
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Hermes: Unlocking Security Analysis of Cellular
Network Protocols by Synthesizing Finite State

Machines from Natural Language Specifications
Abdullah Al Ishtiaq, Sarkar Snigdha Sarathi Das, Syed Md Mukit Rashid,

Ali Ranjbar, Kai Tu, Tianwei Wu, Zhezheng Song, Weixuan Wang, Mujtahid Akon,
Rui Zhang, and Syed Rafiul Hussain, Pennsylvania State University
https://www.usenix.org/conference/usenixsecurity24/presentation/al-ishtiaq

Hermes: Unlocking Security Analysis of Cellular Network Protocols by Synthesizing
Finite State Machines from Natural Language Specifications

Abdullah Al Ishtiaq, Sarkar Snigdha Sarathi Das, Syed Md Mukit Rashid, Ali Ranjbar
Kai Tu, Tianwei Wu, Zhezheng Song, Weixuan Wang, Mujtahid Akon

Rui Zhang, Syed Rafiul Hussain
Pennsylvania State University

Abstract
In this paper, we present Hermes, an end-to-end framework
to automatically generate formal representations from natural
language cellular specifications. We first develop a neural
constituency parser, NEUTREX, to process transition-relevant
texts and extract transition components (i.e., states, conditions,
and actions). We also design a domain-specific language to
translate these transition components to logical formulas by
leveraging dependency parse trees. Finally, we compile these
logical formulas to generate transitions and create the formal
model as finite state machines. To demonstrate the effective-
ness of Hermes, we evaluate it on 4G NAS, 5G NAS, and 5G
RRC specifications and obtain an overall accuracy of 81-87%,
which is a substantial improvement over the state-of-the-art.
Our security analysis of the extracted models uncovers 3 new
vulnerabilities and identifies 19 previous attacks in 4G and 5G
specifications, and 7 deviations in commercial 4G basebands.

1 Introduction

The cellular standard body, i.e., the 3rd Generation Partner-
ship Project (3GPP), designs, creates and maintains technical
specifications for cellular network systems used by network
operators and equipment vendors worldwide [1]. However, a
wide range of cellular stakeholders and network entities, a vast
diversity of use cases such as SMS, data access, and roaming
connections, and tighter backward compatibility requirements
make it difficult for 3GPP to maintain the specifications in a
simple form. Especially, the natural language description of
the cellular network design spreading over hundreds of docu-
ments makes it extremely laborious and often error-prone to
create formal models necessary for security analysis. More-
over, the inherent ambiguities and complexities of natural
language often lead to misinterpretations by the developers,
resulting in deviations and exploitable flaws in implementa-
tions [43, 50, 51, 69]. Such deviations are difficult to identify
without access to the baseline/gold standard. However, the
cellular standard body does not provide any formal model of
the system, thereby leaving the lack of a gold standard.

Although formal analysis of cellular network design has
uncovered several new vulnerabilities, all of them rely on
hand-crafted models [14, 29, 40, 42, 64, 71]. Unfortunately,
manually constructing such formal models is tedious and
error-prone due to the sheer size of cellular systems and the
large number of documents. Moreover, these models require
significant time and effort and are often limited by modeling
flaws (incorrectly representing the system) [40], inconsistent
levels of abstraction [14, 42], and oversimplified representa-
tions of complex protocol details [40, 42], leading to inade-
quate formal security analysis. Furthermore, although 3GPP
introduces new generations (e.g., 3G, 4G, 5G) of cellular tech-
nology roughly every decade, within a generation, specifica-
tions are frequently updated, e.g., on average, the specification
documents are updated 5-6 times each year, and each update
includes several hundreds of line changes [44]. Despite not
being major technology shifts, these changes in the protocol
can often lead to new vulnerabilities. For example, changes
in the collision resolution mechanism between two partic-
ular procedures introduced in the 4G specification [10] led
to a new vulnerability [26]. Likewise, in this work, we find
a new vulnerability in 5G (§8.4.1), stemming from a new
cause of message rejections introduced in the 5G specifica-
tion update [4]. Conversely, due to time and effort constraints,
frequently updating hand-crafted models is not always feasi-
ble. In fact, these prior models have never undergone revisions
to account for new changes as they have emerged. Thus, auto-
mated extraction of formal models from cellular specifications
is pivotal for analyzing the security of cellular protocols.

Recently, researchers used Natural Language Processing
(NLP) tools to identify hazard indicators in cellular specifi-
cations for creating concrete test cases [26] and to discover
security-relevant change requests [24]. Unfortunately, none
of them extract formal models automatically. Furthermore,
among the attempts to extract structured representation from
natural language in other domains, e.g., protocols [67], geo-
graphical questions [34, 47, 90], medicine [19], and database
queries [34, 47, 88, 89], RFCNLP [67] extracts Finite State
Machines (FSMs) from Request for Comments (RFC) docu-

USENIX Association 32nd USENIX Security Symposium 4445

ments, albeit for small protocols. In contrast, cellular protocols
have a substantially large number of transitions, a myriad of
use cases, variables, events, message fields, and complex inter-
actions across layers and sub-layers, rendering RFCNLP inef-
fective. The absence of standardized datasets or benchmarks
further compounds the difficulty in automatically extracting
formal representations.

