
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

BUDAlloc: Defeating Use-After-Free Bugs by
Decoupling Virtual Address Management from Kernel

Junho Ahn, Jaehyeon Lee, Kanghyuk Lee, Wooseok Gwak, Minseong Hwang,
and Youngjin Kwon, KAIST

https://www.usenix.org/conference/usenixsecurity24/presentation/ahn

BUDAlloc: Defeating Use-After-Free Bugs by Decoupling Virtual Address
Management from Kernel

Junho Ahn, Jaehyeon Lee, Kanghyuk Lee, Wooseok Gwak, Minseong Hwang, Youngjin Kwon

School of Computing, KAIST

Abstract
Use-after-free bugs are an important class of vulnerabilities
that often pose serious security threats. To prevent or detect
use-after-free bugs, one-time allocators have recently gained
attention for their better performance scalability and imme-
diate detection of use-after-free bugs compared to garbage
collection approaches. This paper introduces BUDAlloc, a
one-time-allocator for detecting and protecting use-after-free
bugs in unmodified binaries. The core idea is co-designing a
user-level allocator and kernel by separating virtual and phys-
ical address management. The user-level allocator manages
virtual address layout, eliminating the need for system calls
when creating virtual alias, which is essential for reducing
internal fragmentation caused by the one-time-allocator. BU-
DAlloc customizes the kernel page fault handler with eBPF
for batching unmap requests when freeing objects. In SPEC
CPU 2017, BUDAlloc achieves a 15% performance improve-
ment over DangZero and reduces memory overhead by 61%
compared to FFmalloc.

1 Introduction
Memory bugs persist as enduring security vulnerabilities in

software systems. Arising from developers’ oversights and the
use of memory-unsafe languages, these bugs are prime targets
for exploitation by attackers. Among the myriad of memory
bugs, use-after-free (UAF) vulnerabilities stand out as partic-
ularly notorious. Recent research evaluates its significance,
ranking UAF bugs seventh among the top 25 most prevalent
and impactful vulnerabilities in CWE [25].

Numerous strategies have been proposed to prevent or
detect use-after-free (UAF) bugs, including explicit label-
ing [16, 31, 33, 38], reference counting [29, 39], pointer nul-
lification [28, 43, 46], garbage collection (GC) [17, 24], and
one-time-allocator (OTA) [25,42,44,45]. The explicit labeling
method involves tagging memory chunks as used or freed, with
runtime checks verifying the tags on each access. However,
this incurs significant performance overhead. Pointer nullifi-
cation nullifies the freed objects and their associated virtual
addresses. However, tracking dangling pointers also incurs
performance overhead. Reference counting, while effective in
some cases, is not universally applicable to all C/C++ appli-

cations and also suffers from high performance overhead due
to runtime checks. GC-based approaches have gained popu-
larity due to their modest performance and memory overhead.
Nevertheless, they also come with several limitations.

Firstly, GC-based approaches suffer from poor scalability
in multi-threaded applications. For example, MarkUs [17] ne-
cessitates concurrent threads to scan the application’s memory
while causing pauses in the application threads. Although
Minesweeper [17] attempts to optimize this issue with lin-
ear memory scans, they still encounter stop-the-world delays
in concurrent applications. Secondly, applying GC-based ap-
proaches to applications using obfuscated pointers, such as
pointers with flags or reference counters, is challenging and
often results in excessive memory overhead due to false posi-
tive detections [17]. Thirdly, the intricate design of GC-based
approaches frequently involves severe security flaws, either by
design or implementation [44]. Lastly, most garbage collection-
based methods quarantine freed pointers and repurpose them
once dangling pointers are eliminated. However, this approach
is not suitable for accurate detection.

Recently, researchers have gained interest in rethinking
the OTA approach to overcome the limitations of the GC-
based approach. The fundamental concept behind the one-time-
allocator (OTA) is never reusing allocated virtual addresses
for subsequent allocations, ensuring each allocation request
receives a distinct memory chunk. While OTA doesn’t elimi-
nate UAF bugs, it makes them unexploitable. In a basic OTA
implementation, each object is allocated on a separate page,
which is unmapped when the object is freed. However, this
object-per-page allocation leads to significant memory bloat
due to internal fragmentation. To address this, OTA incorpo-
rates the notion of virtual aliasing [23], where multiple aliases
of objects are mapped to a single page [42]. However, the
aliased-based OTA introduces a notable performance overhead
due to frequent system calls (one syscall for each allocation or
free). Recognizing these limitations, recent efforts have revis-
ited OTA to overcome the performance challenges posed by
the original approach.

FFmalloc [44] abandons virtual aliasing and uses a group-
based memory allocator to aggregate objects of similar sizes
and deploy batching when freeing objects. While FFmalloc
provides good performance across various workloads, it faces

USENIX Association 33rd USENIX Security Symposium 181

significant memory bloat, up to 800%, at the cost of forgo-
ing virtual aliasing. Additionally, FFmalloc sacrifices the de-
tectability of UAF bugs, a key advantage of OTA over garbage-
collection (GC) based approaches. DangZero [25] revives vir-
tual aliasing to enable precise UAF bug detection. To mitigate
system call overhead, DangZero utilizes library OS (LibOS)
where the library kernel and an application run in the same pro-
tection domain. For protection, the LibOS instances execute
within a virtualization. While DangZero shows low memory
overhead, it has several drawbacks. Virtualization inherently
incurs significant IO overhead due to a complex IO stack.
Moreover, DangZero requires substantial engineering effort as
it must reimplement kernel features such as demand paging,
copy-on-write, and NUMA migration. Notably, the current
DangZero prototype lacks support for copy-on-write on fork,
necessitating the copying of all allocated memory during fork
operations.

This paper introduces BUDAlloc, presenting a new design
approach for the practical implementation of OTA. BUDAlloc
aims to strike a balance between performance and memory
overhead while providing strong UAF bug detectability. BU-
DAlloc does not compromise compatibility, allowing unmodi-
fied binaries to use BUDAlloc by simply replacing the default
allocator using LD_PRELOAD.

The core idea of BUDAlloc consists of two parts: separat-
ing virtual address from in-kernel memory management, and
co-designing a one-time-allocator and virtual address man-
agement at the user-level. This co-design provides several
performance benefits for implementing virtual aliasing. Firstly,
creating alias pages in BUDAlloc does not necessitate system
calls, as the user-level OTA manages the virtual address layout.
Second, BUDAlloc provides good scalability in multi-threaded
applications. The Linux kernel employs coarse-grained locks
(mmap_sem) to protect virtual and physical memory operations,
exhibiting scalability bottlenecks when memory system calls
are frequently invoked, as is the case in OTA. In BUDAlloc,
virtual address operation is independently managed at the user-
level, thereby significantly reducing lock-holding times during
memory system calls.

The mechanism enabling the collaborative design of user
and kernel levels is eBPF. When allocating an object, the user-
level OTA generates alias information (policy) as user-level
metadata and shares it with the kernel. Using eBPF, BUDAlloc
customizes the in-kernel page fault handler to perform virtual
to physical mapping (mechanism) according to the shared
alias information. This design minimizes the interference with
existing kernel implementation, allowing BUDAlloc to reuse
the existing kernel implementations such as demand-paging,
copy-on-write, and NUMA migration.

Furthermore, BUDAlloc offers an option for selecting pro-
tection and precise detection. When freeing an object, BU-
DAlloc defers unmapping a page containing the object and
batches unmapping operations when handling the next page
fault. While this introduces a potential window for a dangling

reference, our observations indicate that this window is suffi-
ciently small to detect most UAF bugs in practice (Table 3).
However, for precise detection, BUDAlloc provides a method
to immediately unmap a page upon releasing an object, albeit
incurring a performance penalty.

We implement BUDAlloc in both the Linux kernel and
a user-level memory allocator from scratch, with 2,870 and
8,259 lines of code respectively. At first, we evaluate the per-
formance and memory overhead of BUDAlloc compared to
recent OTAs, FFmalloc [44], and DangZero [25], as well as
GC-based MarkUs [17]. In SPEC CPU 2006, compared to
DangZero, BUDAlloc demonstrates faster performance than
DangZero by 5% even in the full detection mode and 15%
in the prevention mode. BUDAlloc shows acceptable mem-
ory overhead (30%) and significantly better bug detectability,
while providing 13% lower performance. We evaluate the scal-
ability using multithreaded PARSEC 3.0 and show the most
scalable performance improvement, even faster performance
when using more than 8 threads compared to FFmalloc. We
then conduct real-world performance tests using Nginx [11]
and Apache [8], demonstrating similar performance and mem-
ory overhead to GLIBC without scalability issues, unlike other
work.

Finally, we test BUDAlloc’s resilience against use-after-free
vulnerabilities using six CVEs commonly found in state-of-
the-art OTA researches. Even in prevention mode, BUDAlloc
instantly detected five out of six UAF bugs due to its high bug-
detection precision. Additionally, we employ the Fuzzer and
unit tests to assess the robustness of BUDAlloc, discovering
no reports exceeding 24 hours in HardsHeap [47] and passing
all suites in NIST Juliet tests [12].

This paper makes the following contributions.
• We propose a new design idea to implement OTA by co-

designing user and kernel level, reducing system call over-
heads.

• We present a practical approach to detect many UAF bugs
without compromising performance.

• We showcase that the co-design strikes the balance among
performance, scalability, memory use, and bug detectability
in real workloads.

2 Use-After-Free Bug

Memory-unsafe languages, such as C and C++, are exten-
sively used in the development of software systems, includ-
ing Redis, operating systems, and web or mobile applications.
However, they are easily affected by a series of memory safety
issues, such as use-after-free, double-free, and invalid-free er-
rors. Among these, the use-after-free (UAF) bug stands out as
one of the most frequently reported and exploited security vul-
nerabilities. UAF occurs when a program attempts to access
a dangling pointer that points to a previously freed object. In
severe cases, attackers can hijack the freed object, altering its
content with malicious data.

182 33rd USENIX Security Symposium USENIX Association

Various research efforts have proposed methods to detect or
mitigate use-after-free bugs. One approach involves labeling
each memory block to track its allocation and deallocation,
and checking the metadata when the pointer is dereferenced
[22,31,33,38,46]. However, dynamically checking the pointer
references introduces significant overhead. Another strategy is
to actively invalidate or block dangling pointers when an ob-
ject is freed, utilizing garbage collection or dynamic tracking
[17,24,28,43]. However, these methods suffer from high CPU
utilization and performance degradation, low scalabilities, and
occasionally stop the entire program from sweeping the mem-
ory space. Finally, approaches using randomized patterns for
allocation [34] offer probabilistic detection only.

