threat hunt-
ing. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 1795–1812, 2019.

[78] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Es-
hete, Ramachandran Sekar, and VN Venkatakrishnan.
Holmes: real-time apt detection through correlation of
suspicious information flows. In 2019 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2019.

[79] Bruno Morisson. Analysis of the linux audit system.
Master’s thesis, Information Security Group, Royal
Holloway, University of London, 2014.

[80] Kiran-Kumar Muniswamy-Reddy, David A. Holland,
Uri Braun, and Margo Seltzer. Provenance-aware stor-
age systems. In Proceedings of the Annual Conference
on USENIX ’06 Annual Technical Conference, ATEC
’06, page 4, USA, 2006. USENIX Association.

[81] OccupytheWeb. How to cover your tracks & leave no
trace behind on the target system. https://null-b
yte.wonderhowto.com/how-to/hack-like-pro
cover-your-tracks-leave-no-trace-behind-
target-system-0148123, 2013.

[82] openEuler. https://www.openeuler.org/.

[83] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin,
and Sumayah Alrwais. Detection of early-stage enter-
prise infection by mining large-scale log data. In 2015
45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2015.

[84] p7zip. p7zip version 16.02. https://www.7-zip.or
g/, 2022.

[85] Riccardo Paccagnella, Pubali Datta, Wajih Hassan,
Adam Bates, Christopher Fletcher, Andrew Miller, and
Dave Tian. Custos: Practical tamper-evident auditing
of operating systems using trusted execution. 01 2020.

[86] Riccardo Paccagnella, Kevin Liao, Dave Tian, and
Adam Bates. Logging to the danger zone: Race condi-
tion attacks and defenses on system audit frameworks.
In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020.

[87] Brian A. Page and Peter M. Kogge. Deluge: Achiev-
ing superior efficiency, throughput, and scalability with
actor based streaming on migrating threads. In 2021
IEEE High Performance Extreme Computing Confer-
ence (HPEC), pages 1–6, 2021.

[88] Brian A. Page and Peter M. Kogge. Passel: Improved
scalability and efficiency of distributed svm using a
cacheless pgas migrating thread architecture. In 2021
12th Workshop on Latest Advances in Scalable Algo-
rithms for Large-Scale Systems (ScalA), pages 27–34,
2021.

[89] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,
and Taesoo Kim. libmpk: Software abstraction for intel
memory protection keys (intel MPK). In 2019 USENIX
Annual Technical Conference, pages 241–254, Renton,
WA, July 2019. USENIX Association.

[90] Thomas Pasquier, Xueyuan Han, Mark Goldstein,
Thomas Moyer, David Eyers, Margo Seltzer, and Jean
Bacon. Practical whole-system provenance capture. In
Proceedings of the 2017 Symposium on Cloud Comput-
ing, SoCC ’17, page 405–418, New York, NY, USA,
2017. Association for Computing Machinery.

[91] Thomas Pasquier, Xueyuan Han, Thomas Moyer,
Adam Bates, Olivier Hermant, David Eyers, Jean Ba-
con, and Margo Seltzer. Runtime analysis of whole-
system provenance. In Conference on Computer and
Communications Security (CCS’18). ACM, 2018.

USENIX Association 32nd USENIX Security Symposium 371

https://redis.io/
https://null-byte.wonderhowto.com/how-to/hack-like-procover-your-tracks-leave-no-trace-behind-target-system-0148123
https://null-byte.wonderhowto.com/how-to/hack-like-procover-your-tracks-leave-no-trace-behind-target-system-0148123
https://null-byte.wonderhowto.com/how-to/hack-like-procover-your-tracks-leave-no-trace-behind-target-system-0148123
https://null-byte.wonderhowto.com/how-to/hack-like-procover-your-tracks-leave-no-trace-behind-target-system-0148123
https://www.openeuler.org/
https://www.7-zip.org/
https://www.7-zip.org/

[92] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio,
Shiqing Ma, Fei Wang, Zhiwei Zhang, Luo Si, Xiangyu
Zhang, and Dongyan Xu. Hercule: Attack story recon-
struction via community discovery on correlated log
graph. In Proceedings of the 32Nd Annual Conference
on Computer Security Applications, pages 583–595,
2016.

[93] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel,
and Kevin Butler. Hi-fi: collecting high-fidelity whole-
system provenance. In Proceedings of the 28th Annual
Computer Security Applications Conference, pages
259–268, 2012.

[94] Open Source Project. Wrk. https://github.com/w
g/wrk, 2022.

[95] The OpenSSL Project. Openssl 1.1.1. https://www.
openssl.org/, 2022.

