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Abstract
As a way to implement the "right to be forgotten" in ma-
chine learning, machine unlearning aims to completely re-
move the contributions and information of the samples to
be deleted from a trained model without affecting the con-
tributions of other samples. Recently, many frameworks for
machine unlearning have been proposed, and most of them
focus on image and text data. To extend machine unlearning
to graph data, GraphEraser has been proposed. However, a
critical issue is that GraphEraser is specifically designed for
the transductive graph setting, where the graph is static and
attributes and edges of test nodes are visible during train-
ing. It is unsuitable for the inductive setting, where the graph
could be dynamic and the test graph information is invis-
ible in advance. Such inductive capability is essential for
production machine learning systems with evolving graphs
like social media and transaction networks. To fill this gap,
we propose the GUided InDuctivE Graph Unlearning frame-
work (GUIDE). GUIDE consists of three components: guided
graph partitioning with fairness and balance, efficient sub-
graph repair, and similarity-based aggregation. Empirically,
we evaluate our method on several inductive benchmarks and
evolving transaction graphs. Generally speaking, GUIDE can
be efficiently implemented on the inductive graph learning
tasks for its low graph partition cost, no matter on compu-
tation or structure information. The code is available here:
https://github.com/Happy2Git/GUIDE.

1 Introduction

In various complex real-world applications, we often en-
counter cases where the data is represented as graphs, such as
medical diagnosis [29], social media [45], advertising indus-
try [67], and financial industry [54]. The interactions between
neighboring nodes make it promising to learn rich information
from graph data. After showing great promise in effectively
solving graph-based machine learning tasks such as node
classification, link prediction, and graph classification, Graph

Neural Networks (GNNs) with their large number of vari-
ants [26, 32, 63, 65] have received much attention from the
machine learning community. Despite their success, recent
deployments of GNNs simultaneously raise privacy concerns
when the input graphs contain sensitive information of per-
sonal data, such as social networks and biomedical data. Re-
cently, the "right to be forgotten" has been proposed in many
regulations to protect users’ personal information, such as
the European Union’s General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act (CCPA)
[43, 44, 46, 47]. Broadly speaking, the "right to be forgotten"
provides individuals the right to request the deletion of their
personal information and the right to opt out of the sale of
their personal information.

As a de facto way to implement the "right to be forgotten"
in machine learning, machine unlearning allows the model
owner to completely remove the trace of the samples to be
deleted from a trained model without affecting the contribu-
tions of other samples, while its unlearning process requires
significantly lower computational cost than retraining from
scratch. In recent years, a long list of work on machine un-
learning has been proposed, and these methods can be catego-
rized into two classes: model-agnostic unlearning [6,9,24,64]
and model-intrinsic unlearning [8,18,19,28,50,56]. As one of
the most well-known model-agnostic methods, SISA [6] uses
data partitioning mechanisms to achieve efficient unlearning
without full retraining. Specifically, it first divides the dataset
into multiple isolated shards and trains a submodel for each
shard. Then it aggregates the predictions of all submodels
to obtain the final prediction. Such submodels can limit the
influence of each data sample throughout the training process.
When there is a data removal request, the model owner only
needs to partially retrain the submodel corresponding to the
data to be removed. Compared to SISA, many unlearning
methods, instead of retraining submodels, aim to obtain a
shifted model that satisfies some unlearning criteria by modi-
fying the weights of the existing trained model [56]. While
these unlearning methods have computational advantages,
they are not as transparent as SISA.
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Figure 1: Behavior of GraphEraser in various settings. The colors represent the ground truth labels of the corresponding nodes.
In the transductive setting, the features of the test nodes and their connections to other nodes are visible during the training
process (in the same static graph with training nodes). The red-shaded subgraphs indicate the test nodes (surrounded by black
circles) whose labels are unknown to the model owner in advance. In the inductive setting, training graphs can evolve over time
or change incrementally. The test graphs are also completely invisible, resulting in limited information available for training each
shard (with a small subgraph) without access to the test nodes and their edges.

Although there are numerous studies on machine unlearn-
ing, most are only tailored for image or text data, and un-
learning methods for graph data, i.e., graph unlearning, are
still lacking. Due to the additional node dependency in graph
data, existing unlearning methods cannot be directly applied,
which indicates that graph unlearning is more challenging.
Based on the SISA framework, [13] proposes the first graph
unlearning method, GraphEraser, for graph neural network
(GNN) models. Compared with the random partitioning in
SISA, GraphEraser provides two balanced partition methods
to preserve the additional structural information in graph data.
Then, it applies a learning-based aggregation method to obtain
the importance scores of submodels. Later, [16] proposes a
Certified Graph Unlearning (CGU) method based on the Sim-
plifying Graph Convolutional Network (SGC) [63], which is
a linear GCN model. Unfortunately, such a model-specific
method is inapplicable to general GNN models.

However, as we will show later, GraphEraser and CGU are
inherently designed for the transductive graph setting, where
the attributes (but not labels) and edges of test nodes are visi-
ble during training. They are not designed for the inductive
graph setting (where test nodes and edges are invisible during
training), which is ubiquitous in high-throughput production
machine learning systems, as pointed out by [26]. For exam-
ple, the evolving graphs in a transaction system constantly
encounter unseen data samples every day. Thus, the associ-
ated fraud detection models should be able to generalize to
the newly generated graphs efficiently. Besides transaction
systems, such inductive capabilities are also crucial for GNN
models in social media, advertising, etc.

For GraphEraser, the time cost of graph partitioning is ex-
ceedingly high, so it is not suitable to implement this frame-
work for the evolving graph or multi-graph cases in the in-
ductive setting. Graph unlearning requires that each shard
retains a small piece of the training graph to train a submodel.
However, the loss of visibility of test nodes and their connec-
tions makes submodel training more difficult in the inductive
setting. For example, it is easy to learn a weak submodel due
to the unfair label composition in each shard, as shown in
Figure 1. Note that the fairness here refers to group fairness,
which ensures some form of statistical parity for members of
different protected groups (e.g., gender or race) [3], i.e., the
label distribution in each shard remains the same statistic as in
the entire training graph. And we use balance in the following
discussions to represent that the subgraph of each shard has
the same size (number of nodes). In addition, GraphEraser
aggregates the predictions of submodels on the test nodes by
learning important scores for all shards. Once one shard is
updated, all other shards need to retrain their important scores,
which brings more computational cost and privacy risk.

Thus, we can conclude that the main challenge in model-
agnostic inductive graph unlearning is to preserve as much
structural information of the original graph as possible while
satisfying both fairness and balance constraints in graph par-
titioning efficiently. This is based on the insights that more
structural information leads to higher model performance, a
balanced partition ensures that the expected unlearning time
cost is small when facing small batch unlearning, and a fair
partition would lead to a more robust learning process.