Detection and protection. Defending against UAF bugs
involves both immediately detecting the bugs and protect-
ing against their malicious behavior. Detecting encompasses
protection and can be applied for online [9] and offline san-
itizer [16], and bug triaging. Usually, protection can operate
much faster than detection. Detecting UAF bugs at runtime or
through program analysis poses challenges due to the tempo-
ral nature of these bugs (i.e. the part where the bug occurs is
different from where it actually happens). As a result, existing
UAF detection work exhibits unacceptable performance and
resource overheads. To the best of our knowledge, no OTA
system has simultaneously achieved high bug detectability,
good performance, and minimal memory overhead. To address
this, we introduce an efficient UAF detection mechanism by
co-designing the secure allocator with the kernel using eBPF.

One Time Allocator. One-time-allocator (OTA) [23] has
regained popularity, particularly with the extensive address
space offered by modern 64-bit architectures. OTA ensures
that allocated virtual addresses are never reused, preventing
attackers from dereferencing and manipulating a freed object
with a dangling pointer. OTA has to allocate a distinct virtual
address at every memory allocation and remove accesses to
deallocated memory.

Figure 1 shows an overview of the virtual aliasing of OTA.
OTA divides the virtual address space into two sections; canon-
ical and alias. OTA uses the canonical address internally, while
the application uses the alias address. OTA first allocates a
canonical address using the internal memory allocator when
the user application requests memory. Subsequently, OTA as-
signs one or more alias addresses and maps the alias addresses
(VA2, VA3, and VA4 in Figure 1) to the canonical address
(VA1). Each alias address has a different offset within the
same canonical page. OTA can detect UAF bugs immediately
after unmapping the alias page from the page table since alias
pages are not duplicated or reused. On allocation, OTA returns
the alias address to the user application. Upon free, OTA re-
verses these steps by unmapping the alias address from the
page table and freeing the canonical address using the original
free operation in the internal memory allocator (e.g., free).

Canonical

Virtual Address Physical Address

Alias

O1

O2

On

O1 OnO2 O1 OnO2VA 1

VA 2

VA 3

VA 4

PA 1

Semantic Gap

mremap

mremap

mremap

User-level allocator Kernel-level VA management

C
an
on
ic
al

 to
 A
lia
s M

et
ad

at
a

VA
4
!

VA
1

VA
3
!

VA
1

VA
2
!

VA
1

vm
_area_struct

VA4 ! VA1
VA3 ! VA1

VA2 ! VA1

Figure 1: Overview of virtual aliasing.

3 OTA Design Problem

This section analyzes challenges when implementing OTA
(§3.1) and discusses the limitations of the current OTA designs:
trade-offs in performance, memory footprint, and bug-detect
precision (§ 3.2) as well as compatibility problems (§ 3.3).
These limitations motivate us to safely co-design the memory
allocator with a custom page fault handler.

3.1 Challenge: Semantic Gap
To implement OTA, the widely adopted approach is virtual

aliasing [23]. As illustrated in Figure 1, each object has its own
virtual alias, with at most one virtual alias accommodated in
a virtual page. The alias-per-page allocation makes it easy to
prevent use-after-free bugs. When an object is freed, OTA dis-
connects the mapping of the virtual page containing the freed
alias object, preventing access to the freed object. However,
the alias-per-page allocators suffer from high internal mem-
ory fragmentation. Therefore, virtual aliasing makes multiple
aliases to be mapped to the same physical page.

OTA records the mappings of alias to canonical page in user-
level metadata. According to the alias to canonical mapping,
kernel maps alias to physical pages on the page fault. How-
ever, this information is not visible to the kernel. We call this
problem semantic gap in OTA. How to address the semantic
gap significantly affects the performance, the size of memory
footprint, and bug-detect precision of OTA.
Trade-off 1: Performance and memory footprint. To syn-
chronize the user-level information to the kernel, OTA alloca-
tors have to perform system calls (e.g., mremap and unmap) to
bridge the semantic gap. However, frequent system calls cause
significant performance overhead. Previous work addressed
this problem by deferring unmap system calls and batching
them, yet they faced notable memory overhead stemming from
memory fragmentation [44].
Trade-off 2: Performance and bug-detect precision. Accu-
rate detection of use-after-free bugs closely related with how
to handle the free operation in OTA. When freeing an object,
to detect the reuse of an alias address precisely, OTA has to
instantly unmap the alias address from the page table. Unfor-
tunately, this operation requires at least one system call per
free operations, which incurs significant overhead. Therefore,
previous use-after-free works typically favored the prevention

USENIX Association 33rd USENIX Security Symposium 183

over detection for the performance, despite the feasibility of
the detection [17, 24, 44].

3.2 Limitations of Previous OTAs
In this section, we show how the previous OTAs address

the trade-off caused by the semantic gap and discuss their
limitations. Table 1 summarizes the discussion.
3.2.1 No alias mapping

The most straightforward approach is abandoning alias to
canonical mapping, so the semantic gap does not exist. All
objects are allocated in canonical address space (i.e., virtual
address) directly without having aliases and a canonical page is
mapped to a physical page. Therefore, this approach does not
need to remap multiple alias addresses to a single canonical
page, showing less performance overhead. To prevent use-
after-free bugs, this approach must not reuse the allocated
canonical address and free a physical page when all objects
in a canonical page are freed. Consequently, this approach
suffers from high internal fragmentation in physical pages
because it cannot reuse empty space in a canonical page (and
a physical page). Only when all objects in a canonical page
are freed, this OTA frees (unmaps) the physical page mapped
to the canonical page, bloating memory footprint significantly
when the lifetime of objects varies.

FFmalloc [44] is an example of this approach. It achieves
performance close to native memory allocators but introduces
significant memory overheads up to 800% in real-world ap-
plications [45]. Also, before a physical page is unmapped,
FFmalloc cannot detect the use-after-free bug, having the low-
est detecting precision.
3.2.2 Syscall-based approach

This approach uses system calls to synchronize the mapping
with the kernel, addressing the semantic gap. For allocating an
object, syscall-based OTA uses mremap to establish alias map-
ping, and for freeing an object, it issues mprotect or munmap.

However, while this approach is convenient to implement,
syscall-based approach suffers from several limitations. Firstly,
this approach incurs high performance overhead due to fre-
quent system calls as malloc and free require a system call
for each. Secondly, even with attempts to serialize and remove
locks from the user-level allocator, the frequent mapping and
unmapping through the system call leads to high serialization
overheads to global kernel locks (e.g., mmap_sem) [42, 44].
Thirdly, it results in virtual address fragmentation caused by
frequent mmap and munmap, which in turn fragments the ker-
nel’s memory data structure, taking a longer time to find empty
address space. We observe that this approach often crashes
a process by hitting the Linux kernel’s limit of the address
fragments (65536) [42].

The state-of-the-art syscall-based OTA is Oscar [42]. To
mitigate the overhead of frequent system calls, Oscar specula-
tively combines freeing and mapping of same-sized objects in
one single mremap based on the observation that recently freed

objects have a high chance of being reused after freeing. De-
spite that, Oscar suffers from the highest overhead compared
to other approaches because it still necessitates at least one
system call per malloc or free operations.

System call batching. Tuning the kernel to support batching
system calls could mitigate system call overheads [27, 41].
However, solely batching system calls is not the definitive
solution. Firstly, complex system calls like mmap or mremap
typically consume a significant portion of execution time for
the kernel software, not the context change. Secondly, the
complexity of in-kernel memory metadata also incurs a vm_-
area_struct fragmentation on the OTA. Lastly, even with
system call batching, it is inevitable to encounter overheads
from the synchronization of kernel metadata such as mmap_sem
lock. Oscar tried to batch system calls using custom IOCTL,
but they could not optimize it successfully. They eventually
abandoned this approach as, in certain benchmarks, batching
system calls led to a slowdown. Oscar analyzes the failure to
the challenge of accurately predicting which canonical address
will be needed in the future and the side effect of disrupting
the favorable memory access patterns of malloc by reusing
recently freed slots in the canonical address.

3.2.3 LibOS-based approach

Using Library OS, this approach accesses the page table
directly while virtualization ensures the protection. The library
kernel and OTA run at the same privilege level. OTA controls
the virtual to physical mappings without using system calls,
thus eliminating the semantic gap problem.

DangZero [25] implements OTA using a Library OS. It
manages aliases by directly updating page table mappings and
precisely detects any occurrences of use-after-free bugs. How-
ever, to safely grant access to page tables, it relies on mecha-
nisms such as Dune [20] or Kernel-Mode-Linux (KML) [30],
which introduce fundamental overheads for running on a vir-
tual machine. For instance, Dune shows approximately a 40%
performance degradation due to an increased system call over-
head [25]. Furthermore, virtualization incurs significant over-
head when it comes to performing IO through virtualized
storage and network stack [3,36] as well as address translation
overhead due to nested page table translation. The address
translation cost is exacerbated by the higher TLB miss rate
in OTA where each alias occupies one TLB entry. Another
drawback is compatibility because this approach completely
bypasses the kernel. Therefore, to be compatible with exist-
ing POSIX semantics and APIs, DangZero has to implement
complex in-kernel features like fork, demand paging, and copy-
on-write for the alias pages, which requires significant efforts
to work them completely. Unfortunately, DangZero does not
support copy-on-write on fork, exhibiting significant overhead
when creating a process. We discuss details in the next section
(§3.3).

184 33rd USENIX Security Symposium USENIX Association

Memory Bloat Syscall Overhead Scalability Bug-detect Precision Compatibility
No alias mapping [44] Very High Low Very High Very Low Fully Compatible
Syscall-based [42] Moderate Very High Low Detector No COW
LibOS-based [25] Low VM overhead Single thread only Detector No COW, proc fs, etc
BUDAlloc-detection Low Low Very High Detector Fully Compatible
BUDAlloc-prevention Low Very Low Very High High Fully Compatible

Table 1: Comparisons of previous OTAs.

3.3 Compatibility Problem
Fork compatibility. Syscall-based and LibOS-based ap-
proaches cannot use copy-on-write. Syscall-based approach ne-
cessitates using MAP_SHARED for canonical allocations, which
changes the semantics of memory to be shared in case of
the fork. LibOS-based approaches bypass the kernel when
creating alias mappings, thereby the kernel is not aware of
these pages during fork. To ensure fork compatibility they
have to copy the entire parent address before fork without
copy-on-write, which increases the latency of fork sensitive
workloads [35]. In 1GB workloads, the LibOS-based approach
takes 1,724ms whereas both our system and a normal Linux
process take only 520ms. Fork is not only used for process
spawning but also for large databases for consistency snap-
shot [14], fuzzers, and lambda functions for avoiding initial-
ization overheads [7, 48]. Ensuring scalable performance of
fork() is crucial for supporting such applications.
Other issues. The LibOS approaches also necessitate the
application developers to build their physical address man-
agement policies and mechanisms such as proc fs, resident
set accounting, NUMA-aware placement, or swapping, as the
kernel is not aware of allocated alias pages in the page table.
For instance, to measure the maximum resident set size of the
benchmarks, we have to use the internal accounting mecha-
nisms of DangZero, despite other allocators can conveniently
use utility time which uses the proc filesystem of the kernel.

