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Abstract
Deepfakes refer to content synthesized using deep genera-
tors, which, when misused, have the potential to erode trust in
digital media. Synthesizing high-quality deepfakes requires
access to large and complex generators only a few entities can
train and provide. The threat is malicious users that exploit
access to the provided model and generate harmful deepfakes
without risking detection. Watermarking makes deepfakes de-
tectable by embedding an identifiable code into the generator
that is later extractable from its generated images. We propose
Pivotal Tuning Watermarking (PTW), a method for water-
marking pre-trained generators (i) three orders of magnitude
faster than watermarking from scratch and (ii) without the
need for any training data. We improve existing watermark-
ing methods and scale to generators 4× larger than related
work. PTW can embed longer codes than existing methods
while better preserving the generator’s image quality. We
propose rigorous, game-based definitions for robustness and
undetectability and our study reveals that watermarking is
not robust against an adaptive white-box attacker who has
control over the generator’s parameters. We propose an adap-
tive attack that can successfully remove any watermarking
with access to only 200 non-watermarked images. Our work
challenges the trustworthiness of watermarking for deepfake
detection when the parameters of a generator are available.

1 Introduction

Deepfakes, a term used to describe synthetic media generated
using deep image generators have received widespread atten-
tion in recent years. While deepfakes offer many beneficial
use cases, for example in scientific research [9, 48] or educa-
tion [16,39,47], they have also raised ethical concerns because
of their potential to be misused which can lead to an erosion
of trust in digital media. Deepfakes have been scrutinized for
their use in disinformation campaigns [2, 23], impersonation
attacks [15, 35] or when used to create non-consensual media
of an individual violating their privacy [10, 20]. These threats
highlight the need to control the misuse of deepfakes.

While some deepfakes can be created using traditional
computer graphics, using deep learning methods such as the
Generative Adversarial Network (GAN) [19] can reduce the
time and effort needed to create deepfakes. However, training
GANs requires a significant investment in terms of computa-
tional resources [26] and data preparation, including collec-
tion, organization, and cleaning. These costs make training
image generators a prohibitive endeavor for many. As a con-
sequence, generators are often trained by one provider and
made available to many users through Machine-Learning-
as-a-Service [6]. The provider wants to disclose their model
responsibly and deter model misuse, which is the unethical use
of their model to generate harmful or misleading content [36].

Problem. Consider a provider who wants to make their
image generator publicly accessible under a contractual usage
agreement that serves to prevent misuse of the model. The
threat is a user who breaks this agreement and uses the gener-
ator to synthesize and distribute harmful deepfakes without
detection. To mitigate this threat in practice, companies such
as OpenAI have deployed invasive prevention measures by
providing only monitored access to their models through a
black-box API. Users that synthesize deepfakes are detectable
when they break the usage agreement if the provider matches
the deepfake with their database. This helps deter misuse of
the model, but it can also lead to a lack of transparency and
limit researchers and individuals from using their technol-
ogy [12, 50]. For example, query monitoring which is used
in practice by companies such as OpenAI raises privacy con-
cerns as it involves collecting and potentially storing sensitive
information about the user’s queries. A better solution would
be to implement methods that deter model misuse without the
need for query monitoring.

A potential solution is to rely on deepfake detection meth-
ods [7,13,17,24,25,30,40,56]. The idea guiding such passive
methods is to exploit artifacts in the synthetic images that
separate fake and real content. While these detectors protect
well against some deepfakes it has been demonstrated that
they can be bypassed by unseen, improved generators that
adapt to existing detectors [14]. As technology advances, it is
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Figure 1: A demonstration of our watermark and the impact of the number of embedded bits on the visual image quality. The top
row shows the watermarked, synthetic image and the bottom row shows its difference to the same image without a watermark.

possible that generators will be developed that synthesize vir-
tually indistinguishable images, rendering passive deepfake
detection methods ineffective in the long term.

A different approach to deepfake detection is watermark-
ing [60] when the detection method can access and modify
the target generator. This is a kind of watermarking that mod-
ifies the generator to embed an identifiable message that is
later extractable from access to the generated content using a
secret key. Methods such as generator watermarking [59, 60]
remain applicable to unseen image generators that could be
developed in the future. For deepfake detection, the provider
needs a watermark that is extractable from any image synthe-
sized by the generator. We refer to this setting as a no-box
verification, because the verifier only requires access to the
generated content, but not to the generator model. However,
there are still several challenges in designing no-box water-
marks. These include (i) the ability to embed long messages
with limited impact on the model’s utility, (ii) the undetectabil-
ity of the watermark without the secret key, (iii) robustness
against removal, and (iv) the method should be efficient.

Solution Overview. Existing watermarking methods are
difficult to scale to high-resolution models because they re-
quire re-training the generator from scratch which is compu-
tationally intensive [59, 60]. Moreover, while some existing
watermarks claim a good capacity/utility trade-off [60], these
claims have been limited to relatively small generators. To
address these challenges, we propose an efficient watermark
embedding called Pivotal Tuning Watermarking (PTW). PTW
is the first method to embed watermarks into pre-trained gen-
erators and speeds up the embedding process by three orders
of magnitude from more than one GPU month when wa-
termarking from scratch [59, 60] to less than one hour. We
identify modifications to existing watermarks that speed up
their embedding significantly and propose our own water-
mark that can be embedded using PTW with an improved
capacity/utility trade-off compared to related work. Figure 1
visualizes this trade-off for our watermark.

We propose rigorous, game-based definitions for robust-
ness and undetectability and evaluate our watermark in two
threat models, where the adversary either has access to the

generator only through an API (black-box) or has control over
its parameters (white-box). Our results confirm that existing
watermarking methods [59,60] are robust and undetectable in
the black-box threat model using existing attacks. We propose
three new attacks: a black-box attack called Super-Resolution
and two white-box attacks, called (1) Overwriting and (2)
Reverse Pivotal Tuning. Using these attacks, our experiments
show that watermarking is robust in the black-box setting, but
that it cannot withstand a white-box attacker with access to
only 200 images (≈ 0.3% of the generator’s training dataset)
who can remove watermarks at a negligible loss in the gen-
erator’s image quality. Our attacks undermine robustness in
the white-box setting and have implications on how water-
marking for image generators could be a viable solution to
deepfake detection in the future.

1.1 Contributions

• We propose a method to watermark pre-trained genera-
tors that we call Pivotal Tuning Watermarking (PTW).
PTW is a method for watermarking generators that (i)
does not require any training data and (ii) is three orders
of magnitude faster than existing methods [59, 60].

• We modify existing watermarks [59, 60] for GANs to be
compatible with pre-trained generators.

• We provide rigorous game-based definitions for robust-
ness and undetectability for generator watermarking.

• We propose an improved watermarking scheme and
experiment with three generator architectures (Style-
GAN2 [27], StyleGAN3 [26] and StyleGAN-XL [45])
on multiple high-quality image generation datasets.

• We propose one black-box and two white-box watermark
removal attacks. Our results show that watermarking is
not robust in practice against our white-box attacks.

• We release our source code implementing all existing
watermarking schemes and attacks as open source1.

1https://github.com/dnn-security/gan-watermark
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2 Background & Related Work

This section provides a background on generative models and
Pivotal Tuning [42], followed by a description of related work
on the detection and attribution of deepfakes.

2.1 Background
Generative Adversarial Network (GAN). GANs are a ma-
chine learning framework used to train deep generative mod-
els [19]. They define a generator G : Z→ X that maps from a
latent space Z to images X and a discriminator F : X →{0,1}
that maps images to binary labels. The labels represent real
and fake images. Let D ⊆ X be an image dataset and let
θF,θG be parameters for a discriminator and generator. The
unsaturated logistic loss for GANs is written as follows.