In this paper, we address these challenges by develop-
ing Hermes (Hermes was the God of translator/interpreter in
Greek mythology) that automatically extracts the formal repre-
sentation of cellular network protocols from the given natural
language specification documents. We develop three main
components: a neural constituency parser called NEUTREX,
IRSynthesizer, and FSMSynthesizer. With these compo-
nents, Hermes generates FSMs as a set of transitions con-
taining states, conditions (e.g., received messages), and ac-
tions (e.g., sending messages) in a logical format. At a high
level, Hermes first uses NEUTREX, developed with a domain-
knowledge-informed grammar and deep-learning-based neu-
ral parsing model, to extract the portions of natural language
texts related to transitions and detect components (e.g., states,
conditions, actions) within them, along with their logical re-
lations. Hermes then leverages IRSynthesizer, designed
with a Domain Specific Language (DSL) and a neural depen-
dency parser, to identify the key information items, including
variables and events, and convert the conditions and actions to
logical formulas or intermediate representations (IR), which
can be easily transpiled to specific formal language amenable
for formal analysis. Finally, the FSMSynthesizer of Hermes
combines the logical formulas corresponding to the transition
components to construct complete transitions and the FSMs.

To demonstrate the efficacy of Hermes across multiple
cellular layers, generations, and releases, we evaluate it on 4G
NAS [11], 5G NAS [5], 5G RRC [6], and RFC documents [67].
Our results show that Hermes-generated FSMs achieve up to
87.21% accurate transitions compared to human-annotated
transitions for 4G and 5G NAS specifications. Regarding
identifying transition constituents from cellular specification,
NEUTREX achieves 68.69% labeled F1-score, showcasing a
substantial improvement over the state-of-the-art RFCNLP’s
38.52%. We also evaluate Hermes on RFCs, and it achieves
57.06% labeled F1-score compared to 47.76% of RFCNLP.

To demonstrate that Hermes facilitates security analysis
of cellular networks, we use it to perform two different secu-
rity analyses of the cellular protocols. First, we transpile the
generated formal models to SMV language [62] by applying
prior tools [40,42] and perform model checking. This analysis
identifies 19 previous and 3 new vulnerabilities in the 4G and
5G specifications. Second, we compare the Hermes-generated
FSM with commercial 4G cellular baseband FSMs to iden-
tify flaws in the implementations. This analysis uncovers 7
deviations in 9 basebands with an accuracy of 78%.
Responsible Disclosure. We have shared our findings with
the GSMA CVD panel, and they have confirmed and acknowl-

<control>

<condition>

Upon receipt of the
IDENTITY REQUEST

message

<action>

the UE shall send an
IDENTITY RESPONSE
message to the network.

Figure 1: A constituency parse tree.

nsubj objaux

reset

det

UE

det

service_req_
attempt_counter

thethe shall

Figure 2: A depen-
dency parse tree.

edged our contributions with CVD-2023-0071.
Contributions. We summarize our contributions as follows:
• We design and implement Hermes, a framework for auto-

matically extracting formal models from natural language
cellular specification documents. We show the effective-
ness of Hermes across different cellular generations (4G
and 5G) and layers (NAS and RRC), significantly outper-
forming state-of-the-art in both cellular and other domains.

• We demonstrate the use of the formal models extracted by
Hermes in the security analysis of the design of 4G and 5G
cellular network protocols. We identify 19 previous and 3
new issues in those design documents.

• We also show that the extracted formal representation
of the 4G NAS specification effectively identifies 7
implementation-level flaws in 9 cellular devices by com-
paring those devices’ FSMs with Hermes-generated FSM.

• We provide a curated dataset of natural language transition
components in cellular specifications and the source code
of Hermes, serving as a benchmark for future research. The
dataset, source code, and properties are available at: https:
//github.com/SyNSec-den/hermes-spec-to-fsm.

2 Background

❏ Cellular Network Architecture. The User Equipment
(UE), which includes USIM and cryptographic keys, is the
device users use to access cellular services. A base station,
gNB in 5G or eNodeB in 4G, provides cellular services to
users and manages radio resources in a geographical cell
area. Multiple base stations communicate with one another
through a radio access network (RAN). The core network
consists of several components or network functions (NF).
The AMF (MME in 4G) is a major NF that is responsible for
UEs’ mobility management, e.g., registration, in the network
through the Non-Access Stratum (NAS) protocol.
❏ Word Embeddings and Pretrained Language Models.
Word embedding represents a word as a real-valued vec-
tor, which encodes its meaning. BERT [31] leverages Trans-
former [81] based encoders to learn contextualized word em-
beddings by pretraining over general-domain corpora. How-
ever, Liu et al. [60] reveal that the next sentence prediction
objective of BERT degrades the embeddings, and the same
words are masked in different training epochs of BERT, lead-
ing to sub-optimal training. They incorporated these decisions

4446 32nd USENIX Security Symposium USENIX Association

https://github.com/SyNSec-den/hermes-spec-to-fsm
https://github.com/SyNSec-den/hermes-spec-to-fsm

FSM
Synthesizer

start_state := emm_service_request_initiated
condition := (channel_MME_UE = service_reject) &
 (service_reject_integrity_protected |
 service_reject_emm_cause_present &
 service_reject_emm_cause_present !=
 cause_25)
action := ue_service_req_attempt_counter = 0

On receipt of the SERVICE REJECT message,
if the UE is in state EMM-SERVICE-
REQUEST-INITIATED and the message is
integrity protected or contains a reject cause
other than EMM cause value #25, the UE shall
reset the service request attempt counter.

Constituency Parse Tree
IR

Synthesizer
Logical

Formulas

Natural Language
Specification

Formal Model

Neural Transition
Component Extractor

An example of transitions for corresponding text
An example text

<control>

<condition>

On receipt of the
SERVICE REJECT

message,

<start_state>

if the UE is in state
EMM-SERVICE-

REQUEST-
INITIATED

and <condition>

<condition> or <condition>

<action>

the message is
integrity protected

contains a reject cause
other than EMM cause

value #25,

the UE shall reset the
service request attempt

counter.