3.4 Threat Model
We assume a program contains one or more use-after-free

bugs, and the attacker can use at least one use-after-free bug,
for information leaks, privilege escalation, corrupting data, etc.
However, we do not assume that the attacker has the ability to
corrupt the OTA allocator. Preventing other classes of memory
bugs, such as out-of-bound access or side-channel attacks, are
beyond the scope of this work. In prevention mode, we allow
crashing at UAF or accessing the old data. In detection mode,
we only allow crashing at UAF, rejecting any other class of
bugs from UAF. These threat models are compatible with
the previous OTA approaches that aim to detect or prevent
use-after-free bugs [17, 25, 42, 44].

4 BUDAlloc

BUDAlloc seeks to strike the balance between performance,
scalability, memory bloat, and bug-detection precision while
providing full compatibility with existing API semantics.

4.1 BUDAlloc Design Overview
Separating address management. At the core design of BU-
DAlloc lies separating the address management of the kernel
into virtual address management and physical address man-
agement. The user-level part of BUDAlloc has full control
over managing the virtual address space while the kernel con-
trols the physical address management such as page fault han-
dling and the actual page mapping of the designated virtual
address. This design allows full compatibility because BU-
DAlloc reuses well-designed kernel implementation to sup-
port existing compatible functions, such as copy-on-write on
fork or on-demand paging. Additionally, developers can use
the existing interfaces, such as the Linux proc file system, to
manage applications.
Co-design user-level allocator and kernel. With the sep-
aration of address management, BUDAlloc co-designs the
user-level allocator and kernel, which removes the duplicated
metadata management for the semantic gap. The user-level
OTA manages the virtual address, customizing the in-kernel
page fault handler safely using BUDAlloc. The custom page
fault handler and user-level OTA share the alias to canonical
mapping metadata, addressing the semantic gap in OTA. The
user-level OTA specifies alias to canonical mapping at the user-
level, without the need for expensive exceptions like system
calls (policy). Kernel establishes page table mapping accord-
ing to the metadata while handling page faults (mechanism).
Fine-grained locking. To enhance scalability, BUDAlloc
reduces lock contention for managing virtual and physical
addresses, which are protected by global locks in the kernel,
by shifting virtual address management to the user-level. In
addition, BUDAlloc uses fine-grained locking to protect the
shared metadata. These design choices are critical for OTA,
which incurs intensive lock contentions due to frequent system
calls.

4.2 User-level Components of BUDAlloc
As the outcome of co-designing user and kernel space, BU-

DAlloc consists of user and kernel components. This section
introduces the design and optimization of user-level compo-
nents of BUDAlloc. Figure 2 shows the overall design of BU-
DAlloc. The user-level allocator incorporates two functions:
user-level OTA and virtual address manager (LibMM). As an
OTA, BUDAlloc uses virtual aliasing. After creating an alias
page, BUDAlloc inserts the alias to canonical mapping to the
metadata, implemented by trie. The metadata is shared with

USENIX Association 33rd USENIX Security Symposium 185

Canonical Alias

One-time-allocatorInternal
Allocator

LibMM
Canonical to Alias Metadata

VA4 ￫ VA1 VA3 ￫ VA1 VA2 ￫ VA1
eBPF Custom
page fault handler

Us
er

-le
ve

l a
llo

ca
to

r
Ke

rn
el

① Allocate	canonical	(VA1)from	internal	alloc
 Allocate	Alias	(VA4)	from	unused	space
Set Shared Metadata with VA4￫VA1 mappings
②
③

① ②

③

VA
1

VA
2

VA
3

VA
4

Physical Address PA
1

④ Read	Shared	Metadata	with	faulted	VA4
⑤ Set PTE with bpf_set_page_table(VA4, VA1)

Figure 2: Overview of the BUDAlloc one-time-allocator.

kernel components (§4.2.1). The in-kernel custom page fault
handler examines the metadata to establish a mapping from
an alias page to a physical page (§4.3). As a virtual address
manager, LibMM manages canonical address and the virtual
address layout of the internal allocator. (§4.2.2).

4.2.1 One Time Allocator
BUDAlloc replaces the existing memory allocators. When

a user application requests allocation, BUDAlloc transparently
intercepts memory APIs using LD_PRELOAD, and relays mem-
ory requests to the internal memory allocator.
Allocating an object. The internal memory allocator allocates
a new canonical address, which is not exposed to the applica-
tion. Then, the user-level OTA creates a new virtual alias page
for the object. As an OTA, BUDAlloc avoids reusing the alias
page in subsequent allocations. Notably, unlike the syscall-
based approaches, this step does not require the mremap sys-
tem call because BUDAlloc manages the virtual address space
directly in user-level. BUDAlloc inserts the alias-to-canonical
mapping into the trie metadata and returns the alias address to
the application. Unlike the Linux kernel, which uses a linked
list for metadata, the trie metadata does not incur virtual ad-
dress fragmentation. Upon an alias page fault, BUDAlloc cus-
tom page fault handler searches the trie metadata for the canon-
ical address associated with the faulted alias address. If the
entry exists and is valid, the custom page fault handler maps
the alias page with the same physical address as the canonical
address.
Freeing an object. When a program releases the alias object,
BUDAlloc scans the trie metadata to find the corresponding
canonical address and notifies the internal memory allocator to
reuse the canonical. This design is crucial to mitigate internal
fragmentation. FFmalloc cannot reuse it because it forgoes
virtual aliasing for performance.

As discussed, the degree of bug-detection precision is
closely related to how to design freeing objects. To imme-
diately detect UAF bugs, OTA should instantly remove the
mapping of freed alias pages. Unfortunately, this requires at
least one system call to execute an unmap operation. Therefore,
BUDAlloc supports two modes for immediate detection and

prevention of UAF bugs.
Deferred alias free. BUDAlloc offers a prevention mode,
allowing users to defer the freeing operation at the expense of
relaxing UAF detection. In this mode, BUDAlloc postpones
the unmapping of alias pages from the page table until the
occurrence of the next page fault. More precisely, BUDAl-
loc inserts freed alias addresses into a per-thread ring buffer.
When a newly allocated alias address is accessed, a page fault
occurs, and the BUDAlloc custom page fault handler unmaps
all addresses stored in the ring buffer while handling the page
fault. To ensure correctness in deferred freeing, the internal
allocator must reuse freed slots of the canonical address after
the associated alias pages are removed from the page table.
BUDAlloc tracks the states per-thread ring buffer and ensures
that there exists no alias to canonical mappings to the freed
canonical address before the canonical address is reused by
the internal memory allocator.

Due to the deferring, the prevention mode allows a potential
window for a dangling reference. However, unlike the previ-
ous work [17, 24, 44], the time window is small, which is
min(time taken to the next page fault, batching delay). We set
the batching delay to 10 ms, and dynamically adjust the ring
buffer length based on the deallocation rate (e.g., free). Given
that UAF bugs tend to manifest after a long-term period rather
than a short-term [28], BUDAlloc detects almost all UAF bugs
in prevention mode as demonstrated in various CVEs (§5.1).
Detecting memory bugs. At the time of freeing an alias
address, if the trie entry corresponding to the alias address
in the user-level allocator is empty, BUDAlloc regards this
as an invalid free or a double free. If successful, the alias-
to-canonical mapping is removed from the trie, and during
the next page fault, if the custom page fault handler finds no
corresponding canonical address in the trie, BUDAlloc reports
a use-after-free bug to the user.

4.2.2 Virtual address manager (LibMM)
We use mimalloc [10] as the internal allocator. The in-

ternal allocator uses system calls (e.g., mmap, munmap, and
madvise) to allocate and reclaim virtual addresses from the
operating systems. BUDAlloc intercepts the memory system
calls from the internal allocator and forwards them to LibMM.
LibMM is a compatible layer for managing the internal alloca-
tor as the canonical allocator. The canonical allocator remains
unaffected by virtual address fragmentation. Thus we manage
the LibMM using a linked list like the Linux kernel. Upon a
page fault, the custom page fault handler determines whether
the faulted address is canonical or alias. If it is a canonical
page, it maps a physical address to the faulted address. If it
is an alias fault, it searches the shared metadata to handle the
page fault by policies of the BUDAlloc.

4.2.3 Optimizations

Prefaulting alias pages. OTA allocates the objects to distinct
alias pages. Thus, in theory, there should be at least one page

186 33rd USENIX Security Symposium USENIX Association

fault per object if batching is not used. However, using BUDAl-
loc user-defined page fault handler, BUDAlloc can prefault
alias pages anticipating upcoming memory access patterns
based on the semantics of alias pages. We store the object size
along with a canonical address in the shared metadata (trie).
For prefaulting, BUDAlloc uses two algorithms based on the
object size in the trie entry.

For objects smaller than the page size, BUDAlloc prefaults
consecutive alias pages. BUDAlloc manages a reservation
pool that stores alias pages of the same size and inserts these
alias pages into the trie entries. Upon a page fault, BUDAlloc
prefaults the next consecutive alias pages until it reaches the
maximum limit (128 in our implementation).

For objects greater than a page size, BUDAlloc takes a
heuristic based on the window-based algorithm. The window
size determines the prefaulting size of the faulted address. Ini-
tially, the window size is a page size, and BUDAlloc adaptively
increases the prefaulting window by a factor of two. This re-
duces the overall page fault rates on a logarithmic scale for the
newly allocated objects.

4.3 Kernel Components of BUDAlloc
BUDAlloc extends the kernel to collaborate with the user-

level OTA and LibMM using eBPF. The design goal is as fol-
lows: Firstly, BUDAlloc must be secure and isolated from
both the kernel and the other user processes. Secondly, BU-
DAlloc ensures seamless compatibility with various kernel
features, such as fork, clone, on-demand paging, swapping, or
NUMA. Thirdly, BUDAlloc facilitates fine-grained locking
for scalability.