LGAN = E
x∼D

[logF(x;θF)] (1)

+ E
z∼N (0,Id)

[log(1−F(G(z;θG);θF)]

During training, the discriminator learns to classify real and
fake images and the generator learns to fool the discriminator.

StyleGAN [27]. The StyleGAN is a specific GAN archi-
tecture that introduces a mapper f : Z→W that maps latent
codes into an intermediate latent space. This intermediate
latent space contains styles with fine-grained control over
the synthesized image. Since its inception, the basic Style-
GAN [27] has been revised many times leading to the devel-
opment of StyleGAN2 [28], StyleGAN3 [26] and recently
StyleGAN-XL [45]. These generators achieve state-of-the-art
performance on many image generation datasets including Im-
ageNet [11] where they outperform2 other publicly accessible
generators such as Latent Diffusion models [43].

Pivotal Tuning [42]. Pivotal Tuning is a method to regu-
larize a pre-trained generator while preserving a high fidelity
to the generator before tuning. The idea is to preserve the
mapping from latent codes to images by cloning and freez-
ing the generator’s parameters, referred to as the Pivot with
parameters θG, and then fine-tuning a trainable, second gen-
erator θ∗G with some regularization term R(·). It has been
demonstrated that Pivotal Tuning achieves near-perfect image
inversion while also enabling latent-based image editing [42].
The Pivotal Tuning loss LPT is written as follows:

LPT = LLPIPS(x0,x)+λRR(x) (2)

where x0 = G(z;θG) is an image synthesized by the Pivotal
generator using a latent code z ∈ Z and x = G(z;θ∗G) is the
image generated using the tunable weights θ∗G for the same
latent code. The Learned Perceptual Image Patch Similarity
(LPIPS) [63] loss LLPIPS quantifies a perceptual similarity
between images extracted using deep feature extractors.

2https://paperswithcode.com/dataset/ffhq

2.2 Related Work
This section summarizes related work on deepfake detection
and attribution for deep image generators.

Deepfake Detection and Attribution. Deepfake detection
and attribution are the tasks of identifying fake images, that
have been generated or manipulated using deep image genera-
tors. Detection focuses only on detecting whether an image is
fake, whereas attribution focuses on determining the image’s
origin. For a given target generator that is used to synthe-
size a deepfake, we taxonomize existing work by (i) the level
of access to this target generator and (ii) whether the target
generator’s parameters can be modified by the detection or
attribution method prior to the deployment of the generator.

(i) Without Generator Access: In this setting, the detec-
tion algorithm does not have access to the target generator.
Existing work on detecting deepfakes trains classifiers on a
public set of deepfakes with known labels for fake/real im-
ages [13, 30, 44], exploit semantic incoherence such as asym-
metries [24, 34] or low-level artifacts from the generation
process [7, 17, 25, 33, 40, 56]. Deepfake attribution methods
without access to the target generator apply unsupervised
learning methods [18, 59] or only attribute deepfakes to an ar-
chitecture (and not a generator instance) [58]. Although these
methods have proven effective in detecting some deepfakes,
it has been shown that they can be evaded by an adversary
who adapts to these detectors [14].

(ii) With Generator Access: The detection method can
have some level of access to the generator, including black-
box API or white-box access to its parameters. (Fingerprint-
ing) Methods that do not modify the generator’s parameters
are referred to as fingerprinting methods. Recently, attribution
methods have been proposed for Latent Diffusion models [46]
based on training classifiers on the model’s generated data.
For GANs, fingerprinting methods all rely on training classi-
fiers on the target generator’s data [5,57,59]. (Watermarking)
Methods that modify the generator prior to deployment are re-
ferred to as watermarking methods. Yu et al. [60] modify the
generator’s training data and re-train a watermarked generator.
Another approach is to modify the generator’s training proce-
dure [61]. All existing methods require training the generator
from scratch to embed a watermark.

3 Threat Model

Our threat model consists of a defender, who we also refer
to as the model provider, and an adversary, who controls a
malicious user. We define the following functions.

• TRAIN: A training function T trains a generator on input
of a dataset D and returns trained parameters θG.

• EMBED: On input of a trained generator θG and a mes-
sage m ∈ {0,1}n, this function returns parameters θ∗G for
a tuned generator and a (secret) watermarking key τ.
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Figure 2: An overview of deepfake attribution by watermark-
ing the generator.

• EXTRACT: Given a key τ and an image, this function
returns an extracted message m′ ∈ {0,1}n.

• VERIFY: Given an extracted and a target message, this
method computes their bit error rate (BER) and returns
1 if the BER is below a threshold (i.e., the watermark is
present) and 0 otherwise.

• ATTACK: An attack A can use access to the generator
and auxiliary data to generate and return an image. The
objective of an attack is to remove a watermark.

Using the functions defined above, Figure 2 illustrates attribu-
tion through watermarking in three steps. First, the provider
trains a generator and embeds a watermark. Second, the gen-
erator is deployed and a malicious user generates harmful
deepfakes at any time after deployment. Finally, deepfakes
are attributed to the generator by verifying their watermark.

Adversary’s Capabilities. We consider two adversaries
that differ in their level of access to the target generator. Our
first adversary, the black-box adversary, has only API access
to the target generator. This means they can query the gen-
erator on any latent code z ∈ Z, but do not have knowledge
of its parameters or intermediate activations. The black-box
adversary is limited in the number of queries to the generator
since queries usually incur a monetary cost to the user. Our
second adversary, the white-box adversary, has full access
to the (watermarked) target generator’s parameters, meaning
they can tune the generator’s weights in an attempt to remove
watermarks and generate any number of watermarked images.
We use the same definitions for adversaries with black-box
API access and white-box access as Lukas et al. [31].

Both adversaries have access to a limited set of R real,
non-watermarked images from the same distribution as the de-
fender’s training data. An adversary can have limited access to
real images without a watermark, which is a commonly made
assumption to evaluate the robustness of watermarking [31].
We assume limited availability of real, non-watermarked data
in our threat model, as an attacker with sufficient data and
computational resources could train and deploy their own
generator without a watermark. A black-box attacker could at-
tempt to extract the generator [49], by training a surrogate on
generated data, but this is out of the scope of our work since
model extraction (i) requires massive computational resources
and (ii) likely results in surrogates with low utility [31].

Notation Description

T A stochastic training algorithm
D A distribution over images
Dn Distribution over n images
D∼D Draw images D uniformly from D
y← P (⃗x) Call P with x⃗ and assign result to y
A A procedure denoting an adversary
θ Parameters of a generator
m A watermarking message
τ A secret watermarking key

Table 1: A summary of our notation.

Adversary’s Objective. The common goal of our adver-
saries is to synthesize images (i) with high visual fidelity to
real images and (ii) to generate images that do not retain the
watermark. An image does not retain its watermark if the
verification mistakenly outputs zero.

Defender’s Capabilities. The defender has access to their
own generator’s parameters and the secret watermarking key.
Their objective is to verify any given image whether it origi-
nated from their generator. We refer to the defender’s access
during verification as no-box, because, unlike black-box veri-
fiable watermarking [1] that can verify the watermark using
many queries to the model, with no-box access the watermark
needs to be verified using only a (single) generated image.