Figure 3: Overview of Hermes.

into RoBERTa to deliver stronger performances.
❏ Constituency Parsing. Constituency parsing builds a hi-
erarchical tree, which describes the internal structure of a
sentence, including non-terminal constituents and terminal
input words. Figure 1 shows the input sentence parsed into its
constituents– condition and action spans. Conventional con-
stituency parsing methods [37, 79] rely on explicit grammar
production rules demanding extensive domain knowledge
without leveraging any constituent semantics. Neural con-
stituency parsers [52,53,93] address this problem by learning
those grammars during training through marginal probabili-
ties, which are utilized during inference.
❏ Dependency Parsing. While constituency parsing detects
the constituent spans from a sentence, dependency parsing
[23] provides the explicit relations that we need to synthe-
size FSMs from cellular specifications. For example, in Fig-
ure 2, if a span is detected as an action (“reset”), we also
need to know the subject (“UE”) and object (“service_req at-
tempt_counter”) associated with it. Accordingly, dependency
parsing identifies the main verb word as the root node, and all
other words have exactly one headword as their parent node.
This gives a unique path from the root verb node to all other
word nodes to facilitate the synthesis of logical expression.

3 Overview of Hermes

In this section, we define the problem, present an overview of
Hermes, and discuss the challenges and insights.

3.1 Problem Statement
Given a cellular system specification in natural language,
Hermes aims to generate a formal model, M = ⟨P,F,H,V⟩:
• P is the set of protocol participants, {P1,P2, ...}, in the

given specification.
• F is the set of synchronous communicating FSMs,
{F1,F2, ...}, for each P ∈ P.

• H is the set of one-way communication channels between
the entities in P, i.e., {Hi j|∀Pi,P j ∈ P∧Pi ̸= P j}.

• V is the set of variables, {V1,V2, ...}, in M .
We define each FSM in F as F = ⟨S,S0,T⟩, where S is the
set of states {S1,S2, ...}, S0 is the initial state, and T is the
set of transitions. We further define each transition in T as

T = ⟨Si,S f ,C ,A⟩, where Si is the starting state, and S f is the
ending state of the transition T , C is the logical condition
for the transition T to take place, and A is the set of actions,
{A1,A2, ...}, which also occur when the transition T takes
place. Here, an action A ∈ A can be a message transmission
through a channel H ∈H or an update to a variable V ∈ V.

3.2 Solution Sketch of Hermes

We address the problem in §3.1 with three primary com-
ponents of Hermes: Neural Transition Component Ex-
tractor (NEUTREX), Intermediate Representation Synthesizer
(IRSynthesizer), and Finite State Machine Synthesizer
(FSMSynthesizer). The workflow is shown in Figure 3.
NEUTREX takes natural language texts and identifies the

constituent spans (transition components in natural language,
TCNLs) corresponding to the states, conditions, actions, and
the transition itself (ctl_block). For that, we extend a state-
of-the-art neural constituency parser [93] and generate con-
stituency parse trees for input natural language texts. Figure
3 demonstrates NEUTREX extracted TCNLs (start_state, action,
condition, and control) and logical relations (e.g., and, or) in
the constituency parse tree corresponding to the input text.

In the next stage, IRSynthesizer takes TCNLs (state, con-
dition, or action) within the ctl_block, identified as constituent
spans by NEUTREX, and constructs corresponding transition
components in intermediate representations (IR), TCIR, in a
logical format. Finally, the generated IRs are compiled with
FSMSynthesizer to create the transitions, ultimately consti-
tuting the formal representation of the cellular specification.

3.3 Challenges and Insights of Extracting FSM
C1: Complex associations of FSM transition components
in natural language. Identifying transition components
(TCNLs), i.e., start state, end state, conditions, and actions
of an FSM’s transitions from natural language specifications
is challenging. This is because the associations among the
components are highly complex and depend on both syntactic
features and semantic relations. For example, consider the
sentence “The UE initiates attach procedure by sending an
ATTACH REQUEST to the network” in TS 24.301 [11]. It can
have two interpretations: (1) “the UE shall initiate the attach

USENIX Association 32nd USENIX Security Symposium 4447

par ::= ctl_block par | text par | text

ctl_block ::= "<control>" ctl_unit "</control>"

ctl_unit ::= ctl_block ctl_unit | start_state_tag ctl_unit |

 end_state_tag ctl_unit | act_tag ctl_unit |

 cond_tag ctl_unit | text ctl_unit | text

start_state_tag ::= "<start_state>" text "</start_state>"

end_state_tag ::= "<end_state>" text "</end_state>"

cond_tag ::= "<condition>" cond_unit "</condition>"

cond_unit ::= cond_tag cond_unit | text cond_unit | text

act_tag ::= "<action>" act_unit "</action>"

act_unit ::= cond_tag act_unit | text act_unit | text

text ::= token text |

Figure 4: Defined grammar for annotated data.

procedure”, and “the UE shall send an ATTACH REQUEST to the
network”, resulting in two actions by a UE without any condi-
tion, or (2) The first part is treated as “when the UE initiates
attach procedure” and thus can be considered as a condition
for the second part–“sending the ATTACH REQUEST message".
Therefore, domain knowledge is required to disambiguate
such cases of complex associations.
❍ Insight (I1): We adopt a domain-knowledge-informed
grammar for transition components and a neural model to
extract them automatically. First, we define a nested grammar
for TCNLs considering complex and nested associations preva-
lent in cellular specifications. We curate an expert-annotated
dataset by labeling TCNLs in cellular specifications accord-
ingly. Next, we design a neural constituency parsing-based
transition component extractor (NEUTREX) that extracts com-
plex nested structures by comprehending semantic informa-
tion. The resulting parse tree (as in the parse tree in Figure
3) precisely maintains the hierarchy of different constituent
spans (TCNLs), allowing us to automatically handle the nested
grammar for cellular documents. In contrast, existing neural
models for network protocols [67] fail to automatically detect
and handle such complex associations and nested constituents.
C2: Limitations of existing NLP models on cellular
specification. Off-the-shelf constituency parsers face several
challenges when extracting cellular TCNL. As cellular specifi-
cations are written in a highly technical language with 3GPP-
specific abbreviations and terms, existing word embeddings
trained on general-purpose corpora are inadequate owing to
the domain shift. Also, existing constituency parsers do not
perform reasonably well in the cellular dataset because of
complex nested associations. Finally, transformer-based em-
bedding models often face token limits surpassed by cellular
document paragraphs. This requires appropriate measures to
avoid truncated parse trees and inaccurate FSMs.
❍ Insight (I2): To close the domain gap in the embedding
model, we curate and clean a large natural language dataset
consisting of 22,000 cellular documents, including technical
specifications, change requests, and technical reports, for un-
supervised pretraining of a RoBERTa [60] embedding model.
Second, while training the constituency parser [93], we ob-