Our contributions: Motivated by our above findings, in this
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paper we propose the first inductive graph unlearning frame-
work called GUided InDuctivE Graph Unlearning (GUIDE).
Briefly, GUIDE consists of three components: guided graph
partitioning with fairness and balance, efficient subgraph
repairing, and similarity-based aggregation. Specifically, in
guided graph partitioning, we propose two novel graph par-
titioning methods: GPFB-Fast and GPFB-SR, to obtain a
graph partition that efficiently satisfies both fairness and bal-
ance constraints. According to our experimental results, the
proposed methods are superior to GraphEraser with ⇠ 3⇥ bal-
ance and fairness scores. GPFB-Fast achieves ⇠ 10⇥ speedup
on graph partitioning. To the best of our knowledge, this is
also the first study on graph partitioning with fairness and
balance constraints.

Due to graph partitioning, a lot of edges would be lost,
destroying the structure of the original graph. Therefore, to
restore this missing information as much as possible, we pro-
pose subgraph repair methods as the second component of
GUIDE. Through our methods, missing neighbors and their
connections with the corresponding nodes could be efficiently
generated and added to these subgraphs to repair their struc-
ture. Notably, for each shard, our repairing procedures do not
involve the information of other shards. After receiving node
removal requests, the corresponding repaired subgraphs can
be efficiently updated by deleting the corresponding nodes
and edges.

As mentioned above, the learning-based aggregation
method LBAggr proposed by [13] requires access to the
entire training graph when updating the importance scores
of the corresponding shards. To speed up the training pro-
cess, LBAggr is trained on a constructed public subset of
the training graph. However, once a shard is updated, all im-
portance scores of other shards need to be updated as well,
which introduces additional computational cost. We develop
a novel similarity-based aggregation method as our third com-
ponent to address these issues. Unlike previous methods, our
method can compute the importance score of each shard inde-
pendently, and the normalized similarity score between the
partitioned subgraph and the test graph can be directly used
as the corresponding importance score. Such independent
updating will be more efficient than GrapnEraser when the
unlearning batch size is small.

We perform extensive experiments to demonstrate the per-
formance of GUIDE in the inductive setting. GUIDE achieves
superior performance (⇠ 3⇥) than the existing state-of-the-
art methods on popular node classification benchmarks and
the fraud detection task on a real bitcoin dataset. We also
introduce two metrics to evaluate the graph partitioning re-
sults: balance score and fairness score. Specifically, exper-
imental results show that GUIDE has lower time cost than
GraphEraser while achieving higher fairness and balance
scores in graph partitioning. In addition, we perform exten-
sive ablation studies to demonstrate the utility of other com-
ponents of GUIDE. Ablation studies show that our proposed

subgraph repair methods can significantly improve the perfor-
mance of GNN models trained on subgraphs. Furthermore,
similarity-based aggregation can achieve comparable results
to learning-based aggregation.

2 Preliminaries

2.1 Graph Neural Networks
Given an undirected graph G = (V ,E), where V is the set of
nodes and E is the set of edges, a basic graph neural network
(GNN) model attempts to learn a node representation for
downstream tasks from the graph structure and any feature
information we have. To train a GNN model, we always use
the message passing framework. During each iteration, the
GNN model updates the node embedding for each node u2V

by aggregating the information from u’s neighbors N (u). The
k-th update process can be formulated as follows [25]:

h(k+1)
u = UPDATE(k)

⇣
h(k)u ,AGGR(k)(h(k)v ,8v 2 N (u))

⌘

= UPDATE(k)
⇣

h(k)u ,m(k)
N (u)

⌘
,

where UPDATE and AGGR are some differentiable functions
and m(k)

N (u) is the aggregated ’message’ from the neighbors
of u. After K iterations of message passing, we can obtain
the final embedding for each node. These node embeddings
can be used for node classification, graph classification, and
relation prediction tasks.
Transductive and Inductive Graph Learning. There are
two settings for node classification tasks: the transductive
setting and the inductive setting. In the transductive setting,
the training nodes and test nodes are in the same static graph.
Test nodes and their associated edges are involved in GNN’s
message passing updates, even though they are unlabeled and
not used in the loss computation. In contrast, all test nodes
and their edges are completely unobservable during training
in the inductive setting. Besides, the training graph can also
evolve over time. Compared to the transductive setting, the
inductive setting is more common in production machine
learning systems that operate on evolving graphs and con-
stantly encounter unseen nodes, such as the daily user-video
graphs generated on Youtube [26].

2.2 Transductive Graph Unlearning
Machine Unlearning. Machine unlearning aims to fully elim-
inate any influence of the data to be deleted from a trained
machine learning (ML) model. To implement machine un-
learning, the most natural approach is to directly delete all
the revoked samples and retrain the ML model from scratch
by using the original training data without deleted samples.
While retraining from scratch is easy to implement, its compu-
tation cost will be prohibitively large to make it efficient when
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both the model and the training data are large-scale. Later on,
several methods have been proposed to reduce the computa-
tion overhead. See the related work section A in Appendix
for details.
Graph Unlearning. Graph unlearning refers to machine un-
learning for graph data, and in this paper we will focus on
GNN learning models. Compared to the standard machine un-
learning, there are additional challenges in graph unlearning,
e.g. the node dependency in graph data makes most of the
existing unlearning methods hard to be applied. To solve this
problem, [13] proposes the first graph unlearning framework,
GraphEraser.
GraphEraser. Given an undirected graph GF = (VF ,EF)
whose node set VF consists of a training set V and a test set
VT (without labels). GraphEraser consists of three phases: (1)
balanced graph partition; (2) shard model training; (3) shard
model aggregation. Specifically, in step (1), GraphEraser de-
signs two balanced graph partition algorithms (BLPA and
BEKM) to get a partition of the training set V . Different
from the vanilla methods such as community detection which
are easy to output imbalanced partition, BLPA heuristically
assigns the nodes with connections to the same group in a
manner similar to Lloyd’s algorithm for K-Means cluster-
ing until the size of the corresponding group arrives at some
threshold. BEKM applies a similar method to the embeddings
of graph data to achieve better performance. The balanced
partition methods could avoid the case that the imbalanced
partition contains large shards whose unlearning process is
highly inefficient. Suppose the subgraph held by the i-th shard
is {Vi [VT ,Ei[T}, where Ei[T is the edge set correspond-
ing to Vi [VT . Then in step (2) GraphEraser trains a GNN
model for each shard in a transductive manner where the un-
labeled test nodes and their incident edges are visible to GNN
during training. Then these GNN models are tested on the
same graph to predict the labels of transductive test nodes.
Considering these different shard models do not uniformly
contribute to the final prediction, in step (3), GraphEraser
applies a learning-based aggregation method (LBAggr) to op-
timize the importance scores of the shard models to improve
the global model utility.

3 Inductive Graph Unlearning

3.1 Problem Definition
Notably, inductive training graphs are different from
transductive training graphs. Given an undirected graph
GF = (VF ,EF) whose node set VF consists of a training
set V and a test set VT , the transductive training graph is
GF = (VF ,EF) except the labels of VT , while the inductive
training graph is G = (V ,E), where E is the edge set cor-
responding to V . Thus, inductive graph unlearning refers to
graph unlearning for inductive training graphs.