4.3.1 Decoupling address space
BUDAlloc allows the user-level OTA to establish virtual-

to-physical mapping for virtual aliasing. However, directly
exposing the layout of physical addresses to users bleaches
the security guarantees of the kernel. Instead, BUDAlloc con-
structs pseudo-physical address, and allows the user-level OTA
to use it. The user-level OTA provides a virtual address and
pseudo-physical address for aliasing, and the kernel translates
the pseudo-physical address to the physical address and fi-
nally establishes the mapping between the virtual address and
physical address. BUDAlloc reuses the process’s page table
to convert a pseudo-physical address into a physical address.
Pseudo-physical address restricts BUDAlloc to managing only
the virtual addresses of the owner process. Therefore, even if
the owner process is compromised, it cannot access or modify
other processes’ memory.

This level of indirection allows decoupling address space
between what user-level OTA uses and what kernel manages.
Decoupling address space hides the physical address infor-
mation such as address space layout or page table policies
from BUDAlloc. The amount of information accessible to
BUDAlloc is identical to what is shown in the Linux kernel
(i.e. /proc/pid/maps). In addition, by decoupling, the kernel

Type API

Page Table
bpf_set_page_table(void *vaddr, size_t len,
void *pindx, u64 vm_flags, u64 prot)
bpf_unset_page_table(void *vaddr, size_t len)

Shared Memory bpf_uaddr_to_kaddr(void *uaddr, size_t len)

Table 2: A summary of BUDAlloc helper functions used for page
table modification and shared memory.

has complete control over the physical address. It transpar-
ently applies kernel-specific tasks hidden from the user-level
OTA, such as resident-set-size counting or NUMA migration
policies. Note that, as BUDAlloc reuses the process’s page
table, there is no additional space overhead when mapping
from pseudo-physical to physical addresses.

4.3.2 User-Defined Page Fault Handler

As previously explained, the user-level OTA involves shar-
ing alias-to-canonical mapping metadata with the kernel (pol-
icy). The customized page fault handler then updates page
tables based on this metadata (mechanism), bridging the se-
mantic gap. At its essence, we expand the Linux kernel page
fault handler using extended Berkeley Packet Filter (eBPF).
eBPF enables users to execute a simple program in the Linux
kernel without modifying the source code [6].

Reasons for using eBPF. There are several reasons for our
choice of using eBPF for the custom page fault handler. Firstly,
eBPF ensures the safety of the eBPF program by rejecting
invalid API usages, removing denial-of-service attacks, and
ensuring memory and control-flow safety [5]. Secondly, eBPF
is efficient, as it statically checks the eBPF program and com-
piles it into native code using a Just-In-Time Compiler (JIT).
Thirdly, eBPF can load custom kernel logic without requiring
privileged permission (e.g., sudo). Linux offers CAP_BPF ca-
pability, allowing eBPF programs to be loaded with normal
user privilege [1]. Lastly, eBPF supports various toolchains, in-
cluding C, Python, or even Rust, utilizing the LLVM compiler
backend [5, 6].

Custom page fault handler. We implement two helper func-
tions to control the page table and one helper function to share
the memory between the kernel and the user. Also, we ex-
tended POSIX mmap system call to register a virtual address
range used for LibMM and OTA. Table 2 shows the summary
of BUDAlloc helper functions. The user-level OTA can spec-
ify the mapping of virtual pages with size len to a physical
page for aliasing using bpf_set_page_table. The specified
physical address, pindx, serves as a pseudo-physical address.
If pindx is unused, BUDAlloc maps it to a new zeroed phys-
ical page and associates the virtual address with the pseudo-
physical address. Upon invoking a custom page fault handler,
it populates the faulted address by referencing the shared meta-
data associated with the handler. Upon completion of the page
fault handling, the customized page fault handler returns 0 for
success or 1 for failure. In case of failure, the kernel page fault
handler sends a SIGSEGV to the process.

USENIX Association 33rd USENIX Security Symposium 187

eBPF programming restrictions. Although eBPF ensures
safety through static verification, eBPF restricts the maximum
number of instructions (1M for CAP_BPF) for ensuring ter-
mination of an eBPF program. Despite that, we are able to
implement the required functionalities within the restrictions.
For looping, we leverage the recent eBPF features, bpf_-
loop [2] to implement iterations with unknown count or com-
plex branches. However, we need to address two implementa-
tion challenges. Firstly, eBPF lacks features for flexible shared
mapping between the user and the kernel. To overcome this
limitation, we introduce new helper functions (Table 2). Specif-
ically, bpf_uaddr_to_addr is utilized to create a shared map
between the kernel and the user, ensuring the validity of the
resulting kernel address. Shared memory between the user and
the kernel shares the same physical address but has different
virtual addresses to maintain separation between the kernel
and the user. BUDAlloc transparently ensures the safety and
validity of the shared mappings in case of fork or unmap. BU-
DAlloc utilizes the helper function for sharing the metadata
between the custom page fault handler and the user-level al-
locator. Secondly, eBPF supports only atomic operations for
the synchronization. Therefore, we co-design the custom page
fault handler to control the synchronization only using atomic
operations (§4.4).

4.3.3 Confining logic errors
BUDAlloc ensures the ordering and atomicity of the helper

functions to protect race conditions on the page table modifica-
tions by a reader-writer lock. While BUDAlloc cannot prevent
logic errors in eBPF, such as specifying an incorrect page
when creating an alias, or denial of service attack by refusing
to handle page fault, these errors are isolated from other pro-
cesses by the safety guarantee of eBPF. In BUDAlloc, an eBPF
program cannot modify page tables of other processes because
BUDAlloc helper functions verify the current pseudo-physical
address belongs to the process. Also, we ensure the Trans-
lation Lookaside Buffer (TLB) are flushed before and after
page table modifications in an eBPF program. When a helper
function carries out page table modifications kernel flushes
the TLB without requiring explicit TLB flush operations from
an eBPF program. While this may be a conservative approach
that rules out optimizations of coalescing TLB flushes, we
prioritize the correctness and safety of page table updates by
leveraging well-debugged kernel code.

4.4 Scalability
The BUDAlloc user-level allocator is optimized for multi-

threading scalability, using fine-grained locking and lock-free
data structure. This is particularly important in the OTA, as
it frequently incurs metadata update operations, stressing the
scalability bottleneck due to coarse-grained kernel locks (e.g.,
the mmap_sem in the Linux mm_struct) [4].
Opportunity. By decoupling virtual address and physical
memory management, BUDAlloc reduces the contention win-

dow of coarse-grained kernel locks because virtual address
operations such as finding empty virtual address and return-
ing freed virtual address range are moved to the user-level,
reducing lock contentions. Furthermore, BUDAlloc allows the
user to implement fine-grained locking using the semantics of
the user-level allocator. This user-centric approach allows for
greater flexibility in deploying user-provided data structures
instead of using the existing kernel ones, enabling optimized
co-designing locks to safeguard critical sections.

Shared trie metadata. We optimize the shared trie data struc-
ture between the in-kernel custom page fault handler and the
user-level OTA. Given that both frequently access this meta-
data, ensuring scalability is essential. The trie entry comprises
four levels, each using 48 bits of virtual addresses as an index.
We experiment both using global locks and reference-counting-
based lockless mechanisms for the trie, and discover that com-
bining the two mechanisms yield the best performance due to
the locality of the alias addresses. We assign the last level of
the trie to each thread to hold per thread pool of consecutive
alias addresses, typically accessed by the same thread due to
the spatial locality. Unlike the last-level entry, which stores the
canonical address, upper-level entries store the next-level entry,
which remains unmodified during operations. Consequently,
we adopt different locking mechanisms based on the level of
the trie entry.

The shared trie dynamically allocates and reclaims each
level, maintaining consistency through reference counting for
upper-level nodes (L1-L3) and spinlock for leaf nodes (L4). A
thread increases the reference count (using atomic operations)
for upper-level nodes before accessing them and decreases the
count upon completing trie access. BUDAlloc frees a node if
its reference count reaches zero, ensuring that a thread doesn’t
access a dangling (freed) node. Since leaf nodes’ contents can
be modified, BUDAlloc uses spinlocks to serialize accesses to
a leaf node. These spinlocks are shared among user threads
and eBPF code.

However, the BUDAlloc custom page fault handler cannot
acquire spinlock, since eBPF does not allow unbounded spin-
ning. Therefore, we use trylock inside the BUDAlloc custom
page fault handler and reattempt the page fault after a failed
lock acquisition.

Deferred free list. In prevention mode, for scalability, BU-
DAlloc uses a per-thread ring buffer to list deferred alias pages,
protected by per-thread spinlock. The ring buffer is shared with
the kernel. To ensure the safety of deferred freeing, when a
thread frees an alias and reuses the associated canonical ad-
dress, the page fault handler must unmap the freed alias page
before the thread uses the new object using the reused canoni-
cal address. To do this, BUDAlloc marks the trie entry of the
new alias with the thread index of the per-thread ring buffer.
In the rare scenario where a BUDAlloc custom page fault
handler cannot acquire the lock using trylock and trie entry
is marked, it retries the page fault to guarantee the previous

188 33rd USENIX Security Symposium USENIX Association

mapping is invalidated. If it is not marked, it skips the deferred
free and proceeds with processing the page fault. In detection
mode, this logic is not required because detection mode does
not defer freeing an alias page.
Supporting fork. When a thread initiates a fork system call,
other threads may interact concurrently with the user-level
OTA. Therefore, it may end up with inconsistent lock states
before and after the fork. Therefore, we implement a global
read-write lock to protect against invalid fork states. Before
fork operation, the user-level OTA releases all holding spin
locks and awaits the completion of the fork using the read-
write lock. Similar mechanisms are commonly used by other
allocators to support fork operations safely [19].

4.5 Compatibility
While BUDAlloc moves virtual address management to

the user-level, BUDAlloc maintains compatibility of existing
kernel features such as copy-on-write, demand paging, and
the proc file system. Therefore, BUDAlloc runs unmodified
binaries by replacing its default memory allocator using LD_-
PRELOAD. Nevertheless, some parts of the Linux kernel are
closely integrated with both physical and virtual management.
We outline two specific cases of such scenarios and describe
how to tackle these challenges.
VA-Chain reverse map. The operating system traditionally
maintains a reverse mapping that locates a virtual address
(address of a PTE) of a physical page, crucial for physical ad-
dress management tasks like swapping, migration, compaction,
and copy-on-write. Linux uses an object-based reverse map,
tightly coupled with the metadata for virtual address manage-
ment, vm_area_struct. However, BUDAlloc does not use
the metadata because it bypasses the virtual address manage-
ment in kernel. To address this, we revise a VA-chain-based
reverse map, utilizing the unused fields in Linux’s struct
page. Unlike Linux’s PTE-chain, which stores references to
PTEs in the page table from a page, the VA-chain stores virtual
addresses of a page using double-linked lists. The reverse map-
ping information is directly stored in the struct page, offering
a more flexible solution for BUDAlloc. It consumes 16 bytes
per mapping. If virtual addresses are allocated contiguously,
the memory overhead for the reverse map is only 16 bytes. In
our evaluation, the VA-based reverse map shows acceptable
memory overhead in real workloads (§5.3).
PTE reference count. If the last entries in the page table
are released, the kernel deallocates the upper level of the page
table entry to remove unused page table entries. The Linux
kernel achieves this by utilizing the vm_area_struct to se-
lectively clear the last-level page table entries using the virtual
address allocation information. To clear these last-level entries
without explicit knowledge of vm_area_struct, we employ
reference counting. BUDAlloc reuses the struct page field
to keep track of the references of the PTE entries. BUDAlloc
helper function increases the reference count (using atomic

operations) upon setting a PTE entry and decreases the count
upon unsetting a PTE entry. When the reference count reaches
zero, BUDAlloc clears the upper-level page table entry. By
leveraging the reference count, BUDAlloc effectively manages
the page table, ensuring efficient memory usage.