3.1 Robustness
Algorithm 1 encodes the watermark robustness game, given
a data distribution D, a training algorithm T , an attack A
with access to R real images, a message length n ∈ N and a
challenge size K ∈ N. The challenge size is the number of
high-quality, non-watermarked images that the adversary has
to synthesize to win the game. Note that an adversary with
auxiliary access to at least K non-watermarked, real images
can always trivially win our security game by returning these
real images in their attack. For this reason, we make the as-
sumption that the adversary’s auxiliary dataset size R≪ K is
much smaller than the challenge size. We choose K=50000
which allows comparing the quality of the generated images
with related work [26, 28]. Table 1 summarizes our notation.

In Algorithm 1, the defender and adversary first sample
their real training and auxiliary datasets D,DA (lines 2-3).
Then, the defender trains their generator, samples a watermark
message, and embeds a watermark (lines 4-6). A fair coin is
flipped randomly K times (line 7) determining whether the
attack targets the generator before or after watermarking (line
8). Finally, the defender verifies each of the attacker’s images
and should correctly predict whether an image originated from
the non-watermarked or watermarked generator, called the
evasion rate (lines 9-10). We encode the access level of the
adversary to the target generator with a function O(θ) that
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Algorithm 1 Watermark Robustness Game

1: procedure O(θ) ▷ access level of the adversary
2: return θ if white-box else G(·;θ)

1: experiment ROBUSTNESS(D,T ,A ,R,K,n)
2: D∼D
3: DA ∼DR ▷ real, non-watermarked
4: θ0

G← T (D)
5: m∼ {0,1}n ▷ watermarking message
6: τ,θ1

G← EMBED(θ0
G,m)

7: B∼ {0,1}K ▷ K coin flips
8: X ←∪i∈{1..K}A(O(θBi),DA) ▷ images after attack
9: Y ←∪i∈{1..K}VERIFY(EXTRACT(Xi,τ),m)

10: y← 1
|Y | ∑i∈{1..K} 1Yi ̸=Bi ▷ evasion rate

11: return X ,y

returns parameters θ of the generator on white-box access and
access to the synthesis function G(·;θ) otherwise.

The success of the adversary is its expected evasion rate
y and the visual quality of its images X , which is commonly
measured by the Fréchet Inception Distance (FID) [22]. FID
is a perceptual distance computed between two sets of images
and a low FID score indicates a high visual similarity between
both sets. Similar to the evaluation by Karras et al. [27], we
measure the FID between the adversary’s images X and the
defender’s training dataset D. The success of the adversary is
a trade-off between its expected evasion rate and the visual
image quality after the attack.

SuccEVASION = E [y−FID(X ,D)] (3)

3.2 Detectability
A detectable watermark poses a threat because it facilitates
an adversary in locating and removing the watermark. Algo-
rithm 2 encodes the watermark detectability game for a given
data distribution D, detection attack ADetect, the adversary’s
auxiliary real dataset size R, and access to labeled synthetic
images R1 and R2 from the generator before and after wa-
termarking. Our game challenges the adversary to determine
whether an image was generated before or after watermarking.

First, the training and auxiliary datasets are sampled (lines
2-3) for training a non-watermarked model (line 4). The de-
fender samples a message and embeds a watermark (lines
5-6). Then, the attacker gets access to R1,R2 random, syn-
thetic non-watermarked, and watermarked images (lines 7-9).
A fair coin is flipped randomly, deciding whether the detec-
tion attack sees a watermarked or non-watermarked image
(line 10), the attack is executed (line 13) and the attacker’s pre-
diction is returned (line 14). The success of the detectability
attack is its expected classification accuracy.

SuccDETECTION = E [p] (4)

Algorithm 2 Watermark Detection Game

1: experiment DETECTABILITY(D,T ,ADetect ,R,R1,R2)
2: D∼D
3: DA ∼DR

4: θ0
G← T (D)

5: m∼ {0,1}n

6: τ,θ1
G← EMBED(θ0

G,m)
7: Z1,Z2 ∼ ZR1 ,ZR2

8: DA1 ←{G(z;θ0)|z ∈ Z1} ▷ non-watermarked
9: DA2 ←{G(z;θ1)|z ∈ Z2} ▷ watermarked

10: b∼ {0,1} ▷ coin flip
11: z∼ Z
12: x← G(z;θb)
13: p← 1ADetect (x,DA ,DA1 ,DA2 )=b
14: return p

Related work has proposed other methods to measure
detectability that sample synthetic images from generators
trained on the same dataset with different seeds [59]. How-
ever, in these approaches, it is unclear whether the detection
was successful because the watermark has been detected or
because there are some other patterns that make each gen-
erator instance identifiable (e.g., a fingerprint). Our notion
of detectability can be attributed solely to the impact of the
watermark in the synthesized image.

4 Conceptual Approach

This section describes our proposed embedding method for
watermarking image generators. We describe improvements
of our embedding method over existing methods. Then, we
modify two existing watermarks for GANs to enable their
embedding into pre-trained generators and propose our own
improved GAN watermark. Finally, we propose three attacks
against the robustness of watermarking.

4.1 Pivotal Tuning Watermarking

Pivotal Tuning Watermarking (PTW) is a method for water-
marking a pre-trained generator. On input of a pre-trained
generator θG and watermark decoder M, an n-bit watermark-
ing message m ∈ {0,1}n, a number of iterations N, a regu-
larization parameter λR and a learning rate α, PTW returns
a watermarked generator θ∗G with high output fidelity to the
generator before watermarking for the same latent codes.

The watermark decoder neural network extracts messages
from images and is used to regularize the generator. Let M :
X →{0,1}n be a decoder neural network that extracts n-bit
messages from images and m ∈ {0,1}n is a message that
should be embedded. Let λR be the strength of the watermark
regularization term, α is the learning rate and N be the number
of steps to optimize the generator θG.
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Algorithm 3 Pivotal Tuning Watermarking

1: experiment PTW(θG,M,m,N,λR,α)
2: θ∗G← copy parameters from θG
3: for i ∈ {1..N} do ▷ embedding loop
4: z∼ Z
5: x0← G(z;θG)
6: x← G(z;θ∗G)
7: gθ∗G

← ∇θ∗G
LLPIPS(x0,x)+λRH(M(x),m)

8: θ∗G← θ∗G−α ·Adam(θ∗G,gθ∗G
) ▷ update

9: return M,θ∗G

Algorithm 3 creates a copy of the pre-trained generator’s
parameters, called the pivot, and enters a loop (lines 2-3). A
random latent code is drawn and passed through both variants
of the generators to produce two images x0,x (lines 4-6). The
loss is computed according to Equation (2) where we compute
a binary cross-entropy H on the extracted and target messages
(line 7). The optimization tries to encode as many bits of the
message as possible into x while minimizing the LPIPS loss to
x0 generated by the pivot. The model parameters are updated
iteratively (line 8) and the tunable generator’s parameters and
the trained decoder are returned. The decoder represents the
secret watermarking key (line 9).

Overview. Any image generator that maps from a latent
space to images (see Section 2.1) is compatible with PTW.
PTW can also be used to embed any image watermarking
method [3,64] for that can be learned by a watermark decoder
network. We highlight three advantages of PTW over existing
embedding methods for GANs [59, 60].

1. Speed: PTW enables watermarking a pre-trained gener-
ator up to three orders of magnitude faster than water-
marking from scratch.

2. No Training Data: PTW only needs access to the gener-
ator, but not to any training data nor the discriminator.

3. Post-Hoc: PTW allows embedding watermarks as a post-
processing step into any pre-trained generator.

As stated in Algorithm 3, PTW requires access to a watermark
decoding network M. This decoding network is crucial for the
embedding procedure and we describe different methods of
training such a watermark decoder for GANs. We propose our
own watermark and then we modify and improve two existing
watermarks for GANs to allow embedding them into pre-
trained generators as a baseline comparison to our watermark.