Similar to the transductive setting, we have three types of

unlearning requests in the inductive setting: node unlearning,
feature unlearning, and edge unlearning.

• For a node unlearning request on node u2V , the service
provider needs to retrain the GNN model on the new
training graph Gu = G\{Xu,eu,v|8v 2 Nu \V }, where
Xu represents the attribute of u.

• For a feature unlearning request on node u 2 V , the
service provider needs to retrain the GNN model on the
new training graph Gu = G\{Xu}.

• For an edge unlearning request on edge eu,v 2 E , the
service provider needs to retrain the GNN model on the
new training graph Gu = G\{eu,v}.

According to the SISA framework, the above three types
of unlearning lead to the same unlearning update procedure:
update the corresponding training subgraph, retrain the GNN
model, and compute the importance scores. This paper mainly
focuses on the node unlearning task because it is the most
difficult one, where feature unlearning and edge unlearning
belong to its subsets.

3.2 Challenges
The main challenges in inductive graph unlearning are caused
by the more limited available information in each shard com-
pared with transductive graph unlearning. As we pointed out
in Figure 1, GraphEraser is unsuitable for the inductive set-
ting. An inductive graph unlearning method should satisfy the
following objectives simultaneously to achieve satisfactory
performance.
C1: Balanced and Fair Graph Partition. Since there is no
help from the test graph during training, we need to make the
partition both balanced and fair. A balanced partition makes
the retraining time for each shard similar. A fair partition can
improve the utility since if several shards are unfair for some
classes, their corresponding GNN models would fail to train
effective classifiers. Both constraints should be efficiently
satisfied for inductive graph learning tasks, where the training
graphs may evolve over time or change incrementally.
C2: Comparable Submodel Utility. Unlike the transduc-
tive setting, in our problem we have no information on test
nodes, which implies that we lost a lot of information from
the original graph data for each subgraph after partitioning the
entire graph. Thus, to boost the performance of submodels,
we need to restore as much information as possible for each
subgraph without using other subgraphs’ information (due to
the unlearning requirement).
C3: Efficient Aggregation Procedure. Existing learning-
based aggregation methods need access to a auxiliary dataset
(such as the training graph). Once the the nodes in the auxil-
iary data need to be unlearned, the aggregation model must be
retrained. Moreover, the importance score of each shard can-
not be calculated independently by those aggregation methods,
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which implies that all importance scores should be updated
for optimal values if one shard model is updated, i.e., they
are quite inefficient. Therefore, we must design new aggrega-
tion methods that assign an importance score for each shard
independently and do not rely on additional data.

4 GUIDE Framework

4.1 Overview of GUIDE Framework
We propose the Guided Inductive Graph Unlearning (GUIDE)
framework to achieve the previous objectives. Generally
speaking, GUIDE consists of three components: guided graph
partition with fairness and balance, efficient subgraph repair-
ing, and similarity-based aggregation. Figure 2 illustrates the
framework of GUIDE.
Guided Graph Partition. To satisfy (C1), we first formulate
the problem of finding balanced and fair graph partitions as
spectral clustering with linear constraints, which is a quadratic
programming problem with binary variables. To solve it effi-
ciently, we relax the constraints and propose the method of
GPFB-Fast to solve the relaxed problem. We then present
an improved programming problem via spectral rotation and
propose GPFB-SR to solve it. To the best of our knowledge,
this is the first study on graph partition under fairness and
balance constraints.
Efficient Subgraph Repairing. Such a method aims to satisfy
(C2). During the partition process, we retain the original
degree information of each node independently (note that this
step is independent of future changes of other shards). When
the partition is completed, we generate missing neighbors
for each node independently according to its features and
its original degree information. Specifically, we design three
strategies: Zero-Feature Neighbor, Mirror-Feature Neighbor,
and MixUp Augmented Neighbor, to reduce the side effects
of our graph partition.

After repairing all subgraphs, the model owner trains GNN
models (in parallel) for all shards isolatedly. The repaired

nodes will involve in the GNN message-passing updates.
However, the final layer embedding for those repaired nodes
will not be used in loss computation.
Similarity-based Aggregation. We develop a similarity-
based aggregation method to assign an importance score for
each shard independently. The importance score for a shard is
calculated by the similarity between its associated subgraph
and the test graph. Once a shard is updated, its importance
score can be updated efficiently without affecting other shards.

In the following subsections, we will provide details of our
three components.

4.2 Guided Graph Partition with Fairness and
Balance

In this part, we aim to get a partition satisfying the balance
and fairness constraints simultaneously. It is notable that such
a task is challenging. On the one hand, while some previous
work [10, 13] has proposed some heuristic K-Means clus-
tering variants to achieve balanced graph partitions. Those
algorithms are difficult to be extended to graph partitions satis-
fying two constraints. On the other hand, existing work on fair
clustering also does not satisfy the population balance con-
straint [1, 17, 33]. For further introductions to graph-related
clustering, see Appendix B.

Before showing our method, we first show how to incor-
porate these two constraints into the graph partition problem.
Given a graph dataset G = (V ,E) with all node labels, we
suppose |V |= n and V = [̇s2[h]Cs where Cs denotes the node
set with label s (and there are h classes). It is obvious to see
that the ratio of label s in the whole dataset is |Cs|/n. Moti-
vated by [33], we can first construct a label-membership
indicator matrix F 2 Rn⇥h, where Fi,s = 1 if the label of
node i is s and Fi,s = 0 otherwise. Thus, the sum of entries in
the s-th column of F is |Cs|, the number of nodes with label s.
For a given partition V = [̇i2[v]Vi, we can easily see that the
number of nodes with label s in the i-th shard is |Cs \Vi| and
its ratio for the i-th shard is |Cs \Vi|/|Vi|.
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In the most balanced case, the sizes of all shards are the
same and the size of the i-th shard would be |Vi|⇤ = n/v. In
the fairest case, the ratio of label s in each shard should be the
same as its ratio in the entire dataset, i.e., (|Cs \Vi|/|Vi|)⇤ =
|Cs|/n. Then when the graph partition satisfies the fairness
and balance constraints at the same time, the number of label
s in the i-th shard should be |Cs \Vi|⇤ = |Cs|⇤|Vi|⇤

n = |Cs|
v .1

The following Theorem illustrates how we transform the
fairness constraint and balance constraints to a linear con-
straint on the group-membership indicator matrix Y 2 Rn⇥v

(see Section B in Appendix for the definitions of group-
membership indicator matrix Y and its normalized version H
for a partition).

Theorem 1 (Transformation of Fairness and Balance Con-
straints on Indicator Matrix Y). Based on the previous no-
tations, denote the fairness and balance guided matrix by
M 2 Rh⇥v, i.e., Ms, j =

|Cs|
v denotes the optimal size of label s

in the j-th shard. For a partition V = [̇i2[v]Vi, it is fair and
balanced if and only if F|Y = M, where Y 2 {0,1}n⇥v is the
group-membership indicator matrix of the partition that has
the form in (8).