[96] Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao,
Riley Kennedy, Gabriel Parmer, Timothy Wood, and
Alain Tchana. Fine-Grained isolation for scalable,
dynamic, multi-tenant edge clouds. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), 2020.

[97] Navin Sabharwal and Piyush Pandey. Monitoring gke
using sysdig. In Pro Google Kubernetes Engine, pages
257–298. Springer, 2020.

[98] Jorge Salamero. Kubernetes runtime security with
falco and sysdig, 2019.

[99] J Salim, H Khosravi, Andi Kleen, and Alexey
Kuznetsov. Linux netlink as an ip services protocol.
Technical report, 2003.

[100] Thomas Schlabach. Insight into Event Tracing for
Windows. Bachelor thesis, Offenburg.

[101] Basu A Sharath S. Performance of eucalyptus and
openstack clouds on futuregrid. In International Jour-
nal of Computer Applications, 2013.

[102] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier,
and Gianluca Stringhini. Tiresias: Predicting secu-
rity events through deep learning. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 592–605, 2018.

[103] Yun Shen and Gianluca Stringhini. {ATTACK2VEC}:
Leveraging temporal word embeddings to understand
the evolution of cyberattacks. In 28th USENIX Secu-
rity Symposium (USENIX Security 19), pages 905–921,
2019.

[104] Mark Stemm. Cve-2019-8339, a falco capacity related
vulnerability. https://sysdig.com/blog/cve-20

19-8339-falco-vulnerability/?msclkid=4c2
c25afa9b511ec815c58c5f800beec, 2019.05.19.

[105] Afroza Sultana, Abdelwahab Hamou-Lhadj, and Mario
Couture. An improved hidden markov model for
anomaly detection using frequent common patterns.
In 2012 IEEE International Conference on Communi-
cations (ICC), pages 1113–1117. IEEE, 2012.

[106] Chin-Wei Tien, Tse-Yung Huang, Chia-Wei Tien, Ting-
Chun Huang, and Sy-Yen Kuo. Kubanomaly: Anomaly
detection for the docker orchestration platform with
neural network approaches. Engineering reports,
1(5):e12080, 2019.

[107] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. erim: Secure, efficient in-process isolation with
protection keys (mpk). In 28th USENIX Security Sym-
posium, pages 1221–1238, 2019.

[108] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee,
Xiao Yu, Kexuan Zou, Junghwan Rhee, Zhengzhang
Chen, Wei Cheng, C Gunter, and others. You are what
you do: Hunting stealthy malware via data provenance
analysis. In Symposium on network and distributed
system security (NDSS), 2020.

[109] Shen Wang, Zhengzhang Chen, Ding Li, Lu-An Tang,
Jingchao Ni, Zhichun Li, Junghwan Rhee, Haifeng
Chen, and Philip S. Yu. Attentional heterogeneous
graph neural network: Application to program reiden-
tification. 2019.

[110] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee,
Junghwan Rhee, Xusheng Xiao, Fengyuan Xu, Hain-
ing Wang, and Guofei Jiang. High fidelity data re-
duction for big data security dependency analyses. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
page 504–516, New York, NY, USA, 2016. Association
for Computing Machinery.

[111] Runqing Yang, Shiqing Ma, Haitao Xu, Xiangyu
Zhang, and Yan Chen. Uiscope: Accurate,
instrumentation-free, and visible attack investigation
for gui applications. In NDSS, 2020.

372 32nd USENIX Security Symposium USENIX Association

https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.openssl.org/
https://www.openssl.org/
https://sysdig.com/blog/cve-2019-8339-falco-vulnerability/?msclkid=4c2c25afa9b511ec815c58c5f800beec
https://sysdig.com/blog/cve-2019-8339-falco-vulnerability/?msclkid=4c2c25afa9b511ec815c58c5f800beec
https://sysdig.com/blog/cve-2019-8339-falco-vulnerability/?msclkid=4c2c25afa9b511ec815c58c5f800beec

	Introduction
	Background
	The Super Producer Threat
	Research Challenges
	Attack Scenario and Threat Model

	Design of Nodrop
	Design Goals
	Design Principles
	High-Level Workflow
	Design Details
	In-Kernel Logging Buffer
	The Consumer
	Consumer Instrumentation

	Evaluation
	RQ 1: Event Drop
	Preventing pdos in realistic web-apps:

	RQ 2: Application Slowdown
	CloudSuite Setting

	RQ 3: Runtime Overhead
	OS Overhead
	Application Overhead

	RQ 4: Effectiveness of Data Reduction
	RQ 5: Effectiveness of Increasing Buffer Size

	Related Work
	Discussion
	Conclusion
	Acknowledgement