4.2 Training a Watermark Decoder
Problem. The goal is to train a decoder neural network
M : X → {0,1}n that extracts messages from images. Our
decoder should be trained with knowledge of the generator’s
functionality and learn which pixels can be modified easily
to hide messages with minimal impact on the visual image

quality of the generator. For example, a generator trained to
synthesize faces likely allows encoding more bits per pixel for
central pixels in the image that belong to a face, as opposed
to pixels at the edge which encode the background. The chal-
lenge is that none of the existing GAN architectures allow the
input of a message, hence the problem becomes on how to
modulate a message to a generator.

Overview. We identify three methods to modulate a mes-
sage to a generator without changing its architecture. All three
options are based on training a deep neural network encoder,
that takes a message as an input and predicts a perturbation
(i) for the generator’s parameters [61] or (ii) its inputs [38]
which are the latent codes. The first two options are a weights
mapper MW and a bias mapper MB, which maps a message
to a subset of the generator’s weights and biases (≤ 1% in
practice). The weights and bias projectors make some as-
sumptions about the generator’s architecture, namely that an
intermediate layer defines weight and bias parameters. This
assumption is true for generators consisting of convolutional
layers, but not all generative image models contain convolu-
tional layers [62].

Algorithm 4 Training our Watermark Decoder

1: experiment DECODERTRAINING(θG,n,N,λR)
2: M,MZ ← random initialization
3: for i ∈ {1..|CONV(θG)|} do
4: Mi

W ,Mi
B← random initialization

5: θ← parameters from {M,Mi
W ,Mi

B,MZ}
6: for i ∈ {1..N} do
7: m∼ {0,1}n

8: z∼ Z
9: x0← G(z;θG)

10: θ∗G← copy parameters from θG
11: i← 0
12: for W,b ∈ CONV(θ∗G) do
13: W ←W ·Mi

W (m,z) ▷ weight mapper
14: b← b+Mi

B(m,z) ▷ bias mapper
15: i← i+1
16: z̃← z+MZ(m,z) ▷ latent mapper
17: x← G(z̃;θ∗G)
18: gθ← ∇θLLPIPS(x0,x)+λRH(M(x),m)
19: θ← θ−α ·Adam(θ,gθ) ▷ joint update
20: return M

Hence, our method of training a decoder is architecture-
dependent and applicable only to generators containing con-
volutional layers. However, this procedure can be adapted to
generators without convolutional layers by the same princi-
ples but using a different set of mappers which we leave to
future work. We now describe our decoder training algorithm
for an image generator G : Z → X containing at least one
convolutional layer. Let CONV(θ) be a function that extracts
weights and bias parameters from each convolutional layer
from a given set of parameters θ.

2246    32nd USENIX Security Symposium USENIX Association



w̃3

b̃3 B

Norm std

Conv 3x3

Upsample

Mod stdA
Dense

Dense

Dense

MZ

M3
B

M3
W

z m

E(m, z)

Encoder  
Backbone

Mappers Synthesizing Layer

…

b3

w3

z

Figure 3: An exemplary illustration of the mappers for a
single generator synthesis layer (adapted from [28]). On input
of a latent code z and a message m, the mappers (in green)
modulate the generator’s weights and inputs. A is an affine
transform and B is random noise sampled during inference.

Training the Decoder. Algorithm 4 encodes the algorithm
for training a decoder M given a pre-trained generator θG,
a watermark message length n, N training steps and a reg-
ularization weight λR. We randomly initialize the decoder
and mapper neural networks (lines 2-4) and set the learnable
parameters θ to contain parameters from the watermark de-
coder and all mappers (line 5). Then, in each step, we sample
a message and latent code randomly and generate an image
with the provided generator (lines 7-8). We create a copy of
the provided generator, iterate through all its convolutional
layers and perturb the copied generator’s weights using the
weight and bias mappers (lines 10-14). Then, we perturb the
latent code using the latent mapper and generate an image
using the copied generator and the perturbed latent code (lines
16-17). Finally, we compute the loss as stated in Equation (2)
and update the parameters of all mappers and the watermark
decoder (lines 18-19). After training, we return the watermark
decoder (line 20). Figure 3 illustrates the modulation of a
message to a synthesizing layer in a generator.

The returned decoder can extract messages from any image.
Notably, the decoder learns the number of bits that can be
encoded per pixel that causes the least degradation in visual
image quality (according to the LPIPS loss). We refer to Fig-
ure 1 to observe this effect, where the most perturbed pixels
are pixels with high semantic value such as the eyes and nose
of a face. Since the decoder depends on the generator instance,
a different decoder should be trained for each instance for the
best visual quality, but decoders can be re-used if the model
architectures are similar. The decoder can be used to embed
any message of length n using PTW. Next, we describe modi-
fications to existing watermarks [59,61] that allow embedding
them into pre-trained generators.

4.3 Modifying Existing Watermarks

Two existing watermarks for GANs require re-training the
generator from scratch to embed a watermark [59, 60]. This
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Figure 4: An illustration of our three attacks against the ro-
bustness of generator watermarking. RPT stands for Reverse
Pivotal Tuning. The function INVERT maps images to latent
codes and DOWNSCALE reduces the resolution of an image.

section describes modifications to both methods to allow wa-
termarking pre-trained generators as a baseline comparison
to our method. First, we briefly summarize both watermarks
and then describe our modifications.

Summary. The first watermark, which we call Yu1 [59],
trains an encoder-decoder network on real images by marking
the images with imperceptible patterns. The GAN is trained
from scratch on the marked training data. The second water-
mark, which we call Yu2 [60], modifies the GAN’s training
objective and is trained from scratch. Some of their modifica-
tions were invented to mitigate training instabilities such as
mode collapse [51] or consistency losses, which are problems
that do not appear during fine-tuning. The authors modulate
a watermark through a weight mapper MW and embed the
watermark by adding the predicted parameter perturbation
to the generator, allowing them to generate many differently
watermarked generators after the (expensive) re-training pro-
cedure. We refer to the author’s papers for a more detailed
description of their works.

Modifications. The required modifications for Yu1 are
straightforward: Instead of training on real training data, we
stamp synthetic data and use their decoder network for em-
bedding a watermark with PTW. For Yu2, we ignore all addi-
tional losses that address training instabilities or consistency
losses and train their weight mapping network instead via
fine-tuning on synthetic data while freezing the generator’s
weights. We embed the Yu2 watermark using the author’s
proposed approach by applying the prediction of the trained
weight mapper to the generator’s parameters.

4.4 Attacks against the Robustness
This section proposes three novel adaptive attacks against
the robustness of model watermarking for image generators.
Recall from Section 3 that we consider two adversaries: a
black-box and a white-box adversary. Previous work [59, 60]
assumes only a black-box attacker who can execute any of
these five attacks: blurring, cropping, image noising, JPEG
compression, or quantization. We refer to Appendix A for a
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detailed description of all attacks and parameters including
those from previous work. Figure 4 illustrates our proposed
black box and two white-box attacks.

4.4.1 Black-box Attacks

Our black-box attacker first scales the resolution of an im-
age down by a factor ρ and then uses super-resolution mod-
els [43] to upscale the image to its previous resolution. A
super-resolution model can upscale images by interpolating
details that are not sharp in the low-resolution image. Such
super-resolution models enable an attacker to apply stronger
perturbations to images in an attempt to remove their wa-
termark with a smaller impact on the image quality. Super-
Resolution models have been demonstrated to generalize well
to out-of-domain data, meaning that the attacker does not need
any access to the generator’s training data. While our attacks
use pre-trained models from related work [43] to achieve
super-resolution, we are the first to apply super-resolution
models to undermine watermarking in image generators. Pre-
vious attacks [59–61] use image augmentation techniques
such as blurring or noising to remove the watermark.