serve that it struggles to extract both span boundaries and
labels simultaneously in the first few steps. Therefore, at the
beginning of the training, we prioritize labeling the tokens
and gradually give the same priority to identifying spans as
the training progresses. Lastly, long datapoints are handled
by splitting and generating embeddings for all input tokens.

C3: Absence of annotated cellular datasets for translation
from NL phrases to logical form. Transition components
(TCNLs) are not directly usable for any formal security analy-
sis and need to be converted to logical expressions and state-
ments, such as UE_service_req_attempt_counter :=0. Exist-
ing data-driven approaches for such translation [33,45,54,78]
are largely domain-specific and fail to generalize across do-
mains or capture complex logical relations [88]. Further, no
dataset exists for translating natural language to logical for-
mulas for cellular systems, and annotating such a large dataset
is tedious and error-prone.

❍ Insight (I3): To circumvent the lack of annotated datasets,
we simplify the NL-to-logic task and take an intermediary step
similar to schema-based translations [72,73]. Accordingly, we
define a Domain Specific Language (DSL) (partially shown
in Figure 7) that enables parsing and translating TCNLs to
precise and consistent logical representations. Moreover, the
DSL postulates a structure for the translation and highlights
the required information for each logical formula through
commands and corresponding arguments. If any information
is missing in TCNL due to natural language ambiguities or
constituency parsing inaccuracies, the DSL can guide the
search for them through metadata, e.g., type information.

C4: Text to DSL rule mapping requires explicit
arguments. The DSL provides a pathway to logical formulas
from natural language strings. However, it has a strict syntax
and fixed arguments, whereas natural language is inherently
diverse and imprecise. For example, different sentence struc-
tures may express the same meaning, such as “the MME shall
send an ATTACH ACCEPT message to the UE”, “an ATTACH AC-

CEPT shall be sent to the UE by the MME”, and so on. Mapping
such diverse texts to the same DSL rule is non-trivial.

❍ Insight (I4): The DSL commands are inherently tree-
structured and can be represented as Abstract Syntax Trees
(AST). Conversely, natural languages follow sequential pat-
terns. To map them to DSL, a tree format is a reasonable inter-
mediate step. Among the different natural language tree rep-
resentations, dependency trees extract useful relations among
the tokens and often demonstrate similar structures as the DSL
ASTs. Figures 8 (a) and 8 (c) show such similarities. Here,
the primary verb–“receive”, is the root in both trees, and the
messages are their descendants. Even in cases where a similar
meaning is represented by different sentence structures (e.g.,
examples in C4), these relations are preserved reasonably
well. These similarities indicate that dependency parsing on
the transition components (TCNL) can help in mapping texts
to DSL rules and, thereafter, generating logical formulas.

4448 32nd USENIX Security Symposium USENIX Association

4 Extracting Transition Components

The neural transition component extractor (NEUTREX) takes
each paragraph of a cellular specification as input and extracts
the constituency parse trees based on the grammar in Figure
4. It identifies ctl_block with transition components (TCNLs)
and simultaneously refrains from including natural language
texts that do not contain any transition information.

4.1 Grammar and Annotated Dataset

As discussed in §3.3, the TCNLs are interrelated through com-
plex associations and require domain expertise for correct in-
terpretations. To address this challenge, we define a grammar
for TCNLs as shown in Figure 4 and annotate three specifica-
tion documents, namely 4G-NAS-Release16 [11], 5G-NAS-
Release17 [5], and 5G-RRC-Release17 [6]. The annotation
is done by manually inspecting each paragraph and sentence,
and identifying states, conditions, and actions in them. Further,
we consider their semantic relations and dependencies, and
follow the defined grammatical structure during annotation.

A string in the language defined by this grammar can
consist of English tokens (token) or can have one or more
control blocks (ctl_block). Here, the control block is the
primary construct for transitions and contains TCNLs (i.e.,
start_state_tag, end_state_tag, cond_tag, and act_tag). Figure
3 illustrates an example control block with multiple condition
spans (cond_tag), start state span (start_state_tag), and ac-
tion spans (act_tag). Moreover, our grammar supports nested
spans and facilitates extracting complex logical relationships
among them, as demonstrated in the example in Figure 3.

4.2 Constituency Parsing - NEUTREX
We build NEUTREX, a neural constituency parser that extracts
ctl_block and corresponding TCNLs from natural language
texts. As cellular specifications contain rich and complex as-
sociations of transition components, which pose a significant
challenge for existing NLP models trained on general do-
mains, we propose the following innovations to adapt and
enhance state-of-the-art constituency parser [93] for our task:

(i) Instead of the original RoBERTa model [60] that cannot
recognize most cellular-specific technical words and phrases,
we pretrain a new embedding model, CellulaRoBERTa, from
scratch with cellular-specific documents, as described in §4.3.
This ensures that the constituency parser can correctly com-
prehend the tokens used in cellular specification documents.