4.5.1 Compatibility Study
On demand paging. By the design of decoupled address
space (§ 4.3.1), BUDAlloc easily supports demand paging.
The user-level OTA specifies alias and canonical mapping in
the pseudo-physical address, so it does not give any restric-
tions for physical memory management. Therefore, BUDAlloc
populates the page table entry at the page fault.
Copy on write. Both syscall-based and LibOS-based ap-
proaches face challenges when it comes to supporting copy-
on-write, as discussed in §3.3. Therefore, they copy the entire
address space during a fork, which causes significant overhead
in an application with a large memory footprints. In contrast,
BUDAlloc doesn’t encounter these issues. Like the demand
paging, decoupled address management allows transparent
kernel physical management during fork operations. Note that,
users can implement their fork logic using eBPF. By default,
BUDAlloc allows the users to reuse the existing copy-on-write
implementation in the kernel.
Proc file system. BUDAlloc supports proc file system to
monitor memory states. In contrast, DangZero requires imple-
menting supplemental mechanisms for replacing proc system.
For instance, while DangZero necessitates custom logic to
monitor memory usage, BUDAlloc transparently supports util-
ity time, which internally use proc file system.

4.6 Discussion
BUDAlloc shares the fundamental limitation of OTA, in-

creased Translation Lookaside Buffer (TLB) pressure and
cache line misses. Unlike non-OTA, which reuses freed ob-
jects in subsequent allocations, BUDAlloc necessitates the
allocation of new alias pages for each allocation, resulting in
reduced cache line hits and increased TLB pressure. Further-
more, since it refrains from recycling freed virtual addresses,
BUDAlloc may eventually exhaust virtual addresses. FFmalloc
also suffers from the same problem. DangZero uses garbage
collection for reusing alias addresses with significant perfor-
mance overhead. BUDAlloc can incorporate and optimize the
same mechanism. We leave this as future work.

4.7 Security Analysis
Attackers who compromise processes using BUDAlloc can-

not attack other processes or kernel. Firstly, BUDAlloc isolates
pseudo-physical addresses between processes. This ensures
that BUDAlloc can manage the virtual address of the owner
process only. Even if the owner process is compromised, it
cannot access or modify virtual addresses of other processes
or kernel space. Additionally, a pseudo-physical address hides
the secure information of the physical address, revealing only

USENIX Association 33rd USENIX Security Symposium 189

what the Linux kernel exposes to the user space. This ensures
that no kernel address layout information or sensitive poli-
cies, such as Kernel Address Space Layout Randomization
(KASLR), are exposed to user space program.

Secondly, BUDAlloc uses eBPF [5] for isolating custom
page fault handler from the kernel or other user processes. BU-
DAlloc requires CAP_BPF capability as a normal user, which
prevents access to arbitrary kernel memory and leakage of
kernel pointers to users, and allows isolation of user space
processes [1]. eBPF ensures the safety of BUDAlloc through
static analysis using a static verifier. We disable the eBPF by-
pass_spec_v1 feature, which incorrectly rejects BUDAlloc due
to false positives during verification. Recent CPU mitigates
speculative side-channel attacks [26], and fixing these false
positives in the verifier is beyond the scope of this paper. How-
ever, bugs in the eBPF verifier or helper functions, including
additional helper functions in Table 2, could undermine isola-
tion. BUDAlloc trusts the eBPF verifier and helper functions,
and these bugs are not part of the BUDAlloc threat model.

5 Evaluation

We evaluate BUDAlloc in terms of security and perfor-
mance. For security evaluation, we perform CVE analysis,
NIST Juliet test suite [12] and HardsHeap [47]. For perfor-
mance evaluation, we evaluate BUDAlloc with SPEC CPU
2006, SPEC CPU 2017, PARSEC 3.0, Apache, and Nginx
Webserver. We implement BUDAlloc on Linux 6.4.0 by 2870
lines of code, and testing with Intel(R) Xeon(R) Gold 5220R
CPU at 2.2GHz with 24 cores, 172GB DRAM - 2666 MHZ,
512 GB SSD, and 10-Gigabit Network Connection. In all the
experiments, we disable hyper-threading, CPU power-saving
states, and frequency scaling to reduce the variance. We use
Non-Uniform Memory Access (NUMA) in the PARSEC 3.0
benchmarks (§5.5) to fully utilize all 48 cores in the moth-
erboard. We use time to get the resident set size (RSS) and
total execution time except DangZero. We set the default con-
figuration for the other memory allocators for all evaluations.
We use a KVM virtual machine to evaluate test cases on Dan-
gZero [25], as it is the default option for running Kernel-Mode-
Linux in DangZero.

5.1 Security Evaluation
CVE Analysis. To evaluate the robustness of BUDAlloc
compared to other OTA systems, we evaluate a set of Common
Vulnerabilities and Exposures (CVEs) commonly referenced
in the recent OTA papers [25, 44, 45]. These CVEs address
real-world applications’ use-after-free bugs in PHP, Python,
mruby, and libmimedir. Additionally, we expand our test sets
to include the latest real-world exploits of PHP, Python, mruby,
our own UAF real-world corpus, and UAFBench [15]. Table 3
shows our protection results: BUDAlloc successfully defends
against all attempted attacks.

As predicted, in the case of FFmalloc, it is successful in pre-

Vulnerability Program BUDAlloc-p BUDAlloc-d FFmalloc DangZero
UAFBench

CVE-2016-3189 bzip2 ○ ○ è ○
*CVE-2016-4487 cxxfilt ○ ○ ○ ○
CVE-2017-10686 nasm ○ ○ è ○
CVE-2018-10685 lrzip ○ ○ è ○
CVE-2018-11496 lrzip ○ ○ è ○
*CVE-2018-11416 jpegoptim ○ ○ ○ ○
CVE-2018-20623 readelf ○ ○ è ○
*CVE-2019-20633 patch ○ ○ ○ ○
*CVE-2019-6455 rec2csv ○ ○ ○ ○
Issue 74 giflib ○ ○ è ○
*Issue 122 gifsicle ○ ○ ○ ○
Issue 73 mjs ○ ○ è ○
Issue 78 mjs ○ ○ è ○
Issue 91 yasm ○ ○ è ○

ffmalloc & DangZero
CVE-2015-2787 PHP ○ ○ è ○
*CVE-2015-3205 libmimedir ○ ○ ○ ○
CVE-2015-6835 PHP ○ ○ è ○
CVE-2016-5773 PHP ○ ○ è ○
Issue 3515 mruby ○ ○ è ○
Issue 24613 Python ○ ○ è ○

Exploit Database
CVE-2019-6076 Lua ○ ○ è ○
CVE-2019-7703 Binaryen ○ ○ è ○
CVE-2019-8343 nasm ○ ○ è ○
CVE-2019-17582 libzip ○ ○ è ○
CVE-2020-24346 nginx ○ ○ è ○
CVE-2022-1934 mruby ○ ○ è ○
CVE-2022-1106 mruby è ○ è ○
CVE-2022-35164 LibreDWG ○ ○ è ○
*BUG-66783 PHP ○ ○ ○ ○
BUG-80927 PHP ○ ○ è ○

○: Detect UAF bug è: Prevent UAF bug

Table 3: Summary for BUDAlloc-d (detection), BUDAlloc-p (pre-
vention), DangZero, and FFmalloc. We use default settings for the
previous works. Benchmarks with a star(*) involve a precondition
leading to a UAF bug, which is detected and aborted in FFmalloc and
BUDAlloc during arbitrary or double free().

venting use-after-free (UAF) bugs, but fails to detect most of
the UAF bugs, since FFmalloc delays the unmapping of canon-
ical pages until consecutive pages are freed. However, in con-
trast, BUDAlloc, even with deferred free enabled (BUDAlloc-p
for prevention), successfully detected all UAF bugs in 29 out
of 30 separate tests. This capability comes from the detection
time interval being short enough to identify the bugs. Further-
more, a user can easily switch to full detection by deactivating
deferred free. In this configuration, BUDAlloc successfully
detects attempted attacks (BUDAlloc-d for detection). In con-
trast to other OTA research [25, 44], BUDAlloc achieves near-
complete detection even in prevention mode.

NIST Juliet Test Suite. We evaluate the robustness of BU-
DAlloc using the NIST Juliet Test Suite v1.3 [12]. This test
suite comprises over one hundred unit tests for use-after-free
(CWE 416) and double-free (CWE 415) bugs, including cases
classified as false positives and false negatives. BUDAlloc
successfully detects all bugs in detection mode and prevents
all bugs without encountering any false positives.

HardsHeap. HardsHeap [47] is an automated tool designed
for fuzzing secure allocators. We apply HardsHeap to check
the resilience of BUDAlloc against UAF bugs. After running
for more than 168 hours, HardsHeap detected no issues or
errors. This empirical experiment shows the hardness of the
BUDAlloc one-time-allocator.

190 33rd USENIX Security Symposium USENIX Association

Integer

0x

1x

2x

3x

Pe
rfo

rm
an

ce

3.10x

perlb
enchbzip

2 gcc mcf gobm
k
hmm

er sjen
g

libqu
antu

m
h264

ref
omn

etppasta
r

xala
ncbm

k
geom

ean
0x
1x
2x
3x
4x

M
em

or
y

4.47x 4.06x

Float

milc nam
d

deal
II

sopl
ex

povr
ay lbm

sphi
nx3

geom
ean

11.71x 18.03x

glibc
BUDAlloc
BUDAlloc-detection

ffmalloc
dangzero
MarkUS

Figure 3: Overhead of SPEC CPU2006 compared with the GLIBC memory allocator. 1x means no overhead. Lower is better.