Based on Theorem 1, it is sufficient for us to find a group-
membership indicator matrix Y such that F|Y = M. To in-
corporate into the spectral clustering problem (9), we can
leverage the spectral rotation theory by supposing there is an
orthogonal matrix R 2 Rv⇥v such that HR = Y (as illustrated
in problem (10)). In total, Theorem 1 suggests that to solve
the spectral clustering problem with fairness and balance con-
straints, it is equivalent to solve

min
Y2Y ,H,R

Tr(H|LH)

s.t. H|H = I,F|Y = M,HR = Y,RTR = I.
(1)

However, problem (1) is a binary quadratic integer pro-
gramming, which is hard to solve with low computation cost.
By introducing a new balanced and fair guided matrix, we
design a new linear constraint on the embedding matrix H in
(8) rather than Y.

Theorem 2 (Transformation of Fairness and Balance Con-
straints on Embedding Matrix H). Denote the normalized bal-
anced and fair guided matrix by eM 2 Rh⇥v, i.e., eMs, j =

|Cs|p
nv .

For a partition V = [̇i2[v]Vi, it is fair and balanced if
and only if F|H = eM, where H is the normalized group-
membership indicator matrix of the partition which has the
form in (8).2

Therefore, the optimization problem of finding a graph
partition that satisfies the fairness and balance constraints

1For simplicity, here we assume |Cs |
v is an integer. It is easy to extend to

general cases.
2The omitted proof of Theorem 1 and 2 are provided in Appendix D.

based on RatioCut is

min
H

Tr(H|LH) s.t. H 2 H ,F|H = eM, (2)

where H is the set of all normalized group-membership indi-
cator matrices. Similar to the standard spectral clustering, we
can relax it to

min
H

Tr(H|LH), s.t. H|H = I,F|H = eM. (3)

Problem (3) is equivalent to the following problem for a large
enough a:

min
H

Tr(H|LH)+akF|H� eMk2
2 s.t. H|H = I.

(4)
Problem (4) can be further written as a quadratic problem
over the Stiefel manifold, which can be solved efficiently by
the generalized power iteration method [41], i.e.,

max
H

Tr(H|(W�D�aFF|)H+2aH|F eM)

s.t. H|H = I
. (5)

After we solve problem (5) and get the optimal solution H⇤,
we can apply any K-Means clustering algorithm to its rows to
get the final partition of the graph. The optimization method
for problem (5), Graph Partition with Fairness and Balance
(Fast), is summarized into Algorithm 1 in Appendix C.

As pointed out in [27], the obtained relaxed continuous
spectral solution could severely deviate from the optimal dis-
crete solution. Motivated by [15, 60], we add a spectral rota-
tion regularization term to learn better embedding and indica-
tor matrices jointly. In total, we have the following problem.

min
H,Y

Tr(H|LH)+akF|H� eMk2
2+

bkHR�D� 1
2 Y(Y|DY)�

1
2 k2

2

s.t. H|H = I,R|R = I

. (6)

It is notable that as compared with the above problem (5), we
can get an indicator matrix directly without using K-Means
clustering algorithms by solving problem (6). In Appendix
D.1, we show how to solve problem (6) efficiently, and Algo-
rithm 2 in Appendix C is our final method. When the objective
function converges or satisfies certain convergence criteria,
we can stop the iteration and get the final indicator matrix Y
satisfying fairness and balance constraints.

4.3 Efficient Subgraph Repairing
Subgraph repair has been shown to be helpful in improving
the performance of subgraph federated learning [71]. The
missing neighbors to be repaired here refer specifically to the
1-hop neighbors of nodes. This is due to the fact that during
each training iteration, each node aggregates information from
its local (1-hop) neighbors, and as the iterations progress, each
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Figure 3: Efficient subgraph repairing. The side effects of partition on the computation graph (message passing operation) of
a 2-layer GNN are reduced by the proposed subgraph repairing strategies. The computation graph on a full dataset without
partition is provided in Appendix E.

node’s embedding contains more and more information from
further reaches of the graph [25]. But can these methods really
be applied here?
Federated Learning for Missing Neighbors? In a subgraph
federated learning system, nodes in each subgraph can po-
tentially have connections with those in other subgraphs. To
recover these cross-subgraph missing links, [71] proposes the
FedSage+ method to generate the number of missing neigh-
bors and the feature for each missing node. FedSage+ trains a
local missing neighbor generation model NeighGen for each
local client. The locally computed model gradients of the gen-
erative loss are transmitted among the system via the server.
Unfortunately, such a federated subgraph repair method in-
volves the training parameters of other clients, which is inap-
plicable in the setting of graph unlearning.
Local Generator for Missing Neighbors? What if we train
a neighborhood-generated model on each subgraph? As men-
tioned by [71], the federated learning setting is very crucial
for the training of NeighGen, which does not hold in graph
unlearning. Besides, the additional time cost introduced by
NeighGen is very high compared to the training time cost of
GNN models. Such complex generative models for subgraph
repair cannot be applied in graph unlearning, considering that
the primary purpose of graph unlearning is to reduce the re-
training time cost.

From the above discussions, we know that an appropriate
subgraph repairing method for graph unlearning should sat-
isfy the following properties: (1) It aims to restore the 1-hop
neighbors of each node; (2) The repairing procedure should
be simple since a complex local generative model will make
the unlearning algorithm have high training cost; (3) Due to
the unlearning requirement, its repairing procedure for each
subgraph cannot rely on other subgraphs’ information.

Motivated by the fact that the insight behind many suc-
cessful node classification approaches is to explicitly exploit
homophily, we propose to repair the missing nodes based on
their preserved neighbors before partitioning. Generally, ho-
mophily refers to the tendency of nodes to share attributes

with their neighbors [25, 40]. For example, people tend to
form friendships with others who share the same interests.
For a preserved node i, when homophily exists between its
neighbors, we know that its missing neighbors should also
have characteristics similar to xi. When heterogeneity exists,
homophily cannot be applied to its neighbors. However, we
can still use a simple and effective strategy to repair its local
structure. Specifically, we design the following three efficient
subgraph repair strategies.
Zero-Feature Neighbor. In this approach, each missing
neighbor’s attribute of node i will be constructed by

x̃ = 0d⇥1,

where 0d⇥1 is a d-dimentional vector of 0. As an extreme
case where homophily does not exist, we construct x̃ without
using any information from node i’s feature vector, xi. As we
show in Appendix E, this strategy is sufficient to recover a
basic structure of the computation graph.
Mirror-Feature Neighbor. Here each missing neighbor’s
attribute of node i is constructed by

x̃ = xi.