(ii) We reformed the loss function so that it properly inte-
grates span semantics and span structure information during
objective optimization. We demonstrate that this is critical in
improving performance in detecting the constituents.
Workflow. NEUTREX works in a two-stage scheme, as shown
in Figure 5. In the Bracketing stage, the parser takes an
input sentence and outputs an unlabeled tree housing all the

If the ATTACH ... the network, the MME the UE

CellulaRoBERTa Encoder

[] [] [] []...

<CTRL>

<CND> <ACT>

Bracketing Labeling

Boundary

Represent.

Biaffine

Span

Scorer

<CTRL>

<CND> <ACT>If network the UE

If UE

Figure 5: Detailed architecture of NEUTREX.

constituents. In the Labeling stage, these constituents are
classified into different labels to get the output tree. In this
way, we not only get the tags of different constituents for the
input, but also preserve the structural association.
Bracketing. Given a sentence x, the conditional probability
of an unlabeled tree y is calculated as: P(y|x) = expS(x,y)

∑y′ expS(x,y′) ,

where S(x,y) = ∑(i, j)∈y s(i, j) is the sum of the scores of all
constituent spans (i, j) under the tree y, and y′ enumerates
all possible trees using the CKY algorithm [38]. For each
word wi, we use multi-layer perceptrons over domain-specific
CellulaRoBERTa embeddings to produce left boundary rep-
resentations ui

l and right boundary representations ui
r for this

word. Then, for a given span (i, j), we calculate the biaffine
score using the left boundary word representation wi and right
boundary word representation w j to determine the score for
the span: s(i, j) = ui

l
⊤Wu j

r +b, where W and b are trainable
parameters. After calculating the score of all possible trees,
the best tree ŷ is chosen as: ŷ = argmaxy P(y|x).
Labeling. Given an input sentence x and a tree y, the label is
predicted for each of the constituents (i, j) in the tree inde-
pendently. We denote a label as l ∈ L , where L is the label
set in our grammar. For a constituent (i, j) and a label l, we
calculate a biaffine score s(i, j, l) similarly as done in the
bracketing stage, and we have |L | biaffine heads for all the
labels. We pick the best label as: l̂ = argmaxl∈L s(i, j, l).
Training. Given a sentence x with the corresponding ground
truth constituency tree y and label l, the vanilla loss [93] is
calculated as L = Lbracket +Llabel, where Lbracket denotes the
global conditional random field (CRF) loss in sentence level,
and Llabel is the cross entropy loss for labeling using teacher
forcing by training only with ground truth trees. However,
we found that Lbracket, which encodes the bracketing loss to
encode the tree structure, does not work well in the early
stages of training, and the model quickly converges to local
minima where it only generates trivial span prediction with
suboptimal performance (labeled F1 score of only 0.2849).

Consequently, we postulate that the constituent label in-
formation from Llabel could enhance the integration of span
semantics that is lacking in the early training phase, which
can later facilitate the model to learn structured informa-

USENIX Association 32nd USENIX Security Symposium 4449

tion by training with Lbracket. Thus, we emphasize label-
ing training in the early stage by modifying the loss as
L = λ1Lbracket +λ2Llabel. In the first few stages, when bracket
loss is unstable, we give high weights to Llabel (i.e., λ2 > λ1).
Later, we normally train with λ2 = λ1. This ensures smooth
training, resulting in accurate constituency parsing.

4.3 Pretraining CellulaRoBERTa

The original RoBERTa [60] model used in prior constituency
parser [93] fails to perform satisfactorily on cellular docu-
ments because of many unknown tokens and new domain
knowledge, such as the frequent use of 3GPP-specific words,
abbreviations, and technical terms. Therefore, we pretrain a
RoBERTa model from scratch on cellular documents so that it
can accurately generate embeddings for cellular specification
tokens. Accordingly, we curate a large dataset of cellular doc-
uments consisting of more than 22,000 documents, including
cellular specifications, change requests, technical reports, etc.
We preprocess these documents by removing page headers
and footers, non-ASCII characters, tables, and figures. We
then pretrain a RoBERTa model on our cleaned corpus. In
this manner, we create CellulaRoBERTa, a RoBERTa-based
specialized language model providing domain-specific con-
textualized word representations of cellular specifications.

5 Synthesizing IR from TCNL

For each ctl_block, IRSynthesizer takes in the transition
components (TCNLs) extracted by NEUTREX and generates
corresponding intermediate representations (IR) as logical
formulas. FSMSynthesizer then uses the IRs to build FSMs.

The architecture of IRSynthesizer is illustrated in Fig-
ure 6. At first, it extracts keywords (e.g., messages, variables,
events, etc.) from natural language specifications and links
those keywords to TCNL strings with Keyword Extractor.
After that, the DTGenerator converts these strings to depen-
dency trees, which is used by IRTranslator for mapping
the TCNLs to DSL commands and extracting the arguments
in order to finally generate logical IRs (TCIR).

5.1 Domain-Specific Language

For IR, we consider the conditions as logical expres-
sions (e.g., chan_ue_mme = AUTHENTICATION FAILURE)
and actions as logical or arithmetic statements (e.g.,
counter := counter+1). However, these expressions and
statements are often not syntactically/structurally similar to
their corresponding natural language texts (e.g., “if the UE
returns AUTHENTICATION FAILURE”, “increment counter”). As
a result, direct translation from natural language to logical
formulas is challenging. Further, the lack of generalizability
of existing data-driven approaches (discussed in §3.3) makes

it even more challenging to generate logical formulas directly
from natural language in the cellular domain.