Integer

0x

1x

2x

3x

Pe
rfo

rm
an

ce

3.32x

perl
ben

ch gcc mcf
omn

etpp

xala
ncb

mkx26
4

dee
psje

ngleel
a

exc
han

ge2 xz
geo

mea
n

0x
1x
2x
3x
4x

M
em

or
y

5.56x 12.32x 28.62x

Float

bwa
ves

cac
tuBS

SN lbm wrf pop
2
ima

gick nab
foto

nik3
d
rom

s
geo

mea
n

glibc
BUDAlloc
BUDAlloc-detection

ffmalloc
dangzero
MarkUS

Figure 4: Overhead of SPEC CPU2017 compared with the GLIBC memory allocator. 1x means no overhead. A white bar indicates that a
specific allocator did not run. Lower is better.

5.2 Performance Evaluation
We evaluate BUDAlloc using widely adopted benchmarks

in OTA research and real-world programs to analyze and com-
pare BUDAlloc performance overheads. We select four sets
of benchmarks; SPEC CPU 2006 and SPEC CPU 2017 for
single-threaded applications (§5.3), PARSEC 3.0 for multi-
threaded applications (§5.4), Apache and Nginx Web server
for real-world applications (§5.5). We compare the overhead
of BUDAlloc on SPEC CPU 2006 and SPEC CPU 2017 with
MarkUs [17], DangZero [25], and FFmalloc [44]. To achieve
optimal performance in DangZero, we choose to disable an
alias reclaim for a fair comparison. SPEC CPU 2017 con-
tains workloads using a Fortran library, which requires multi-
threading. Unfortunately, DangZero lacks multithreading sup-
port, causing crashes in several SPEC CPU 2017 benchmarks,
specifically bwaves, wrf, pop2, exchange2, fotonik3d, and
roms. Also, FFmalloc and MarkUs failed to execute gcc.

5.3 Single-threaded Benchmarks
Table 4 summarizes the average performance and memory

overhead for five iterations of the commonly executable SPEC
CPU benchmarks. We use glibc as a performance baseline.

5.3.1 SPEC CPU 2006

System SPEC CPU 2006 SPEC CPU 2017
Perf. Mem Perf. Mem

BUDAlloc-p 1.11× 1.31× 1.18× 1.24×
BUDAlloc-d 1.16× 1.25× 1.23× 1.20×

DangZero 1.28× 1.24× 1.31× 1.27×
FFmalloc 1.01× 2.08× 1.01× 1.90×
MarkUs 1.16× 1.27× 1.17× 1.28×

Table 4: Normalized execution time (perf) and memory usage (mem)
in SPEC CPU 2006 and 2017 except gcc and benchmarks using
Fortran library. Lower is better.

Performance overhead. BUDAlloc shows a moderate perfor-
mance overhead compared to other systems, with a geometric
mean of 1.11× for BUDAlloc in prevention mode, 1.16× for
BUDAlloc in detection mode, 1.28× for DangZero, 1.01× for
FFmalloc, and 1.16× for MarkUs in SPEC CPU 2006. Dan-
gZero reports a higher geometric mean overhead compared
to BUDAlloc. This is because, unlike BUDAlloc, DangZero
requires virtualization for direct page table access, introducing
consistent virtualization overhead across all workloads. Impor-
tantly, the performance overhead of DangZero is slower than
BUDAlloc in the detection mode (BUDAlloc-d) which detects

USENIX Association 33rd USENIX Security Symposium 191

every UAF bug like DangZero. While FFmalloc reports al-
most no overhead in SPEC CPU 2006, it exhibits significantly
high memory overhead, as mentioned later. Fundamentally,
FFmalloc offers faster performance than detectors like BU-
DAlloc. FFmalloc does not manage alias-to-canonical map-
pings, groups small-sized objects into pages to reduce TLB
misses, and does not unset a page table after freeing. However,
this strategy in FFmalloc leads to delayed detection of UAF
bugs and higher memory overheads compared to BUDAlloc.
Notably, BUDAlloc is faster than FFmalloc in the gcc work-
load, which has the highest memory operations per second,
causing frequent system calls in FFmalloc. Unlike FFmalloc,
BUDAlloc manages system calls in the user space, resulting in
almost zero system call overhead during high-frequency allo-
cation. It shows comparable results to DangZero’s direct page
table modification with virtualization. Also, when we com-
pare BUDAlloc with the syscall-based approach Oscar [42],
which reports a geometric mean of 1.4× overhead, BUDAlloc
demonstrates faster performance.

Memory overhead. Figure 3 shows the memory overhead
with default configurations in previous works. BUDAlloc
demonstrates an acceptable overhead of geometric mean
1.31× in prevention mode and 1.25× in detection mode. In
contrast, FFmalloc exhibits approximately 2.08× memory
overhead in SPEC CPU 2006. Notably, FFmalloc experiences
significant peaks in malloc-intensive benchmarks such as om-
netpp, xalacbmk, povray, and sphinx3. This is attributed to
high memory fragmentation. To mitigate system call overhead,
FFmalloc allocates memory in chunks and delays memory re-
lease until at least 8 consecutive chunks can be freed. MarkUs
and DangZero exhibit similar memory overhead to BUDAl-
loc. We find that sphinx3 incurs the highest memory overhead
among all workloads due to its highly fragmented alias address
spaces from frequently allocated small chunks with mostly un-
used pages. However, among the three OTA-based approaches,
BUDAlloc demonstrates the smallest memory overhead in
sphinx3.

Performance breakdown. In Figure 5, we breakdown the per-
formance overhead of SPEC CPU 2006 to discover the impact
of BUDAlloc on both user and kernel stack. Notably, allocat-
ing aliases incurs less overhead than freeing them, thanks to
the user and kernel co-design that avoids system calls for alias
allocation. The performance of user-level parts is sensitive
to the application memory allocation patterns. For example,
in the gcc benchmark, the application frequently allocates
objects, which puts pressure on the internal memory alloca-
tor when allocating canonical address. However, due to the
semantic-aware prefaulting, overall kernel time is relatively
small in the gcc. In the kernel, we observed that the most
overhead comes from modifying page table entries. Flush-
ing the TLB incurs a small geomean overhead of 0.09%, less
than 2.7% in our implementation for the challenging omnetpp
workload. This workload puts high TLB pressure on the OTA

0% 10% 20% 30% 40%
Overhead

perlbench
bzip2

gcc
mcf
milc

namd
gobmk

dealII
soplex
povray
hmmer

sjeng
libquantum

h264ref
lbm

omnetpp
astar

sphinx3
xalancbmk

allocate alias
allocate canonical
free alias
free canonical

bpf_uaddr_to_kaddr
manage reverse map
custom kernel logic
Modifying PTE
& Flushing TLB
helper function
synchronization

allocate alias
allocate canonical
free alias
free canonical

bpf_uaddr_to_kaddr
manage reverse map
custom kernel logic
Modifying PTE
& Flushing TLB
helper function
synchronization

User-level Kernel-level

Figure 5: SPEC CPU 2006 performance breakdown.

due to its memory usage pattern. To modify a page table entry,
BUDAlloc helper functions traverse the page table iteratively,
requiring one iteration per object. Reverse mapping incurs the
second-largest overhead, taking up to 6.7% in omnetpp and
0.11% on average, mainly due to traversing list entries.

5.3.2 SPEC CPU 2017

BUDAlloc exhibits a moderate performance overhead and
efficient memory use compared to previous approaches in
SPEC CPU 2017, which aligns with the result from SPEC
CPU 2006. The performance overhead of SPEC CPU 2017
is 1.18× for BUDAlloc in prevention mode and 1.23× for
BUDAlloc in detection mode while DangZero and MarkUs
suffer from 1.31 × and 1.17× slowdown respectively. In terms
of memory overhead, BUDAlloc prevention incurs 1.24×, BU-
DAlloc detection 1.20×, DangZero 1.27×, FFmalloc 1.90×,
and MarkUs 1.28×. In the gcc benchmark, BUDAlloc shows
faster performance (1.07× in prevention and 1.09× in detec-
tion) compared to DangZero (1.14×). For benchmarks that use
the multithreading Fortran library, the performance overhead
is as follows: BUDAlloc in prevention mode is 1.05×, BUDAl-
loc in detection mode 1.10×, FFmalloc 1.0×, and MarkUs
1.11×. The memory overhead is as follows: BUDAlloc in
prevention mode 1.16×, BUDAlloc in detection mode 1.14×,
FFmalloc 1.75×, and MarkUs 1.51×. We assume that in the
multithreading Fortran library, MarkUs shows the worst per-
formance overhead due to garbage collection. In omnetpp_s,
BUDAlloc experiences higher performance overhead (2.61×)
compared to SPEC CPU 2006, mainly due to the frequent deal-
location of small objects in omnetpp_s. This increases TLB
pressure and unmapping page table overhead, which is funda-
mentally unavoidable in OTA. In such workloads, BUDAlloc
shows distinct trade-offs in the performance and memory over-
head; FFmalloc shows a smaller overhead than BUDAlloc
in performance, but memory use is 12.32× while BUDAlloc
shows 2.8×. Compared to MarkUs, BUDAlloc has a more
aggressive memory deallocation policy for small memory ob-
jects than MarkUs, resulting in lower performance but less

192 33rd USENIX Security Symposium USENIX Association

memory overhead in SPEC CPU 2017.

5.4 Multi-threaded Benchmarks
The PARSEC workload contains a suite of parallel programs

for evaluating the performance of multiprocessor systems. De-
spite its widespread use in literature, the PARSEC 3.0 bench-
marks are no longer actively maintained. Consequently, we
had to exclude several workloads from PARSEC 3.0 due to
issues such as compiled binaries hanging on our system when
using GLIBC, as reported in previous studies [44]. Our exper-
iments involved running 15 benchmarks across six different
core counts: 1, 2, 4, 8, 16, 32. We evaluate the performance
using BUDAlloc, GLIBC, FFmalloc, and MarkUs. We are un-
able to include DangZero in our evaluations because it lacks
support for multithreading applications. Additionally, we omit
any failed executions and represent them as white bars in the
results. For canneal, to ensure an accurate comparison of
scalability, we adjust the region of interest (ROI) to exclude
the single-threaded parts, which accounted for nearly 85% of
the execution time in GLIBC with 32 threads.