4.4.2 White-box Attacks

We propose two adaptive white-box attacks called overwrit-
ing and Reverse Pivotal Tuning (RPT). In the overwriting
attack, the attacker trains their own watermark decoder (see
Algorithm 4) and then uses PTW for watermarking the gener-
ator using a random message. The success of the overwriting
attack depends on the similarity between the defender’s wa-
termarking key τ and the attacker’s watermarking key τ̃. The
overwriting attack can be successful in removing the water-
mark if both keys modulate similar pixels in the input.

Algorithm 5 Reverse Pivotal Tuning (RPT) Attack

1: procedure RPT(θ∗G,D
R,N,α)

2: Z←{INVERT(x,θ∗G)|x ∈ DR}
3: for i ∈ {1..N} do
4: j ∼ {1..|Z|}
5: gθ∗G

← ∇θ∗G
LLPIPS(G(Z j;θ∗G),D

R
j )

6: θ∗G← θ∗G−α ·Adam(θ,gθ∗G
)

7: return θ∗G
1: procedure INVERT(x,θ∗G)
2: return argmin

z∈Z
LLPIPS(G(z;θ∗G),x)

Algorithm 5 implements our RPT attack. The attacker has
access to a watermarked generator θ∗G, a limited set of R non-
watermarked, real images DR and performs the RPT attack
for N steps with a learning rate α. Their goal is to regularize
the generator to synthesize images that are visually similar to
their real images (i.e., they have high visual quality), but do
not retain a watermark. The RPT attack consists of two stages:

(1) inversion of the real images (line 5) and (2) Pivotal Tuning
so that the inverted images have a high visual similarity to the
real images (lines 5-6). RPT should be successful with the
availability of many non-watermarked images.

5 Evaluation

We describe our experimental setup and specify our measured
quantities, namely the capacity, utility, detectability, and ro-
bustness. Then, we measure detectability and robustness (see
Section 3) and compare our watermarking method to the mod-
ified methods from related work (see Section 4.3).

5.1 Setup
Datasets. We experiment with three datasets for which pre-
trained, high-quality generators have been made publicly
available. FFHQ [27] consists of 70k human faces in various
poses. We experiment with a lower-resolution version of the
dataset at 2562 pixels, which we refer to as FFHQ-256, and
the high-quality version FFHQ at 10242 pixels. In addition,
we experiment with AFHQv2 [8] which consists of roughly
16k animal images and has a resolution of 5122 pixels.

Pre-Trained Generators. We experiment with three
StyleGAN-based architectures: StyleGAN2 [27], Style-
GAN3 [26] and StyleGAN-XL [45]. We select the StyleGAN
architectures because (1) this architecture achieves state-of-
the-art FID values on the surveyed datasets and (2) many high-
quality model checkpoints are publicly available that have
been trained with different seeds34. State-of-the-art image
generator architectures are evaluated using the same check-
points that we are using. Therefore, the image quality of our
watermarked generated images can be compared to the image
quality in ongoing research on image generation models.

Framework. We implement all watermarking methods
from scratch in PyTorch 1.13. While implementations for
Yu15 and Yu26 exist, we could not reproduce their results with
the provided implementation. Yu1 never converges and Yu2
is implemented in Tensorflow version 1, which is no longer
supported by modern GPUs, meaning we cannot re-use their
source code or load the provided generator checkpoints.

5.2 Evaluation Criteria
Utility. Similar to existing work [27] we measure the utility
of a generator by its Fréchet Inception Distance (FID) [22].
Lower FID indicates a higher utility. Similar to Karras et
al. [27], we measure FID between 50,000 generated and real
images. For AFHQv2 we use only 16,000 real images due to
the limited dataset size.

3https://github.com/NVlabs/stylegan3
4https://github.com/autonomousvision/stylegan-xl
5https://github.com/ningyu1991/ArtificialGANFingerprints
6https://github.com/ningyu1991/ScalableGANFingerprints
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Figure 5: Images synthesized using our watermarked generators on different datasets and model architectures. We show the
image synthesized by the generator (i) before and (ii) after watermarking, and (iii) the difference between the watermarked and
non-watermarked images. StyleGAN-XL does not provide a pre-trained model checkpoint for AFHQv2.

Capacity. We measure the capacity of a watermark in bits
by the difference in the expected number of correctly ex-
tracted bits from watermarked and non-watermarked images.
The expected rate of correctly extracted bits equals 0.5 for
non-watermarked images assuming messages are sampled
uniformly at random. Let m ∈ {0,1}n be a message, τ the se-
cret watermarking key, and θ are the parameters of a generator.
The capacity of the generator is computed as follows.

Cθ = n · E
z∈Z

[
VERIFY(EXTRACT(G(z;θ),τ))−0.5

]
(5)

It is straightforward to achieve a high capacity by overwrit-
ing a significant portion of the host image. However, this
approach also decreases the visual image quality which can
be measured and visualized as the capacity/utility trade-off.

Decision Threshold. We consider a watermark to be re-
moved, if we can reject the null hypothesis H0 with a p-value
less than 0.05. The null hypothesis states that k matching bits
were extracted from the synthetic images by random chance.
Quantitatively, the probability of this event is calculated as
Pr(X > k|H0) = ∑

n
i=k

(n
i

)
0.5n. In practice, for a watermark

with n = 40 bits, we need to extract at least 26 bits correctly,
meaning that we verify the presence of a watermark by cor-
rectly extracting Cθ ≥ 6 in bits.

5.3 Runtime Analysis
To calculate the speed-up of PTW over existing watermark-
ing methods [60, 61], we compare it with training non-
watermarked generators from scratch. This comparison is
fair, as watermarking is not expected to decrease a generator’s
training time. We estimate the total runtimes in GPU hours
using the suggested hyper-parameters in the relevant GAN
papers [26, 28, 45] on 8xA100 GPUs.

Model StyleGAN2 StyleGAN3 StyleGAN-XL
FFHQ-256 158h 482h 552h
FFHQ-512 384h 662h 1285h
FFHQ-1024 929h 1161h 1456h

Table 2: GPU hours required for training generators without
watermarking from scratch on FFHQ [27] on 8xA100 GPUs.

Table 2 shows the estimated training runtimes from scratch
for each generator on FFHQ [28] at varying pixel resolutions.
For instance, training a StyleGAN-XL model on FFHQ at a
resolution of 2562 pixels requires 552 GPU hours. With PTW,
watermarking a pre-trained generator on FFHQ requires only
about 0.5 GPU hours which is a three-orders of magnitude im-
provement for high-resolution generators. Our approach also
requires training the watermarking decoder (see Algorithm 4),
which is a one-time upfront cost of about 2 GPU hours.

5.4 Capacity/Utility Trade-off
This section summarizes our results on the capacity/utility
trade-off on various datasets, model architectures, and in com-
parison to two existing, modified watermarks: Yu1, and Yu2.