To address these disparities, we define a Domain Specific
Language (DSL) to reliably translate TCNLs to logical for-
mulas. The DSL is partially shown in Figure 7. Hermes
relies on DSL because its commands can encode logical
and linear integer arithmetic expressions and logical oper-
ations, and allow the use of variables, constants, and quan-
tifiers. For example, the NL string–“the UE shall reset the
service_req_attempt_counter” can be mapped to the DSL
command reset(UE, service_req_attempt_counter) and cor-
responding arguments, which can then be easily translated to
UE_service_req_attempt_counter := 0. While defining the
DSL, we observe that the operations or conditional checks
usually occur as action verbs in TCNLs. Thus, we extract ac-
tion verbs as DSL command names from the specification
using a neural parts-of-speech tagger [74], and examine the
TCNLs containing these verbs to identify required arguments.
Finally, we manually define the output logical forms for each
DSL rule and implement an interpreter to generate them.

5.2 Keyword Linking
Identifying arguments of DSL commands is an integral step in
applying the DSL rules. These are various identifiers, such as
variables, states, messages, etc., consisting of multiple natural
language tokens, whereas an argument is a unit. Although
3GPP defines a few abbreviations, messages, etc., the list is
not complete and often misses important identifiers (e.g., “ser-
vice request attempt counter”). As manual extraction of these
identifiers is tedious and error-prone, we take an automated
approach to identify and link them in TCNL strings with a
single token keyword, which can be used as arguments to
DSL commands. We observe that the identifiers are usually
noun phrases, so we use a neural phrase-structure constituency
parser [59,74] to identify all noun phrases. After further filter-
ing, processing, and applying cellular specification-specific
heuristics, we extract the desired identifiers and assign types
to them by combining automated and manual efforts.

While linking single token keywords to identifiers in
TCNLs, we observe slight variations in identifiers with the
same meaning (e.g., “tracking area updating accept” and
“tracking area update accept”), smaller identifiers within larger
ones (e.g., IMEI, IMEISV, and IMEISV request), typographic
errors, and inconsistent uses of punctuation. To address these
challenges, we utilize Levenshtein distance [57] to correctly
identify the keyword. We also embed type information to the
keywords for the next phases of IRSynthesizer.

5.3 Constructing Dependency Trees
As discussed in §3.3, DSL rules require specific arguments,
and representing natural language transition components
(TCNLs) as a dependency tree helps identify these rules and

4450 32nd USENIX Security Symposium USENIX Association

Constituency Tree

Natural Language
Specification

Formulas

assert

IR Synthesizer

Mod. Dep. Tree

Keywords & Types
attach_req
auth
guti
emm_registered

(msg)
(proc)

(var)
(state)

DTGenerator

IRTranslator

Keyword Extractor

DSL

Figure 6: Architecture of IRSynthesizer.

m := receive(t, src, msg, dst)
 def m.handleReceive(t, agent, msg, dst)
 if (t == condition)
 m.conditionForReceiveMsg(src, msg, dst)
 else m.actionForReceiveMsg(src, msg, dst)

 def m.conditionForReceiveMsg(src, msg, dst)
 if (msg == constant)
 then assert [chan_src_dst] = msg
 elif (msg == logical_operator(msg1, msg2))
 logical_operator(
 m.conditionForReceiveMsg(src, msg1, dst),
 m.conditionForReceiveMsg(src, msg2, dst))

 def m.actionForReceiveMsg(src, msg, dst)
 [chan_src_dst] = msg

c := reset(t, agent, counter)
 def c.handleReset(t, agent, counter)
 if (t == condition)
 c.conditionForReset(agent, counter)
 else c.actionForReset(agent, counter)

 def c.conditionForReset(agent, counter)
 assert [agent_counter] = 0

 def c.actionForReset(agent, counter)
 [agent_counter] = 0

Figure 7: Definitions of DSL commands–receive and reset. σ denotes the
variable store, and t denotes if the current use case is a condition or an action.

arguments. For that purpose, DTGenerator takes each TCNL

with clearly mapped keywords and type information as inputs.
As output, it generates representative dependency trees for
DSL mapping.

Usage of dependency parse trees. The DSL commands and
arguments are inherently tree-structured [16] and can be rep-
resented with abstract syntax trees (AST). Therefore, gen-
erating ASTs from natural language strings is naturally the
first step toward mapping them to DSL. Based on this insight,
IRSynthesizer first aims to map the sequential strings to
DSL ASTs. We observe that dependency parse trees can dis-
cover internal grammatical relations (e.g., subject-verb, verb-
object, etc.) between tokens of a natural language string and
represent it as a tree that has main verbs, e.g., “send”, “reset”,
etc., at the central node, and the arguments at its children. We
leverage this hierarchical structure to map them to ASTs as it
is similar to the DSL command and argument relations in the
ASTs.

To demonstrate this insight, we consider the string “If the
UE receives auth_reject or tau_reject”, whose dependency
tree is shown in Figure 8 (a). Conversely, the desired DSL
command is receive(UE,or(auth_reject, tau_reject)), whose
AST is shown in Figure 8 (c). These two trees have several
common features, such as, “receive” is the root, “UE” is
its child, and “auth_reject” and “tau_reject” are receive’s
descendants. Based on this observation, we utilize the depen-
dency tree to reach DSL rules from natural language strings.

Off-the-shelf dependency parsers are not enough for cellu-
lar specifications. Although dependency trees [23,74] largely
correspond to our translation scheme, we require some modifi-
cations before adopting them for obtaining DSL rules. This is
because of semantic differences in how conjunctions, prepo-
sitions, or adverbs are used in typical English sentences in
contrast to formal languages. For example, “and”, “or”, “not”,
etc. are generally leaves of dependency trees in natural lan-
guages, while these words denote logical operations similar
to verbs in formal languages. To illustrate, in Figure 8 (a),

nsubj obj

obj

mark

receives

det

UE
cc

tau_reject

orthe

auth_reject

If

cc

tau_reject

or

conj:or

nsubj
obj

mark

receives

auth_reject

conj:or conj:or

or

If tau_reject

det

UE

the
(a) (b)

receives

auth_reject

or

tau_reject

UE

(c)

Figure 8: (a) Original dependency tree, (b) Modified depen-
dency tree, (c) Abstract syntax tree.

the extracted parent-child relation between “auth_reject” and
“tau_reject” is not applicable in a logical translation setting.
Rather, “auth_reject” and “tau_reject” should be siblings un-
der the “or” operation, as shown in the AST in Figure 8 (c).
Solution. Based on these observations, we perform a post-
order traversal to find the logical operators and move the
logically connected tokens under their subtree. We show the
modified dependency tree for the discussed example in Figure
8 (b), where “or” is changed to the suitable position. Finally,
the DTGenerator produces dependency trees for each TCNL

and passes them to the IRTranslator for DSL mapping.