As another extreme case of homophily, we directly copy the
feature vector of node i as its missing neighbor’s feature. Its
repaired computation graph is also shown in Appendix E.
MixUp Augmented Neighbor. For a node, the MixUp Aug-
mented Neighbor approach assigns a randomly masked ver-
sion of the node to its neighbors. In detail, for note i, the
attribute of each its missing neighbor is constructed as fol-
lows.

x̃ = lxi +(1�l)0d⇥1,

where l is randomly sampled from the uniform distribution of
[0,1] each time for creating diverse neighbors. MixUp Aug-
mented Neighbor strategy could be considered a trade-off
between homophily and heterogeneity. Our strategy seems
similar to MixUp [70], which has been used as an efficient
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data augmentation routine. In short, MixUp extends the train-
ing distribution based on the observation that linear inter-
polations of feature vectors lead to linear interpolations of
the associated labels. However, our idea differs from MixUp
in that we fix the zero vector in the linear combination and
consider only the feature vector, while MixUp requires both
features and labels. Directly applying MixUp to repair the
missing neighbors of node i requires that node i can provide
enough information about the features of its existing neigh-
bors, which is unrealistic after graph partitioning. It is notable
that the labels of these newly constructed nodes will not be
used during the training process of GNN models. Thus, here
we do not need to care what their labels will be.

The effects of MixUp Augmented Neighbor on the compu-
tation graph are shown in Figure 3. Such simple methods can
recover the structure of the computation graph of the GNN
model to some extent and with low computation cost.

4.4 Similarity-based Aggregation
Our aggregation method is motivated by recent developments
in the interpretability of GNNs. In particular, several GNN
explanation studies have been proposed [38,48,68] and claim
that the behavior of GNN models is strongly related to the
structure of the training graph. [26] points out that for an
inductive GNN model, its generalization to unseen nodes
requires "aligning" newly observed subgraphs to the node
embeddings on which the algorithm has already been opti-
mized. A new graph with more similar substructures to the
training graph is expected to yield better inference results.
Thus, we should assign subgraphs which are more similar to
the test graph higher importance scores during the inference
stage. Here we can directly use graph kernels to measure such
similarity. In this paper, we will use the pyramid match graph
kernel [42] to compute the similarity score between the test
graph and each subgraph, which is a state-of-the-art algorithm
for measuring the similarity between unlabeled graphs. 3 Mo-
tivated by our ideas above, we propose our similarity-based
aggregation method.

Specifically, in our method we first represent each graph
as a set of vectors corresponding to the embeddings of its
vertices in the eigenspace. To find an approximate correspon-
dence between two sets of vectors, we then map these vec-
tors onto multi-resolution histograms and compare these two
histograms through a weighted histogram intersection mea-
sure [42]. Given the test graph Gt and the subgraph Gi of
shard i (with depth L), denote Hl

Gt
and Hl

Gi
as the histogram

of Gt and Gi at level l, respectively. We then calculate the
pyramid match kernel over these two histograms:

k(Gt ,Gi) =I(HL
Gt ,H

L
Gi
)+

L�1

Â
l=0

1
2L�l (I(H

l
Gt ,H

l
Gi
)

� I(Hl+1
Gt

,Hl+1
Gi

)),

(7)

3Note that any similarity measuring algorithm can be used here, depend-
ing on the settings of different tasks.

where I(Hl
Gt
,Hl

Gi
) is the number of nodes that match at level

l in the two sets. We refer the readers to [42] for more details
on this kernel. In practice, we can use the grakel library [53]4

to implement the pyramid match graph kernel.

4.5 Discussions
Choices of Different Components. We recommend service
providers to choose the appropriate partition and subgraph
repair methods according to their needs. The choice between
GPFB-Fast and GPFB-SR depends on the service provider’s
preference for graph partitioning: GPFB-SR could lead to a
considerably fair and balanced partition, while GPFB-Fast is
much faster than GPFB-SR. The choice of subgraph repair
strategy depends on the GNN structure we plan to use, as
shown in Table 3. Zero-Feature Neighbor is more appropriate
for the GraphSAGE model, while Mirror-Feature Neighbor
is more appropriate when using the GIN model. The MixUp
Augmented method is a general method for all GNNs.
Guarantee of Unlearning. Each component of GUIDE fol-
lows the principle of minimizing the use of training graph
information. The two proposed graph partitioning algorithms,
GPFB-Fast and GPFB-SR, both require only the edge infor-
mation of nodes with their IDs and labels. The feature infor-
mation of the nodes is not involved in the graph partitioning
step. The subgraph repair procedure uses only the degree
information of the entire training graph and the correspond-
ing feature information of each node. The similarity-based
aggregation computes the importance score for each shard in-
dependently based on the similarity between its corresponding
subgraph and the test graph during inference. After receiving
an unlearning request, except for the graph partition, both its
corresponding shard models and importance scores can be
unlearned deterministically. Therefore, similar to SISA [6]
and GraphEraser [13], GUIDE is an approximate unlearn-
ing approach. To prove the unlearning ability of GUIDE, we
perform the membership inference attack on GUIDE in sec-
tion 5.7 and show our results are close to random guessing.
These results are consistent with the conclusion of existing
work [6, 13, 14].
Computation Complexity Analysis. For GPFB-Fast, the
time cost on initializing B is O(nvh). In each iteration, the
time complexity of updating P is O(n2v+ nvh), while the
time complexity for computing WH and FF|H is O(n2v) and
O(nvh) respectively. The complexity of calculating reduced
SVD on P is O(n2v). The computation cost of K-Means is
O(nv2). Suppose the iteration number of updating H is t1,
then the total computation cost of GPFB-Fast is O(t1(n2v+
nvh)+nv2 +nvh).

For GPFB-SR, the time cost of solving R is O(v3), and the
computational complexity for obtaining Y is O(nv). There-
fore, suppose the iteration number of updating R,H,Y is t2
and the iteration number for obtaining Y is t3, the total time

4https://ysig.github.io/GraKeL/
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complexity of GPFB-Rotation is O(t2(v3 + t1(n2v+ nvh)+
t3(nv))+nvh).

Although the orders of the time complexity of GPFB-Fast
and GPFB-SR both are quadratic in n in theory, the main bot-
tleneck is the matrix computation which can be implemented
efficiently in parallel. In Section 5.2, we will illustrate that
in practice the computation costs of GPFB-Fast and GPFB-
SR are less than the computation costs of BLPA and BEKM
in [13], which must be performed sequentially by nodes.

5 Experimental Results

We evaluate the performance of GUIDE on the real-world
Bitcoin illicit transactions detection task [61] and four popular
inductive node classification benchmarks [4, 51, 66].

The evaluation aims to answer the following questions:
(1) Unlearning and Implementation Efficiency: How fast can
GUIDE handle batch unlearning requests? How efficient are
GPFB-Fast and GPFB-SR in practice? (2) Model Utility: Can
GUIDE provide state-of-the-art performance for inductive
graph learning tasks? (3) Partition Efficacy: Can GPFB-Fast
and GPFB-SR output fair and balanced partitions? (4) Effi-
cacy of Subgraph Repairing: Will our subgraph repair strate-
gies help to improve model performance? (5) Efficacy of
Similarity-based Aggregation: Can our similarity-based ag-
gregation method reach a level of performance comparable to
previous learning-based aggregation methods? (6) Unlearning
Ability: Can GUIDE really unlearn the requested nodes?