To analyze the data, we partition the workloads into CPU-
intensive and memory-intensive workloads based on the num-
ber of allocation frequency. The highest allocation rate in CPU-
intensive workloads is facesim, 4,619 per second, while the
lowest rate in Allocator intensive workloads is vips, 23,343
per second, about 5× higher than facesim.
CPU Intensive workloads. In the blacksholes, bodytrack,
facesim, ferret, fluidanimate, freqmine, netferret,
netstreamcluster, streamcluster, and x264 workloads,
BUDAlloc, FFmalloc, and MarkUs show similar results since
these workloads do not heavily utilize memory allocators.
Allocator Intensive workloads. In allocator-intensive work-
loads, such as canneal, dedup, netdedup, swaptions, and
vips, BUDAlloc shows scalable results, even outperforming
FFmalloc in some workloads. Figure 7 illustrates the overall
geometric mean of performance improvement normalized by
the glibc single thread. FFmalloc exhibits optimal performance
with fewer than 4 threads, but BUDAlloc surpasses FFmalloc
with more than 8 threads. We observe that FFmalloc eventu-
ally encounters bottlenecks due to frequent kernel system calls,
which causes the in-kernel global lock contention in the multi-
threaded workload. As shown in Figure 6, with more than 32
threads, FFmalloc experiences a significant performance drop
in dedup, netdedup, and vips. These benchmarks heavily
stress the memory allocator and invoke FFmalloc frequently
call mmap and munmap, which hold a global lock in the kernel.

MarkUs shows the worst performance in these work-
loads despite similar performance overhead in single-threaded
benchmarks with BUDAlloc. These outcomes are unsurprising,
as GC-based systems like MarkUs typically involve synchro-
nization between the GC thread and the main thread, which can
be severed when there is no dedicated core for offloading. How-
ever, BUDAlloc bridges the semantics of user space to manage

the metadata lock, enhancing OTA performance in multithread-
ing applications despite the increased bug-detection precision
which results in higher page table modification rates.

In swaptions, despite the scalability advantages of the BU-
DAlloc design, BUDAlloc shows worse performance than
FFmalloc. This is due to swaptions frequently allocating and
freeing large objects, placing significant stress on the alias
to canonical mapping in OTA. In BUDAlloc, this results in
page faults whenever a memory object is accessed and frees
the previous alias page for precise bug detection. FFmalloc
mitigates these overheads by using large chunks of memory, at
the cost of losing bug-detect precision. However, this approach
could be configured differently. We conduct tests on swap-
tions using the same logic as FFmalloc for handling large
objects. With this configuration, BUDAlloc demonstrates im-
proved performance by approximately 38%, surpassing FFmal-
loc’s performance by about 13% while maintaining a similar
memory overhead as BUDAlloc. However, adopting this con-
figuration may lead to significant memory overhead in other
applications, similar to FFmalloc. Consequently, we adhere to
our original BUDAlloc model for managing large objects.

5.5 Apache and Nginx
We evaluate the performance and memory overhead using

the real-world workload of the Apache Web Browser (version
2.4.58) [8] and Nginx [11]. Apache and Nginx Web servers are
widely adopted for serving HTTP servers. We connected two
Linux machines via an internal 10G network, directly linked
by the network interface cards. For the evaluation, we use 16
maximum processes with a 64 Kbytes test set for the server.
We tested the benchmark on the GLIBC, BUDAlloc, FFmalloc,
MarkUs, and DangZero. Apache adopts a thread-centric ap-
proach for the concurrent connections, whereas Nginx adopts
an event-driven model using a process. We check the scalabil-
ity of BUDAlloc in Apache, and memory overhead in Nginx.
Unfortunately, we failed to execute DangZero under vhost-net
due to kernel panic. We assume that the old kernel version
Linux 4.0.0 has some issues with vhost-net which is used by
DangZero. Additionally, we encountered null pointer derefer-
ence bugs that prevented the execution of Apache, even when
using the pre-fork mode. As a result, we opted to exclude
DangZero from the Apache evaluation.
Apache. As shown in Figure 8, BUDAlloc demonstrates
comparable performance, latency, and memory overhead com-
pared to GLIBC. However, FFmalloc shows approximately
8× higher memory usage because Apache frequently allocates
and deallocates small objects to handle incoming packets, lead-
ing internal allocator fragmentation. MarkUs experiences a
significant performance drop under heavy loads after 200 con-
current client connections, as Apache stresses worker threads
to serve concurrent client connections, resulting in contention
between mark-and-sweep threads and application threads.
Nginx. Unlike Apache, Nginx uses a worker process model

USENIX Association 33rd USENIX Security Symposium 193

glibc BUDAlloc ffmalloc MarkUS

1 2 4 8 16 320.0

2.5

5.0

blackscholes

1 2 4 8 16 320

10

bodytrack

1 2 4 8 16 320

10

facesim

1 2 4 8 16 320

20

ferret

1 2 4 8 16 320

10

20

fluidanimate

1 2 4 8 16 320

10

freqmine

1 2 4 8 16 320.0

0.5

1.0
netferret

1 2 4 8 16 320

10

20
netstreamcluster

1 2 4 8 16 320

10

20
streamcluster

1 2 4 8 16 320

10

20

x264

CP
U-
In
te
ns
iv
e

1 2 4 8 16 320

10

20

canneal

1 2 4 8 16 320

2

4
dedup

1 2 4 8 16 320

2

4

6
netdedup

1 2 4 8 16 320.0

2.5

5.0

7.5

swaptions

1 2 4 8 16 320

5

10

15

vips

M
em

or
y-
In
te
ns
iv
e

Figure 6: Speedups of PARSEC 3.0 based on the number of threads (higher is better). Performance is normalized to the GLIBC single thread.
A white bar indicates that a specific allocator did not run.

1 2 4 8 16 320x

5x

10x

15x
Throughput

1 2 4 8 16 320x

1x

2x

3x
Memory

glibc BUDAlloc ffmalloc MarkUS

Figure 7: Normalized overall geometric mean for all executable
workloads in PARSEC 3.0 with GLIBC single thread. BUDAlloc
shows the least memory overhead, and highest scalability, overtaking
FFmalloc in more than 8 threads. We replace crashed workload
performance with the one of GLIBC to compute the overall geometric
mean.

100 200 400 8000.0

0.5

1.0

1.5

2.0

Tr
an

sf
er

 R
at

e

×105 Throughput

100 200 400 8000

50

100

150

Ti
m

e
Pe

r R
eq

ue
st

 (m
s) 762 783 823

Latency (p99)

100 200 400 8000

50

100

150

M
em

or
y

us
ag

e
(M

B)

341 514 731 724
Memory

glibc BUDAlloc ffmalloc MarkUS

Figure 8: Apache throughput (Requests/sec) and average latency
(p99) with varying concurrent connections.

by spawning processes. For Nginx benchmarks, we employed
default settings with 400 concurrent connections. BUDAl-
loc, MarkUs, and FFmalloc exhibited comparable results with
GLIBC at 0.98×, 1.04×, and 0.95×, respectively, without sig-
nificant contention in MarkUs. However, we observed high
memory overhead in FFmalloc (7×) and MarkUs (154×), un-
like BUDAlloc (1.1×). Unsurprisingly, FFmalloc showed high
memory overhead in the malloc-stress settings. Interestingly,

MarkUs exhibited the highest peak in memory usage on the
Nginx web server. Upon investigation, we believe this may
be attributed to memory leaks resulting from false positive
detection in MarkUs. This finding aligns with the prior re-
search [25, 45]. DangZero shows around 8.9× performance
overhead compared with GLIBC, due to virtualization over
the network I/O stack using virtio [37].

In summary, only BUDAlloc demonstrates similar perfor-
mance, memory consumption, and scalability compared to the
baselines GLIBC, even with high bug-detecting precision.

6 Related work

Secure heap allocator. Existing work on creating secure
heap allocators, such as OpenBSD [13], Cling [18], and
DieHarder [34], typically focuses on protecting the metadata
of heap allocators by maintaining a bitmap to store alloca-
tion states called BIBOP allocator (Big Bag of Pages) [40].
However, BIBOP allocators introduce significant performance
overheads from bitmap tracking and synchronization over-
heads for multithreading applications. FreeGuard [40] solves
the performance problem of the BIBOP allocator using a novel
combination of both free list (sequential) allocator and BIBOP
allocator. However, it fails to protect against use-after-free
bugs and still incurs unacceptable memory overhead in certain
applications. In contrast to bitmap-based allocators, BUDAlloc
maintains free lists for better performance while effectively
preventing metadata corruption, by deferring canonical frees
until the next page fault handler.
Use-after-free prevention. There are trains of work for pre-
venting use-after-free bugs. These works cannot guarantee
detection, but prevent the bugs from malicious attacks. Dan-
gNull [28], FreeSentry [46], DangSan [43] and pSweeper [29]

194 33rd USENIX Security Symposium USENIX Association

track pointers to all allocated objects and explicitly nullify
pointers when the referenced objects are freed. MarkUs [17],
and Minesweeper [24] attempt to eliminate UAF bugs using
a garbage collector, quarantining freed objects until all ref-
erences to them vanish from the applications heap, stack, or
registers. However, they encounter significant CPU and mem-
ory overhead due to traversing dangling pointers.
Use-after-free detection. Compared with the prevention, de-
tecting UAF bugs is more challenging due to the complexity
of the mechanisms. Approaches like CETS [32] and Undan-
gle [21] utilize dynamic runtime for detecting UAF bugs. How-
ever, they have to inject guards on every memory access or
employ heavy runtime taint analysis, resulting in significant
performance and memory overhead.

In contrast, tools like Valgrind [16] and AddressSani-
tizer [38] focus on detecting use-after-free bugs for debugging
purposes rather than security. Unfortunately, their mechanisms
can be easily detoured by attackers using simple exploitable
programs that trigger use-after-free bugs [28].

7 Conclusion
This paper presents a practical OTA designed by separating

virtual and physical address management and by co-designing
one-time-allocator and virtual address management at the user-
level. BUDAlloc showcases well-rounded results in terms of
performance, memory use, scalability, and bug detectability
compared to FFmalloc, DangZero, and MarkUs.

Acknowledgements
We greatly appreciate the anonymous reviewers for their

valuable insights and suggestions. We thank Jiyong Park for
his helpful discussions and feedback. This work was sup-
ported by Samsung Research Funding & Incubation Cen-
ter of Samsung Electronics under Project Number SRFC-
IT2201-06. This work was also supported by Institute of In-
formation & communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government(MSIT)
(No.2021-0-00871, Development of DRAM-Processing-In-
Memory Chip for DNN Computing) and Googler-initiated
Grant (GiG) founded by Google.

References
[1] Introduce cap_bpf, 2020. https://

lore.kernel.org/bpf/20200513230355.7858-1-
alexei.starovoitov@gmail.com/.

[2] bpf_loop, 2021. https://lore.kernel.org/bpf/
87tuft7ff7.fsf@toke.dk/T/.