5.4 Synthesizing Intermediate Representation

The IRTranslator takes dependency trees corresponding to
each transition component (TCNL), maps these trees to DSL
ASTs, and finally produces logical formulas or IR (TCIR) for
TCNLs by following the DSL semantics.
Mapping dependency parse tree to AST. A dependency
tree, although similar to the target AST, does not directly rep-
resent the target DSL command. For that, IRTranslator
first identifies the corresponding DSL command and its
arguments. Consequently, IRTranslator recursively tra-
verses the dependency tree using a top-down approach, i.e.,
it matches the DSL command first and then the arguments.
It also considers syntactic information from dependency

USENIX Association 32nd USENIX Security Symposium 4451

trees and type information from Keyword Extractor to
map the arguments based on their type and produce the
correct TCIR. For the example in Figure 8, IRTranslator
first matches the rule receive(t,src,msg,dst) and recur-
sively finds arguments. Using the subject-object rela-
tion and agent type information, IRTranslator decides
the dst. The final output is “assert σ[chan_ue_mme] =
auth_reject | assert σ[chan_ue_mme] = tau_reject”, where
σ is the variable store.
Diverging dependency trees. Natural language may have
many forms of text expressing the same meaning, e.g., “The
UE, after receiving auth_reject or tau_reject”, “If auth_reject
or tau_reject is received by the UE”, etc. The corresponding
dependency trees are structurally different as well. The first
one has “UE” as the left child, whereas the other one has it
as the right child of “receive”. However, a reliable interpreter
must generate the same TCIR for both. We ensure this by map-
ping dependency trees to DSL rules in a position-independent
manner by using type information and syntactic information,
e.g., part-of-speech and dependency relation. In this example,
“UE” has type agent, and “auth_reject” and “tau_reject” have
type message, which help map them as DSL arguments.
Cellular specification directives. Cellular specifications of-
ten use the directives– “may”, “should”, and “can”, which
signify that the operation is recommended or implementation-
dependent [2]. Prior works [69] identify these recom-
mendations as ambiguities and potential security flaws.
IRTranslator addresses these directives by adding uni-
form random variables to the corresponding conditions [40,
42]. These variables enable an automated reasoner to non-
deterministically explore and test all possible options, result-
ing in a comprehensive security analysis.
Addressing missing information. IRTranslator works
with each TCNL, but it may not contain all the information
necessary to generate the corresponding TCIR. For instance,
in Figure 3, the condition–“the message is integrity protected”
does not mention the message name, which needs to be in-
ferred from the overall context. Conversely, in many cases,
the ctl_block, or even the whole paragraph, may not be suffi-
cient for accurately inferring the information (e.g., actions for
cause #7 in Section 5.5.1.2.5 TS 24.301 [11]). Consequently,
it needs to be inferred from previous paragraphs. For these
reasons, we implement a context resolver in IRTranslator

to find any missing information and produce the correct IR.
For that, IRTranslator first checks the context of the con-
cerned ctl_block, then the whole paragraph, and follows a
heuristic backtracking mechanism to search previous ones.
Modeled actions and granularity of FSM. Modeled actions
and the granularity of the extracted FSMs largely depend on
the defined DSL rules and arguments. If necessary, Hermes
can adopt more actions and more detailed modeling easily.
In this work, we consider security-critical actions, such as
sending/receiving messages, activating/deactivating services,
incrementing counters and sequence numbers, starting timers,

etc., totaling 94 DSL commands provided in [8]. In contrast,
limitations in our logical abstraction do not allow us to model
some actions, e.g., list modifications (adding or removing).

Further, Hermes models the specifications with more de-
tails than existing works [40, 42] by considering more mes-
sage fields and the corresponding protocol behavior. Hermes
also models 13 services (e.g., emergency bearer, EPS, etc.),
11 modes (e.g., EMM-CONNECTED, etc.), etc., along with
states, procedures, counters, sequence numbers, timers, etc.
However, compared to prior works [14, 29, 64, 71], Hermes
does not model interactions among multiple base stations
or multiple network functions in the core network. Instead,
Hermes abstracts these interactions because the analyzed
specifications mainly involve interactions between UE and
AMF (or MME) and between UE and gNB. Certain pro-
cedures, such as handover, span multiple documents [71].
Although Hermes has the ability to extract an FSM from
multiple documents, the current instantiation of Hermes ex-
tracts FSMs from individual documents. As a result, 5G NAS
and 5G RRC FSMs provide a partial representation of the
handover procedure.