5.1 Experimental Setup
Datasets and Experimental Setup. The Elliptic Bitcoin
Dataset [61] consists of a time series graph (49 distinct time
steps, evenly spaced with an interval of about two weeks) of
over 200K bitcoin transactions (nodes) and 234K payment
flows (edges) with a total value of $6 billion. Twenty-one per-
cent of entities (42,019) are labeled licit (exchanges, wallet
providers, miners, licit services, etc.). Two percent (4,545) are
labeled illicit (scams, malware, terrorist organizations, ran-
somware, Ponzi schemes, etc.). The remaining transactions
are not labeled with regard to licit versus illicit but have other
features. A GNN detection model would learn from past trans-
action graphs and make a prediction for each entity of the
new transaction graph. Similar to the temporal split in [61],
which reflects the nature of the task, the first 30 time steps
are used to train a GNN model for detecting illicit entities,
the next 4 are used for validation, and the last 15 are used for
testing. As such, the GNN model is trained in an inductive
setting. We set the number of shards for Elliptic to 20, which
means that the graph of each time step would be partitioned
into 20 subgraphs.

The four popular node classification benchmarks consist
of static citation networks and coauthor networks: Cora [66],
CiteSeer [66], DBLP [4], and CS [51]. The details of four

benchmarks are provided in Appendix F.1. We follow a gen-
erally accepted inductive setting in [12, 63]: we construct
one graph containing only training nodes and another graph
containing all nodes. Graph partitioning and GNN training
are applied to the former one. That means the testing nodes
are invisible during the training process. Similar to the set-
ting of [13], we set the number of shards for Cora, CiteSeer,
DBLP, and CS to 20, 20, 100, and 100, respectively, which
makes the number of nodes in each shard similar. For all static
graph datasets, we randomly split nodes into 80% and 20%
for training and testing and report the average performance of
all models over 10 random splits. In fairness to the evaluation,
we also report the performance of graph unlearning methods
on the transductive setting with the same data splitting and
model architecture in Appendix G.5.
Metrics. For the illicit entity detection task, we opt for two
commonly used metrics - AUC and Macro F1 score [55]. AUC
measures the area under the ROC Curve. Macro F1 score, the
mean of the F1-score of both classes without weighting, pro-
vides an objective measure of model performance in the face
of extreme class imbalance. For inductive node classifica-
tion benchmarks, we consider classification accuracy as in
[12, 63].

To measure the quality of a graph partition, we design two
partition metrics: balance score and fairness score. In the
following, we provide the definitions of balance score and
fairness score for a partition {Vi}v

i=1 of the graph (V ,E) with
number of nodes n.
Balance Score: Denote the optimal size of the i-th shard as
|Vi|⇤ = n

v . To quantify the degree of balance, we formally
define its population balance score as follows:

Bb =�1
2

Sv
i=1

||Vi|� |Vi|⇤|
n

,

where �1  Bb  0. In the optimal case, ||Vi|� |Vi|⇤| = 0
for all i 2 [v], which implies that Bb = 0. When the partition
of the i-th shard is unbalanced, we have ||Vi|� |Vi|⇤|> 0, i.e.,
Bb < 0. We can also easily see that larger Bb indicates that
the partition is more balanced.
Fairness Score: Denote the node set with label s as Cs for
s 2 [h], we have V = [̇s2[h]Cs. It is easy to know that the ratio
of nodes with label s in the full dataset is |Cs|

|V | . Similarly, the

ratio of nodes with label s in the i-th shard is |Cs\Vi|
|Vi|

. The
fairness score can be computed by

B f =� 1
2v

v

Â
i=1

h

Â
s=1

�� |Cs \Vi|
|Vi|

� |Cs|
n

��,

where �1  B f  0. In the fairest case, the ratios for every
class over all shards are equal, i.e., |Cs\Vi|

|Vi|
= |Cs|

|V | for all i 2 [v],
which implies that B f = 0. When the class s in the i-th shard is
unfair, we have | |Cs\Vi|

|Vi|
� |Cs|

|V | |> 0 so that B f < 0. Moreover,
we can see a larger B f indicates the partition is fairer.
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Baselines. We compare GUIDE with two standard baselines
(Scratch, Random) and two graph unlearning methods (Eraser-
BLPA, Eraser-BEKM). For the fraud detection task, we apply
graph unlearning methods on a designed illicit entity detec-
tion GNN model. For inductive node classification task, we
apply graph unlearning methods on 6 popular inductive GNN
models to compare their efficiency and model utility, includ-
ing GraphSAGE [26], GIN [65], GAT [58], GATv2 [7], Su-
perGAT [31], APPNP [34]. The detailed settings of those
baselines and GNN models are reported in Appendix F.2.

For the implementation of GUIDE, we first apply GPFB-
Fast or GPFB-SR on the training graph. The partitioned
subgraphs are then repaired by our proposed graph repair
strategies. After training the GNN model for each shard in-
dependently, we compute an importance score for each shard
using the similarity-based aggregation. We name the two im-
plementations of GUIDE (with different partition methods)
as GUIDE-Fast (GUIDE with GPFB-Fast) and GUIDE-SR
(GUIDE with GPFB-SR) for convenience, respectively.

For both GPFB-Fast and GPFB-SR, the regulariza-
tion parameter a is determined via grid search from
{0.0001,0.001,0.01}. For GPFB-SR, the regularization pa-
rameter b is determined by grid search from {1,2,3,4,5}.
Unless otherwise indicated, we take the MixUp Augmented
Neighbor as our default repairing strategy. The performances
of Zero-Feature Neighbor and Mirror-Feature Neighbor are
also reported. We use the pyramid match graph kernel to com-
pute the similarity score between each repaired subgraph and
the test graph. But we argue that any method of measuring
the similarity between graphs can be applied here.
Implementation. All experiments are conducted on a server
with 128G memory, two NVIDIA RTX 3090 GPUs with
24GB RAM, and Ubuntu 20.04 LTS OS.

5.2 Unlearning and Implementation Efficiency
Batch Unlearning Time. We compare the batch unlearning
time of GUIDE and GraphEraser on three graph datasets. The
time of Scratch is also reported as the baseline. Our results
are shown in Figure 4. We can see that as the number of un-
learning nodes increases, more and more shards are involved,
so it will take a longer time to unlearn. When all shards need
to be updated, the unlearning time tends to be stable. How-
ever, since the size of each subgraph is small, it is still faster
than retraining from scratch on a large graph. The interesting
point is that GUIDE is expected to have a lower unlearning
time than GraphEraser due to a more balanced partition and
independent importance score updates, but as shown in Ap-
pendix G.4, we can only observe such a trend when the batch
size of unlearning is small. The reason is that subgraph re-
pair makes each subgraph’s size larger than its original size.
The actual training time of each submodel may be higher
than its training time on a smaller subgraph without repair-
ing. The submodel training time will dominate the unlearning

Figure 4: Batch unlearning time on large-scale graph datasets.

time when the unlearning batch size is large. However, we
claim that such a trade-off between unlearning efficiency and
model utility is reasonable because the unlearning efficiency
degrades slightly in the comparison, while the model utility
gets a significant improvement (as we will show later).
Implementation Time. In the inductive setting, the GNN
model should learn continuously or keep life-long learning
based on those incremental samples. Therefore, implementa-
tion efficiency is especially important when facing evolving
graphs or multi-graphs. In the following, we report the graph
partition time cost for four methods in Table 1.