[3] Kvm performance improvements and optimizations,
2022. https://www.linux-kvm.org/images/5/59/
Kvm-forum-2011-performance-improvements-
optimizations-D.pdf.

[4] Zone-lock and mmap_sem scalability, 2022. https:
//lwn.net/Articles/753269/.

[5] BPF and XDP Reference Guide, 2023. https://
docs.cilium.io/en/stable/bpf/.

[6] ebpf documentation, 2023. https://www.ebpf.io/.

[7] american fuzzy lop, 2024. https://github.com/
google/AFL.

[8] Apache HTTP server project, 2024. https://
httpd.apache.org/.

[9] GWP-ASan: Sampling heap memory error detec-
tion in-the-wild - The Chromium Projects, 2024.
https://sites.google.com/a/chromium.org/dev/
Home/chromium-security/articles/gwp-asan.

[10] mimalloc GitHub page, 2024. https://github.com/
microsoft/mimalloc.

[11] NGINX: Advanced Load Balancer, Web Server, & Re-
verse Proxy, 2024. https://www.nginx.com/.

[12] NIST Juliet C/C++ version 1.3, 2024. https://
samate.nist.gov/SARD/test-suites/112.

[13] OpenBSD version 7.4, 2024. https://
www.openbsd.org/.

[14] Redis persistence, 2024. https://redis.io/docs/
management/persistence/.

[15] Uafbench, 2024. https://github.com/
strongcourage/uafbench.

[16] Valgrind, 2024. https://valgrind.org/.

[17] Sam Ainsworth and Timothy M. Jones. MarkUs: Drop-
in use-after-free prevention for low-level languages. In
IEEE Symposium on Security and Privacy (SP), 2020.

[18] Periklis Akritidis, Niometrics, Singapore, and Univer-
sity of Cambridge. Cling: A memory allocator to miti-
gate dangling pointers. In USENIX Security Symposium
(USENIX Security), 2010.

[19] Andrew Baumann, Jonathan Appavoo, Orran Krieger,
and Timothy Roscoe. A fork() in the road. In Workshop
on Hot Topics in Operating Systems (HotOS), 2019.

[20] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David
Terei, David Mazières, and Christos Kozyrakis. Dune:
Safe User-level Access to Privileged CPU Features. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

USENIX Association 33rd USENIX Security Symposium 195

https://lore.kernel.org/bpf/20200513230355.7858-1-alexei.starovoitov@gmail.com/
https://lore.kernel.org/bpf/20200513230355.7858-1-alexei.starovoitov@gmail.com/
https://lore.kernel.org/bpf/20200513230355.7858-1-alexei.starovoitov@gmail.com/
https://lore.kernel.org/bpf/87tuft7ff7.fsf@toke.dk/T/
https://lore.kernel.org/bpf/87tuft7ff7.fsf@toke.dk/T/
 https://www.linux-kvm.org/images/5/59/Kvm-forum-2011-performance-improvements-optimizations-D.pdf
 https://www.linux-kvm.org/images/5/59/Kvm-forum-2011-performance-improvements-optimizations-D.pdf
 https://www.linux-kvm.org/images/5/59/Kvm-forum-2011-performance-improvements-optimizations-D.pdf
 https://lwn.net/Articles/753269/
 https://lwn.net/Articles/753269/
https://docs.cilium.io/en/stable/bpf/
https://docs.cilium.io/en/stable/bpf/
https://www.ebpf.io/
https://github.com/google/AFL
https://github.com/google/AFL
https://httpd.apache.org/
https://httpd.apache.org/
https://sites.google.com/a/chromium.org/dev/Home/chromium-security/articles/gwp-asan
https://sites.google.com/a/chromium.org/dev/Home/chromium-security/articles/gwp-asan
https://github.com/microsoft/mimalloc
https://github.com/microsoft/mimalloc
https://www.nginx.com/
https://samate.nist.gov/SARD/test-suites/112
https://samate.nist.gov/SARD/test-suites/112
https://www.openbsd.org/
https://www.openbsd.org/
https://redis.io/docs/management/persistence/
https://redis.io/docs/management/persistence/
https://github.com/strongcourage/uafbench
https://github.com/strongcourage/uafbench
https://valgrind.org/

[21] Juan Caballero, Gustavo Grieco, Mark Marron, and An-
tonio Nappa. Undangle: early detection of dangling
pointers in use-after-free and double-free vulnerabilities.
In International Symposium on Software Testing and
Analysis (ISSTA), 2012.

[22] Patrick Cousot and Radhia Cousot. Abstract interpreta-
tion: A unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In
ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL), 1977.

[23] D. Dhurjati and V. Adve. Efficiently Detecting All Dan-
gling Pointer Uses in Production Servers. In Interna-
tional Conference on Dependable Systems and Networks
(DSN), 2006.

[24] Márton Erdős, Sam Ainsworth, and Timothy M. Jones.
MineSweeper: a “clean sweep” for drop-in use-after-
free prevention. In ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2022.

[25] Floris Gorter, Koen Koning, Herbert Bos, and Cristiano
Giuffrida. DangZero: Efficient Use-After-Free Detection
via Direct Page Table Access. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
2022.

[26] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. In 2019 IEEE Symposium on Security and
Privacy (SP), 2019.

[27] Dmitry Kuznetsov and Adam Morrison. Privbox: Faster
System Calls Through Sandboxed Privileged Execution.
In USENIX Annual Technical Conference (ATC), 2022.

[28] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei
Wang, Taesoo Kim, Long Lu, and Wenke Lee. Preventing
Use-after-free with Dangling Pointers Nullification. In
Network and Distributed System Security Symposium
(NDSS), 2015.

[29] Daiping Liu, Mingwei Zhang, and Haining Wang. A
Robust and Efficient Defense against Use-after-Free Ex-
ploits via Concurrent Pointer Sweeping. In ACM SIGSAC
Conference on Computer and Communications Security
(CSS), 2018.

[30] Toshiyuki Maeda and Akinori Yonezawa. Kernel Mode
Linux: Toward an Operating System Protected by a Type
Theory. In Vijay A. Saraswat, editor, Advances in Com-
puting Science – ASIAN. Progamming Languages and
Distributed Computation, 2003.

[31] Santosh Nagarakatte, Milo MK Martin, and Steve
Zdancewic. Watchdog: Hardware for safe and secure
manual memory management and full memory safety.
ACM SIGARCH Computer Architecture News, 40(3),
2012.

[32] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Softbound: Highly compatible
and complete spatial memory safety for c. In ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), 2009.

[33] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Cets: compiler enforced temporal
safety for c. In 2010 international symposium on Memory
management (ISMM), 2010.

[34] Gene Novark and Emery D. Berger. DieHarder: securing
the heap. In 17th ACM conference on Computer and
communications security (CCS), 2010.

[35] Pu Pang, Gang Deng, Kaihao Bai, Quan Chen, Shixuan
Sun, Bo Liu, Yu Xu, Hongbo Yao, Zhengheng Wang,
Xiyu Wang, Zheng Liu, Zhuo Song, Yong Yang, Tao Ma,
and Minyi Guo. Async-fork: Mitigating query latency
spikes incurred by the fork-based snapshot mechanism
from the os level. In International Conference on Very
Large Data Bases (VLDB), 2023.

[36] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong,
Yu Xu, and Haibing Guan. MDev-NVMe: A NVMe stor-
age virtualization solution with mediated Pass-Through.
In USENIX Annual Technical Conference (ATC), 2018.

[37] Rusty Russell. Virtio: Towards a de-facto standard for
virtual I/O devices. Operating Systems Review, 42(5),
2008.

[38] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In 2012 USENIX Annual
Technical Conference (ATC), 2012.

[39] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil
Cho, and Yunheung Paek. CRCount: Pointer Invalidation
with Reference Counting to Mitigate Use-after-free in
Legacy C/C++. In 2019 Network and Distributed System
Security Symposium (NDSS), 2019.

[40] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin,
and Tongping Liu. Freeguard: A faster secure heap allo-
cator. In 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2017.

[41] Livio Soares and Michael Stumm. FlexSC: Flexible
System Call Scheduling with Exception-Less System
Calls. In 9th USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2010.

196 33rd USENIX Security Symposium USENIX Association

[42] David Wagner Thurston H.Y.Dang, Petros Maniatis. Os-
car: A Practical Page-Permissions-Based Scheme for
Thwarting Dangling Pointers. In 26th Usenix Security
Symposium (USENIX Security), 2017.

[43] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuf-
frida. Dangsan: Scalable use-after-free detection. In
Twelfth European Conference on Computer Systems
(CCS), 2017.

[44] Brian Wickman, Hong Hu, Insu Yun, Daehee Jang, Jung-
Won Lim Sanidhya Kashyap, and Taesoo Kim. Prevent-
ing Use-After-Free Attacks with Fast Forward Allocation.
In 30th Usenix Security Symposium (USENIX Security),
2021.

[45] Carter Yagemann, Simon P. Chung, Brendan Saltafor-
maggio, and Wenke Lee. PUMM: Preventing Use-After-
Free using execution unit partitioning. In 32nd USENIX
Security Symposium (USENIX Security), 2023.

[46] Yves Younan. FreeSentry: Protecting Against Use-After-
Free Vulnerabilities Due to Dangling Pointers. In 2015
Network and Distributed System Security Symposium
(NDSS), 2015.

[47] Insu Yun, Woosun Song, Seunggi Min, and Taesoo Kim.
HardsHeap: A Universal and Extensible Framework for
Evaluating Secure Allocators. In 2021 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 2021.

[48] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. On-
demand-fork: a microsecond fork for memory-intensive
and latency-sensitive applications. In Sixteenth European
Conference on Computer Systems (EuroSys), 2021.

USENIX Association 33rd USENIX Security Symposium 197

	Introduction
	Use-After-Free Bug
	OTA Design Problem
	Challenge: Semantic Gap
	Limitations of Previous OTAs
	No alias mapping
	Syscall-based approach
	LibOS-based approach

	Compatibility Problem
	Threat Model

	BUDAlloc
	BUDAlloc Design Overview
	User-level Components of BUDAlloc
	One Time Allocator
	Virtual address manager (LibMM)
	Optimizations

	Kernel Components of BUDAlloc
	Decoupling address space
	User-Defined Page Fault Handler
	Confining logic errors

	Scalability
	Compatibility
	Compatibility Study

	Discussion
	Security Analysis

	Evaluation
	Security Evaluation
	Performance Evaluation
	Single-threaded Benchmarks
	SPEC CPU 2006
	SPEC CPU 2017

	Multi-threaded Benchmarks
	Apache and Nginx

	Related work
	Conclusion