Visual Inspection. Figure 5 shows images synthesized by
our watermarked generators on all three surveyed datasets.
The columns show the original image synthesized before wa-
termarking, the image synthesized after watermarking and
their differences in the form of a heatmap. Heavily modified
regions are highlighted in yellow and red. In both versions
of the facial image datasets, we observe that our watermark
focuses on pixels located on the face of the generated person,
most prominently its eyes. Upon closer inspection, the net-
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(b) FFHQ-1024.
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Figure 6: The capacity/utility trade-off. Figure 6a shows our watermark in comparison to two existing, modified watermarks on
FFHQ-256 for StyleGAN2. Figure 6b shows our watermarking for on FFHQ-1024 using three different generator architectures.
Figure 6c shows our watermark on a different domain than faces (AFHQv2 [8], wild animals) using two different generator
architectures. The shaded area represents the standard deviation (N=3) in all Figures.

work modifies the eyes and mouth area of a face strongest
and is invariant to the location of the face in the image. For
AFHQv2, we observe that the pixels are more spread out
onto the entire image. In the next subsection, we compare our
watermark quantitatively to other existing watermarks.

Comparison to Existing Watermarks. Figure 6a shows
the trade-off on FFHQ-256 for different watermarking meth-
ods using a StyleGAN2 architecture. We plot the embedded
bits Cθ against the FID. Our method outperforms the other
two approaches substantially, as we can embed 100 bits with a
similar loss in utility as embedding 20 bits using Yu2. In con-
trast, Yu1 is not competitive, even though it employs PTW as
its embedding strategy. Upon analyzing the generated images,
we observed that Yu1 is not sensitive to the capacity per pixel
and attempts to encode many bits of the message into back-
ground pixels, which noticeably deteriorates the generator’s
quality. We believe this type of watermarking strategy works
better when the entire generator is re-trained from scratch, as
the generator can learn to allocate capacity to arbitrary pixels.
For FFHQ-256, using our watermark, encoding 40 bits only
worsens the FID by approximately 0.3 points.

Watermarking High-Quality Generators. Figure 6b
shows the trade-off using our watermark across three gen-
erator architectures on FFHQ-1024. Compared to FFHQ-256
which has a FID of over 5, the generators trained on FFHQ-
1024 have a much lower FID of less than 3. Our watermark
embeds up to 40 bits with little loss in utility, but the FID
deteriorates quickly when embedding more than 40 bits. For
StyleGAN2, we measure a FID deterioration of almost 3
points when embedding 100 bits. We believe the effect on the
FID is greater for the high-quality dataset due to two factors:
(1) high-quality images with a low FID may be more sensi-
tive to modifications, and (2) our watermark decoder down-
scales images to 2242 pixels which means that our decoder

cannot extract more information from larger images. Our de-
coder is a ResNet18 [21] model designed for this resolution.
Nonetheless, we demonstrate that watermarking high-quality
generators is possible using our method.

Watermarking Different Domains. Figure 6c shows
the capacity/utility trade-off across two generator architec-
tures for the domain of animal images. We cannot evaluate
StyleGAN-XL on AFHQv2 because no pre-trained check-
point was made available for this dataset. Our goal is to
demonstrate that our watermark is not restricted to just the
facial image domain. Figure 6c shows that our approach can
embed watermarks up to 100 bits, although we observe a
strong deterioration in FID of more than 4 points, at which
point the watermark is (barely) visually perceptible. While it
is possible to embed 100 bits, given our results, we believe
that 40 bits are more practically relevant as the deterioration in
FID is less than one point for StyleGAN2 and the watermark
is not easily perceptible. Interestingly, the deterioration in
FID is stronger for the animal domain which we attribute to a
larger output diversity. AFHQv2 contains images of multiple
different animal species in diverse poses.

5.5 Detectability

Our first experiment measures the detectability of our water-
mark at different capacities. We recall from our security game
in Algorithm 2 that the attacker has access to R1,R2 non-
watermarked and watermarked images. In our experiments,
we set R1 = R2 and evaluate the detectability of images syn-
thesized by generators that have been watermarked with vary-
ing capacities. We use a standard, pre-trained ResNet-18 and
fine-tune it for the detection task using an Adam optimizer.

Detectability versus Dataset Size. Figure 7a shows the de-
tection accuracy p of our attack against the number of labeled
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Figure 7: (a) The detection accuracy in relation to the adversary’s dataset size for different capacities without truncation. (b) The
detection accuracy plotted against truncation when fixing the adversary’s dataset size to ≤ 100 labeled images. (c) An ablation
study for the number of real, non-watermarked data used during our adaptive Reverse Pivotal Tuning attack. The shaded areas
denote the standard deviation (N=3) and the dashed horizontal lines show the generator’s FID before the attack.

images available to the adversary. As expected, a higher water-
mark capacity results in a higher detectability of watermarked
images. We observe that an adversary with access to ≥ 400
labeled images has a classification accuracy of over 90% in
classifying watermarked/non-watermarked images for any
capacity. An adversary with access to ≤ 100 images cannot
reliably detect watermarked images if the capacity is at most
40 bits. Our results show that the detection algorithm is not
successful at detecting our watermark unless the attacker has
access to a relatively large set of labeled, non-watermarked
images. Next, we evaluate the influence of the latent code’s
sampling strategy on the watermark detectability.

Truncation Trick. Generating an image from a GAN re-
quires sampling a latent code. The truncation trick [4] is a
technique used for generative models to limit the range of
values for a latent code and allows for controlling the diver-
sity and quality of the generated images. If the truncation
threshold ψ is low, samples will have a high similarity to the
real training data, but limited diversity meaning they may ap-
pear similar to each other. We identify that truncation plays a
significant role in the ability of an adversary to detect water-
marks. Figure 7b shows that the detection accuracy decreases
with an increasing diversity of the generator’s output when
fixing the number of samples available to the adversary.

5.6 Robustness

We evaluate the watermark’s robustness evaluated against
several types of attacks, including (1) black-box attacks like
cropping, blurring, quantization, noising, JPEG compression,
and our super-resolution attack, and (2) two white-box attacks,
overwriting, and Reverse Pivotal Tuning (see Section 4.4).
We refer to Appendix A for a description of the attacks and
parameters we use during our evaluation. All attacks are eval-

uated against generators that have been watermarked with a
capacity of at least Cθ ≥ 40 bits. Embedding 40 bits only de-
teriorates the generator’s FID by about 0.3 points on average
for StyleGAN2 on FFHQ.

5.6.1 Black-box Attacks

Latent Space Analysis. We examine whether there are points
in the generator’s latent space that synthesize high-quality
images without a watermark. If such points exist, an attacker
could attempt to find them and sample the generator on these
points. We test for such latent subspaces using three sampling
methods: (i) truncation, (ii) latent interpolation, and (iii) style-
mixing (for the StyleGAN architectures). Truncation restricts
the distance of a latent code to the global average. Latent
interpolation samples points on a line between latent codes
and style-mixing combines intermediate latent codes w ∈W
and feeds them to the generator [27]. Our results show that the
mean capacity remains unaffected by the sampling method,
meaning we were able to successfully extract the watermark
message in all cases. We conclude from these results that the
watermark generalizes to the generator’s entire latent space.

Removal Attacks. Next, we perform all surveyed removal
attacks against all watermarked generators and measure the
evasion rate and FID with K = 50,000 synthetic images. A
summary of all black-box attacks is shown as a scatter plot in
Figure 8. The Figure shows the remaining capacity after an
attack on the x-axis and utility (measured by the FID) on the
y-axis. The Pareto front, which represents the optimal trade-
off between capacity and utility, is highlighted and represents
the best attack out of all surveyed attacks that an adversary
could choose. We find that none of the black-box attacks are
effective at removing a watermark, but our super-resolution
attack is always part of the Pareto Front.