It is notable that the results in [13] follow a different setting
compared to our experiments. [13] sets the number of shards
on CS to k= 30 and uses a pre-trained GNN model to generate
node embeddings for BEKM in the transductive setting. In
our setting, the number of shards on CS is k = 100. Following
the requirements of the inductive setting, we generate node
embeddings with the default setting of BEKM, which is time-
consuming when the dataset size is large. For the Elliptic
dataset, we partition its temporal transaction graphs separately
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Table 1: Graph partition time of 4 methods(s).

Dataset BLPA BEKM GPFB-Fast GPFB-SR
Cora 5.41 10.10 0.24 2.85
CiteSeer 6.36 14.56 0.31 3.54
CS 38.77 5454.36 15.71 40.02
DBLP 37.30 5182.10 14.44 33.52
Elliptic 303.02 1089.72 26.19 201.99
* The huge increase in BEKM’s computation cost comes

from its linear relationship with the number of shards and
node embedding generation process.

Figure 5: Illicit entity detection results over test time span.

according to their timestamps. As observed in Table 1, GPFB-
Fast takes the shortest time for partition. As explained in
section 4.2, GPFB-Fast is simple to implement and can be
solved efficiently by using standard linear algebra software.
For GPFB-SR, we can see it is always faster than BEKM
and is comparable with BLPA in some cases. Moreover, it is
slower than GPFB-Fast, which is reasonable as it needs more
iterations to find a better solution.

5.3 Model Utility
5.3.1 Fraud Detection

We construct a GNN model with three GINconv layers to
conduct the illicit entity detection task. Each GINconv layer
consists of a 3-layer MLP. After tuning the hyperparameters
based on the validation data, we set the size of node embed-
ding to 1024. The model is trained with 200 epochs. The

performance of different graph unlearning methods based on
our GNN model is shown in Figure 5. It is easy to see that
GUIDE performs very close to Scratch for two metrics dur-
ing the first 8 time steps, and there is a clear performance
gap between GUIDE and others. Especially in the 38th time
step, GUIDE outperforms other methods with more than 10%
Macro F1 score. During the last 7 time steps, all methods
provide similar Macro F1 scores due to the very limited illicit
samples in the test graph, while GUIDE still produces higher
AUC scores than other methods.

5.3.2 Inductive Node Classification

We evaluate the model utility of different graph unlearning
methods on 6 commonly used inductive GNN models. Ta-
ble 2 presents the average results for these methods on four
graph datasets. Comparing the results of Scratch and Random,
we can find that there is a large gap between them. Most
of the time, the node classification accuracy of the Random
method is less than half of the Scratch method. Taking this
gap as 100%, we can calculate normalized scores of the re-
sults given by other graph unlearning methods to quantify
the improvement of those methods to the Random method.
We can see the improvement of GraphEraser methods to the
Random method is only 20%. It is not surprising because the
available information is very limited in the inductive setting.
Thus, we can see GraphEraser is unsuitable for the induc-
tive setting. However, we also find that the GIN model can
achieve the highest node classification accuracy with the help
of GraphEraser sometimes (e.g., over the CS data). This is
mainly due to the unbalanced partition since the learning-
based aggregation assigns a small score to the shards with
a small size. But we argue that it is not advisable to sacri-
fice too much balance for better performance since it will
increase the unlearning time cost. Compared to the results
of GraphEraser, GUIDE achieves the best performance for
almost all models on four datasets. The normalized scores of
GUIDE-Fast and GUIDE-SR are both ⇠ 2⇥ higher than the
results of GraphEraser.

In comparison to the Certified Graph Unlearning
method [16], we apply the SGC model to the Scratch method
and five graph unlearning methods. The results are provided
in Appendix G.1, showing that there is a large gap between
the performance of SGC and the performance of state-of-the-
art GNNs for inductive graph learning tasks. We also report
the results of a 2-layer MLP (Multi-Layer Perceptron) model
without considering the graph structure in Appendix G.1.

5.4 Partition Efficacy
We can quantify the partition efficacy of graph unlearning
methods by calculating the balance score and fairness score
of each partition. The average results on different parts (20%,
40%, 60%, 80%) of four datasets are presented in Figure 6,
where the partition score is the summation of the balance
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Table 2: Node classification accuracy of 5 graph unlearning methods with 6 inductive GNN models (%).

Dataset Model Scratch Random Eraser-BLPA Eraser-BEKM GUIDE-Fast GUIDE-SR

Cora

SuperGAT 89.17±0.00 31.57±0.04 41.74±0.16 44.92±0.57 65.69±0.04 66.49±0.12
GATv2 88.94±0.00 31.22±0.04 43.83±0.68 36.62±0.55 66.80±0.08 68.10±0.16
SAGE 92.73±0.00 53.68±0.18 44.20±0.37 53.57±0.60 71.33±0.10 72.26±0.04
GIN 87.07±0.13 56.49±0.26 67.84±0.14 65.55±0.29 76.40±0.05 77.06±0.06
GAT 88.97±0.00 31.90±0.07 38.91±0.36 34.10±0.34 66.25±0.09 66.40±0.09
APPNP 85.96±0.03 51.28±0.13 38.02±0.26 46.38±0.12 64.14±0.07 64.56±0.05

CiteSeer

SuperGAT 79.33±0.00 25.44±1.34 53.31±1.15 45.98±0.48 70.66±0.02 71.17±0.02
GATv2 79.53±0.00 25.88±1.45 58.50±0.36 41.04±1.58 70.78±0.02 71.26±0.02
SAGE 83.08±0.00 69.10±0.05 66.90±0.06 69.25±0.05 72.71±0.02 72.38±0.01
GIN 81.20±0.06 58.02±0.41 66.29±0.11 64.21±0.13 69.64±0.07 69.67±0.04
GAT 79.61±0.00 26.32±1.46 58.57±0.64 43.46±1.17 70.66±0.02 71.02±0.02
APPNP 77.49±0.00 72.98±0.02 66.33±0.40 71.29±0.04 73.09±0.03 73.43±0.02

DBLP

SuperGAT 84.21±0.00 44.67±0.00 70.27±0.01 69.84±0.01 71.67±0.01 69.29±0.01
GATv2 83.93±0.00 44.67±0.00 70.23±0.01 69.06±0.05 71.69±0.01 69.10±0.00
SAGE 86.72±0.00 60.38±0.02 70.13±0.00 69.70±0.00 71.92±0.01 72.16±0.01
GIN 87.35±0.01 67.76±0.02 79.09±0.02 75.78±0.09 77.11±0.03 77.51±0.00
GAT 84.05±0.00 44.67±0.00 70.41±0.01 68.51±0.08 71.39±0.01 68.70±0.01
APPNP 83.80±0.00 67.53±0.00 71.56±0.01 70.96±0.01 73.62±0.01 72.84±0.01

CS

SuperGAT 87.57±0.00 22.79±0.01 53.01±0.02 41.98±0.25 69.63±0.00 69.53±0.01
GATv2 86.98±0.00 22.79±0.01 53.58±0.04 40.08±0.29 73.28±0.01 73.15±0.01
SAGE 91.79±0.00 71.96±0.02 57.37±0.04 74.38±0.01 80.68±0.00 80.67±0.00
GIN 83.69±0.18 36.70±0.01 75.42±0.15 83.65±0.01 79.24±0.01 79.73±0.02
GAT 87.37±0.00 22.79±0.01 53.24±0.01 43.17±1.04 69.55±0.01 69.45±0.01
APPNP 78.70±0.01 58.03±0.01 48.24±0.10 47.81±0.09 74.38±0.01 74.44±0.01

Normalized Score 100.00 0.00 20.42 23.71 59.52 59.40

score and the fairness score. A smaller absolute value of this
negative score indicates that the corresponding partition is
fairer and more balanced. As we can see from Figure 6, the
performance of GPFB-SR is always comparable with the
performance of Random. The partition scores of GPFB-SR
are ⇠ 3⇥ better than the scores of BLPA and BEKM. We
also present the distribution of shard sizes in Appendix G.3,
which supports this claim. Although the partition scores of
GPFB-Fast are worse than those of GPFB-SR, they are almost
always better than the results of BLPA and BEKM. The results
demonstrate that GUIDE could bring about partitions with
balance and fairness, achieving satisfactory performance.

5.5 Efficacy of Subgraph Repairing
To test the efficacy of our proposed subgraph repair strategies,
we compare the performance of our three strategies with the
ground truth subgraphs and the subgraphs without repairing
on the Cora dataset as an ablation study. As shown in Table 3,
all three subgraph repairing strategies are helpful in improv-
ing model performance. The simplest Zero-Feature Neighbor
could achieve a 62.32% improvement. It is not surprising that
Mirror-Feature Neighbor behaves worse than Zero-Feature
Neighbor since the contributions of the aggregated informa-
tion from the Mirror-Feature Neighbor are zero. Here we

randomly select l 2 [0,1] for each missing node to generate
the mix-up between the zero and mirror feature. Considering
the real application where heterogeneous neighbors may not
share the same feature, we can also control this mix-up pro-
cess by randomly selecting l 2 [0,t], where t 2 [0,1) can be
decided by testing on a small subset.

5.6 Efficacy of Similarity-based Aggregation
To illustrate the performance of the similarity-based aggre-
gation, we compare it with the average aggregation and the
learning-based aggregation methods. We aggregate the pre-
dictions of GNN models trained based on the partition of
GPFB-Fast and GPFB-SR. For convenience, we denote the
two partition methods as ’Fast’ and ’SR’ respectively in Ta-
ble 4. Even though we train the LBAggr on the full training
graph, its performance is not as stunning as SimiAgg. The
reason may be caused by the inductive setting, where the be-
haviors of those submodels on the training subgraphs may
differ from those on the test graph. But still the differences
between the three aggregation methods are quite small. It is
because the fair and balance graph partition and subgrpah
repair have improved each subgraph, leading to an improved
submodel in each shard. Thus SimAgg isn’t significantly bet-
ter than the average weighting. But it is still useful to make
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Figure 6: Partition scores of 5 methods on different datasets.

Table 3: Results of different subgraph repairing strategies on Cora(%)

Partition Method Model Ground Truth No Repairing Mirror Feature Zero Feature MixUp

GPFB-Fast
SAGE 77.26±0.04 59.98±0.19 63.22±0.08 73.55±0.05 71.33±0.10
GIN 79.26±0.04 70.09±0.05 77.13±0.07 72.07±0.06 76.40±0.05
GAT 70.52±0.10 49.63±0.08 62.90±0.09 66.52±0.07 66.25±0.09

GPFB-SR
SAGE 77.78±0.02 59.98±0.09 65.67±0.08 74.38±0.04 72.26±0.04
GIN 78.96±0.02 69.28±0.14 75.16±0.09 72.20±0.06 77.06±0.06
GAT 70.85±0.06 50.00±0.20 65.18±0.09 67.08±0.08 66.40±0.09

Normalized Score 100.00 0.00 54.09 62.32 73.65

Table 4: Results of 3 aggregation methods on Cora(%).

Method Average LBAggr SimiAgg

Fast
SAGE 71.11±0.10 69.02±0.17 71.33±0.10
GIN 76.40±0.06 75.25±0.08 76.40±0.05
GAT 66.10±0.09 65.97±0.18 66.25±0.09

SR
SAGE 72.07±0.05 70.55±0.16 72.26±0.04
GIN 76.69±0.06 76.32±0.03 77.06±0.06
GAT 66.01±0.09 67.15±0.20 66.40±0.09

the framework more robust and more explainable.

5.7 Unlearning Ability
Following the same setting as in [14], we evaluate the unlearn-
ing ability of GUIDE using the state-of-the-art privacy attack
against machine unlearning. We take the aggregated model of
GUIDE as the unlearned model after processing 100 random
unlearning requests. Using an enhanced membership infer-
ence attack [14], the attacker with access to the original model
and the unlearned model could determine whether a specific
node is indeed removed from the unlearned model. The ratio
of member and non-member is set to 1:1. As shown in Table 5,
the AUC of membership inference attack on GUIDE is close
to 50% (random guess), showing that GUIDE is enough to
conduct machine unlearning with low privacy risk.

The study on the sensitivity of GUIDE to the number of

Table 5: AUC of membership inference attack on GUIDE(%).

Dataset SAGE GAT GIN
Cora 51.34±0.08 49.78±0.02 53.57±0.19
CiteSeer 53.36±0.10 50.97±0.12 50.70±0.08
DBLP 53.34±0.07 51.22±0.19 55.83±0.7
CS 50.34±0.14 51.27±0.14 48.09±0.14

shards is provided in Appendix G.2.

6 Conclusions

In this work, we proposed the first general framework,
GUIDE, for solving the inductive graph unlearning problem.
Generally speaking, GUIDE consists of three components:
guided graph partition with fairness and balance, efficient sub-
graph repairing, and similarity-based aggregation. Due to its
exceptional performance compared with the existing meth-
ods, we believe this work could serve as a cornerstone for
future work on inductive graph unlearning tasks in production
machine learning systems.

Although GUIDE offers advantageous performance, it
comes with additional memory cost due to its subgraph repair,
making each subgraph larger than the original size. Further-
more, a generalization of "partition fairness" to unsupervised
graph learning is needed for further applications.
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