The Pareto front represents the best capacity/utility trade-
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Figure 8: This Figure shows the robustness of our water-
mark against all surveyed attacks. We highlight black-box
and white-box attacks that are members of the Pareto front.

off a black-box attacker can achieve using these attacks. For
example, a black-box attacker can reduce the capacity by 10
bits from 50 to 40, but in doing so reduces the FID by over 6
points. Our super-resolution attack is on the Pareto front but
cannot remove the watermark. Removal is only possible when
the FID drops to 30, at which point the image quality has been
compromised. Table 3 summarizes the best-performing black-
box attacks for the three evaluated generator architectures.
Each attack has a single parameter that we ablate over using
grid search. We refer to Appendix A for a detailed description
of all attacks and parameters we used in this ablation. Table 3
lists those data points that either remove the watermark (Cθ <
5) or, if the watermark cannot be removed, the data point
with the lowest FID. None of the black-box attacks, including
our super-resolution attack, are successful in removing the
watermark while preserving the generator’s utility.

5.6.2 White-box Attacks

Overwriting. Table 3 shows that overwriting can remove wa-
termarks but deteriorates the generator’s image quality, mea-
sured using FID, by approximately 3 points for StyleGAN2
and 6 points for StyleGAN-XL. Such a deterioration in FID
likely prevents attacks in practice because low-quality deep-
fakes are more easily detectable. Our overwriting attack also
implicitly assumes knowledge of the defender’s watermarking
method which may not be the case in practice. Overwriting
could cause a greater decline in FID if the attacker’s and
defender’s watermarking methods differ.

Reverse Pivotal Tuning. Our Reverse Pivotal Tuning
(RPT) attack is substantially more effective than the over-
writing attack as it preserves the FID of the generator to a
greater extent. We found that an attacker with access to 200

StyleGAN2 StyleGAN-XL StyleGAN3

Cθ FID Cθ FID Cθ FID
Attacks 43.05 5.4 48.79 2.67 40.33 6.61

Black-box Attacks
Crop 39.73 8.72 42.71 6.18 38.23 8.69
Blur 38.82 36.84 12.12 10.32 35.12 11.73
JPEG 42.12 8.70 38.43 9.12 38.23 9.33
Noise 40.26 8.29 45.17 7.35 32.29 10.73
Quantize 37.17 11.60 43.27 5.61 39.72 8.71
SR 32.86 11.51 34.52 11.62 30.12 11.34

White-box Attacks
Overwrite 4.78 8.34 4.91 8.83 4.73 9.71
RPT200 4.91 5.47 4.52 3.52 4.59 6.65
RPT100 4.44 5.56 4.21 3.90 4.47 6.75
RPT50 4.38 8.07 4.38 15.32 4.16 14.47

Table 3: The capacity and FID of all surveyed attacks. We
ablate over multiple parameters for each attack and this table
shows the points with the best (i.e., lowest) FID. RPTR stands
for the Reverse Pivotal Tuning attack using R real samples.

real, non-watermarked images is capable of removing any
watermark without causing a noticeable deterioration in FID.
This means that with access to less than 0.3% of the training
dataset, a white-box adversary can remove any watermark.
In the case of StyleGAN-XL, using 200 images leads to a
decrease in FID of less than one point (from 2.67 to 3.52).

Ablation Study for RPT. Figure 7c shows an ablation
study over the amount of real, non-watermarked training data
required by an attacker to remove a watermark. We mea-
sured these curves as follows: We randomly sample a set of R
real images and run the RPT attack encoded by Algorithm 5
with gradually increasing weight λLPIPS on the LPIPS loss
until the watermark is removed. Then we compute the FID
on K = 50,000 images. In all experiments, the watermark
is eventually removed but access to more data has a signifi-
cant impact on the FID that is retained in the generator after
the attack. For StyleGAN2, we find that 80 images (≈ 0.1%
of the training data) are sufficient to remove the watermark
at less than 0.3 points of deterioration in FID, which repre-
sents a visually imperceptible quality degradation. Our results
demonstrate that an adaptive attacker with access to the gen-
erator’s parameters can remove any watermark using only
a small number of clean, non-watermarked images and can
pose a threat to the trustworthiness of watermarking.

6 Discussion

This section discusses the limitations of watermarking and
our study, the extension of our work to other image generators,
and ethical considerations from releasing our attacks.

Non-Cooperative Providers. Our study demonstrates that
watermarking for image generators can be robust under cer-
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tain threat models (as detailed in Section 3). For watermarking
to effectively control misuse, every provider has to cooper-
ate and watermark their generators prior to disclosing them.
However, this is unlikely to occur in practice [55]. A capable
adversary with access to sufficient training data and computa-
tional resources can always train their own generator without
a watermark and provide it to others. It is important to ac-
knowledge this inherent limitation of watermarking methods,
as they cannot prevent this scenario. Nonetheless, they can
act as a deterrent to adversaries who lack the ability to train
their own generators from synthesizing harmful deepfakes.

Watermarking from Scratch. We focus on the robustness
and undetectability of watermarking methods on pre-trained
image generators due to the substantially higher scalability
compared to watermarking from scratch. Further research is
needed to explore the potential impact of watermarking from
scratch on robustness and undetectability.

Watermarking for Intellectual Property Protection. Wa-
termarking has also been used in the context of Intellectual
Protection (IP) protection of neural networks [32,37,52]. The
IP protection threat model typically assumes white-box ac-
cess of the adversary to the target generator and black-box
API access of the defender to the adversary’s generator to
verify a watermark. For example, Ong et al. [37] embed a
backdoor into a generator that synthesizes images containing
a watermark when the generator is queried with certain latent
codes. All watermarks evaluated in this paper assume no-box
access to the target generator, meaning that our watermarks
can be extracted from any of the generator’s synthetic images.
We show that existing no-box watermarks are not robust in the
white-box setting, meaning that they are likely not suitable
candidates for IP protection of generators in practice.

Other Generator Models. Recently, different image gen-
erators such as DALL·E 2 [41] based on the Transformer
architecture [53], and latent diffusion models [43] have been
shown to synthesize high-quality deepfakes. While OpenAI’s
DALL·E 2 generator is only accessible through a black-box
API7, model checkpoints for latent diffusion are publicly avail-
able as a white-box8. The utility of these checkpoints on
FFHQ is comparable to that of the StyleGAN model check-
points used in this paper (e.g., latent diffusion reports a FID
score of 4.98). DALL·E 2 and Latent Diffusion models also
map from a latent space to images, but they accept auxiliary
input such as text that controls the synthesis. While PTW is
compatible with any image generator that maps latent codes to
images, extending our work to other models requires develop-
ing a watermarking method that can map to their parameters
(see Section 4.2), which we leave to future work. Our work
demonstrates for one state-of-the-art generator model archi-
tecture (StyleGAN-based generators with a FID score of 2.1)
that they can be watermarked effectively using our method.

Summary of Deepfake Detection. Our research reveals

7https://openai.com/dall-e-2/
8https://github.com/CompVis/latent-diffusion

that existing watermarks are not robust against an adversary
with white-box access to the generator, but can withstand a
black-box adversary. This means that watermarking can be
a viable solution for deterring deepfakes if the provider acts
responsibly and the generator is provided through a black-box
deployment. The provider’s goal is to deter model misuse
which can be accomplished through several means. These
include (1) monitoring and restricting queries, (2) relying
on passive deepfake detection methods or (3) implementing
proactive methods such as watermarking. Monitoring lacks
transparency and can deter usage of the model if the user
does not trust the provider [12,50]. Passive detection methods
may be unable to detect deepfakes as the quality of synthe-
sized images improves or the adversary adapts to existing
detectors [14]. Active methods enable a different type of de-
ployment that (1) does not require query monitoring and (2)
remains applicable to future, higher-quality generators. The
provider and the user agree on a mutually trusted third party
to deploy the generator, who does not tamper with the water-
mark nor monitor the queries. Our research suggests that such
a black-box deployment represents a viable option in practice
to prevent model misuse using existing watermarks.

Ethical Consideration. Deep image generators can have
potential negative societal impacts when misused, for instance,
when generating harmful deepfakes. Our contributions are
intended to raise awareness about the limited trustworthiness
of watermarking in potential future deployments of image
generators, rather than to undermine real systems. While the
attacks presented in our paper could be used to evade water-
marking thereby enabling misuse, we believe that sharing our
attacks does not cause harm at this time, since there are no
known deployments of the presented watermarking methods.
We aim to advance the development of watermarking methods
that cannot be broken by our attacks.

7 Conclusion

We propose Pivotal Tuning Watermarking (PTW), which is a
scalable method for watermarking pre-trained image genera-
tors. Watermarking can be a promising long-term solution to
deepfake detection if the model providers are cooperative and
deploy only watermarked generators. PTW is three orders of
magnitude faster than related work and enables watermarking
generators 4× larger than without the need for any training
data. We find that our watermark is undetectable to an adver-
sary without the secret watermarking key. Watermarking is
robust against all surveyed black-box attacks, but not against
an adaptive white-box attacker. Such an adaptive attacker can
remove watermarks with almost no impact on image quality
using less than 0.3% of the training data with our adaptive
Reverse Pivotal Tuning (RPT) attack. Our results challenge
that watermarking prevents model misuse when the parame-
ters of a generator are provided. We hope that PTW advances
the development of trustworthy watermarking methods.
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A Attack Description

This section describes the attacks and shows which parameters
we explored in our grid search. We refer to the image before
attacking as the base image x and as the attacked image after
the attacker performs their attack x̃ = A(x, I) with auxiliary
information I. We find the range of evaluated parameters
through experimentation by limiting the degradation of the
attack on the visual quality of the images.

A.1 Black-box Attacks
Black-box attacks assume only black-box API access to the
target generator, meaning that they can query the generator
on arbitrary latent codes z∈Z, but they have no knowledge of
or control over the generator’s parameters or its intermediate
activations.

Algorithm 6 Super-Resolution Attack

1: procedure SUPER-RESOLUTION(x,ρ)
2: x̃← RESIZE(x,⌊RESOLUTION(x) ·ρ⌋)
3: while RESOLUTION(x̃)< RESOLUTION(x) do
4: x̃← SR(x̃) ▷ apply SR model
5: return RESIZE(x̃,RESOLUTION(x))
1: procedure RESOLUTION(x)
2: return resolution of x in pixels
3: procedure RESIZE(x,d)
4: return downsized image x with resolution d

The black-box attacks can be described as follows.

• Crop: First, the base image is center-cropped with a
given cropping ratio ρ ∈ (0,1] and then resizes the crop-
ping back to the base image’s original size. We experi-
ment with cropping ratios ρ ∈ [0.9,1].

• JPEG Compression: This attack performs JPEG com-
pression [54] on the base image with a quality q. A
higher quality better preserves the visual quality of the
image and we experiment with q ∈ [80,200].

• Noise: This attack adds Gaussian noise N (0,σ2) to the
image. We experiment with σ ∈ (0,0.05].

• Quantize. This attack quantizes the number of states
that a pixel can have. We compute quantization by the
following formula for a quantization q ∈ [0,1].

QUANTIZE(x) = q · ⌊x/q⌋ (6)

We experiment with quantization strengths q ∈ [0.5,1].

• Super-Resolution. Our Super-Resolution attack uses
Latent Diffusion models [43] provided through Hugging-
Face9. The used model increases an image’s resolution
by a factor of 4 through an optimization process. We
use Super-Resolution as a removal attack summarized
by Algorithm 6. We experiment with scaling factors
ρ ∈ [0.125,0.5].

A.2 White-box Attacks

White-box attacks assume full access to the target generator’s
parameters, meaning that the adversary can issue virtually
unlimited queries to the target generator and can control the
generator’s parameters and intermediate activations.

The white-box attacks can be described as follows.

• Overwriting. The overwriting attack trains a decoder
according to Algorithm 4 and overwrites the existing
watermark using PTW described in Algorithm 3. We
experiment with different weights of the watermark em-
bedding λR for PTW (see Algorithm 3). Increasing the
weight of the decoder’s loss λM results in a stronger
perturbation of all images synthesized by the target gen-
erator. We experiment with a weight λM ∈ [0.5,1.5].

• Reverse Pivotal Tuning (RPT). Our RPT attack is pa-
rameterized by the number of real, non-watermarked im-
ages R available to the adversary. We invert images in the
generator’s latent space by backpropagating the LPIPS
loss between the currently generated image and the base
image and updating the current latent code. While other
methods [42, 65] to invert real images can yield better
results, backpropagation is simple and works well in
practice. During training, we iteratively synthesize im-
ages from a randomly sampled batch of inverted latent
codes and optimize the LPIPS similarity between the
generated and corresponding base images. Algorithm 5
encodes our RPT attack.

B Implementation Details

This section describes the implementation details of our ap-
proach such as the hyperparameters we used to embed our
watermarks or the reference to the (publicly available) pre-
trained generator checkpoints. We make a fully working im-
plementation of all methods surveyed in this paper available
as open source.

9https://huggingface.co/CompVis/
ldm-super-resolution-4x-openimages
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B.1 Generator Checkpoints
We experiment with the following checkpoints. All check-
points were made publicly available by the authors [26,28,45].
On FFHQ-256, we use the following models: StyleGAN210,
StyleGAN-XL11, StyleGAN312. On AFHQv2 we use the
following models: StyleGAN213, StyleGAN314. On FFHQ-
1024 we use the following models: StyleGAN215, StyleGAN-
XL16, StyleGAN317

B.2 Watermarking Parameters
All watermarks in this paper are embedded with the following
parameters. We use an Adam optimizer [29] and we use a
learning rate of 10−4 for the generator during PTW (see Algo-
rithm 3). We use the same generator learning rate for training
a watermark decoder (see Algorithm 4) and a learning rate
of 10−3 for the watermark decoder. The watermark decoder
training from Algorithm 4 contains a similarity loss and a bi-
nary cross-entropy loss for the watermark decoder. We scale
the similarity loss with a weight λLPIPS = 1 and the loss for
the decoder with λM = 0.1. We train with a batch size of 128
on FFHQ-256, a batch size of 64 on AFHQv2, and a batch
size of 32 for FFHQ-1024.

10https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/
pretrained/paper-fig7c-training-set-sweeps/
ffhq70k-paper256-ada.pkl

11https://s3.eu-central-1.amazonaws.com/avg-projects/
stylegan_xl/models/ffhq256.pkl

12https://api.ngc.nvidia.com/v2/models/nvidia/research/
stylegan3/versions/1/files/stylegan3-t-ffhqu-256x256.pkl

13https://api.ngc.nvidia.com/v2/models/nvidia/research/
stylegan2/versions/1/files/stylegan2-afhqv2-512x512.pkl

14https://api.ngc.nvidia.com/v2/models/nvidia/research/
stylegan3/versions/1/files/stylegan3-t-afhqv2-512x512.pkl

15https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/
pretrained/ffhq.pkl

16https://s3.eu-central-1.amazonaws.com/avg-projects/
stylegan_xl/models/ffhq1024.pkl
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