6 Synthesizing FSM

The FSMSynthesizer combines the intermediate represen-
tations corresponding to the transition components (TCNL)
generated by IRSynthesizer to produce complete transi-
tions. It also compiles all the transitions and performs logical
checks to ensure the consistency of generated FSMs.
Constructing a transition by combining its components.
As mentioned in §4.1, ctl_block is the primary construct
for transitions, so FSMSynthesizer combines the IRs of
each TCNL for a ctl_block. While doing so, it deals with
multiple logically connected condition and action spans.
For instance, the example in Figure 3 contains two con-
dition spans connected with “or”, and the whole condi-
tion is connected with another condition using the “and”.
FSMSynthesizer first finds these logical relations from the
constituency parse tree, combines them into a single condition
expression, and compiles the actions for that transition. More-
over, FSMSynthesizer identifies the start state and end state
from corresponding IR from IRSynthesizer by considering
them as conditions and actions, respectively. This is useful for
logical connections (e.g., or, not, etc.) between the states. For
the running example in Figure 3, after combining the outputs
from the components, the transition with a condition, a start
state, and an action is the output. Note that if the end state is
not mentioned, the FSM remains in the same state.
Compiling all transitions. To generate a complete for-
mal model, FSMSynthesizer follows the above proce-
dure and constructs all possible transitions identified by
NEUTREX in a given specification document. Further, as de-
fined in §3.1, these documents describe protocol interac-
tions among multiple participants (e.g., UE and AMF). Ac-

4452 32nd USENIX Security Symposium USENIX Association

Component Libraries Used Lines of Code

Text extraction and cleaning pdfplumber [77] 380
NEUTREX Huggingface [9], NLTK [17] 1200+
Keyword Extractor NLTK [17], Stanza [74], Levenshtein [57] 1343
DTGenerator NLTK [17], Stanza [74] 378
IRTranslator 3209
FSMSynthesizer Z3 [30] 1206
nuXmv transpiler LTEInspector transpiler [40] 416
UEGEN 1000+

Table 1: Implementation efforts for Hermes components.

cordingly, FSMSynthesizer partitions the list of transitions
and generates separate FSMs for each participant. Finally,
FSMSynthesizer outputs each FSM as a graph, where the
states are represented as unique nodes, and the transitions are
represented as directed edges from the start state node to the
end state node. We also label these edges with IR representa-
tions (TCIR) of corresponding conditions and actions.
Addressing split transitions. Hermes takes input in natural
language at the paragraph level since each paragraph in the
cellular specifications usually discusses a particular scenario
(start state, conditions, and corresponding actions). However,
actions in these documents are oftentimes mentioned across
multiple paragraphs. For instance, in Section 5.5.1.2.4 of 4G
NAS specifications [11], when ATTACH REQUEST is accepted,
the network behavior is discussed in multiple paragraphs, lead-
ing to a divided transition. As a result, formal analysis of the
extracted FSM may not execute all of the actions, potentially
failing to explore all possible paths. We observe two cases
of such complicated transition pairs where the start state is
the same. First, when the conditions in any two transitions
T1 and T2 are logically equivalent (C1 ⇐⇒ C2), we merge
the transitions into one by combining the actions. Second,
the conditions are not equivalent, but one implies the other,
i.e., ¬(C1 ⇐⇒ C2)∧(C1 =⇒ C2) (e.g., C1=x∧y and C2=x).
Here, whenever C1 is TRUE, both transitions T1 and T2 are
valid. Thus, we extend the list of actions in T1 with the actions
from T2 and change the condition in T2 to (C2∧¬C1). This
ensures that the formal analysis explores all possible paths in
the FSM.
Recovering missing transitions. NEUTREX sometimes fails to
recognize a few action spans in natural language texts, leading
to missing transitions. To recover such actions, we introduce
a rule-based mechanism into FSMSynthesizer. Specifically,
within a ctl_block, if we find a string with no act_tag, we
scan it for action verbs and corresponding arguments cov-
ered in the action DSL commands of IRSynthesizer. If
such a DSL command can be mapped, we consider the string
as an action TCNL, generate the corresponding TCIR with
IRSynthesizer, and add it to the output FSM.

7 Implementation

We annotate cellular specification datasets with 4G-NAS
Release16 [11], 5G-NAS Release17 [5], and 5G-RRC Re-

lease17 [6] documents according to the grammar shown in
Figure 4. These three annotated documents have ∼16,000
datapoints, and it required a total of ∼2800 man-hours to
complete the annotations, which are executed by four cellular
systems researchers and verified by two domain experts.

For NEUTREX, we use neural CRF-based constituency pars-
ing [93]. To train NEUTREX with the annotated documents, we
use a learning rate of lr = 5e−5 with a warmup of 0.1. During
the initial stages of training, when the bracketing loss is un-
stable, we use λ1 = 0.1 and λ2 = 0.9. During the rest of the
training, we use λ1 = λ2 = 0.5, giving equal importance to
both loss components. All models are trained for 200 epochs,
and the best model is chosen based on a held-out dev set. The
summary of the implementation efforts is shown in Table 1.

8 Evaluation

To evaluate the performance of Hermes, we aim to answer
the following research questions:
• RQ1. What is the efficacy of NEUTREX to automatically

annotate a cellular specification document, and how it com-
pares with existing baselines (§8.1)?

• RQ2. What is the efficacy of IRSynthesizer and
FSMSynthesizer to translate TCNL to IR (§8.2)?

• RQ3. What is the accuracy of the Hermes extracted FSM,
and how it compares with existing formal models (§8.3)?

• RQ4. How effective is the extracted FSM in identifying
attacks and finding noncompliance (§8.4, §8.5, and §8.6)?

• RQ5. How efficient is Hermes in extracting FSMs and
performing security analysis with these FSMs (§8.7)?

8.1 Effectiveness of NEUTREX
To answer RQ1, we compare NEUTREX with the BIO entity
tagger in RFCNLP [67] in terms of identifying constituency
spans. For this comparison, we report traditional precision,
recall, and F1-score metrics [75]. We consider both unlabeled
and labeled metrics– in unlabeled comparison, we use these
metrics for the detected spans without any consideration of
the labels assigned to them. In labeled comparison, we also
take into consideration the labels assigned.
Results on cellular specifications. We compare RFCNLP
[67] and NEUTREX using 3 different training and testing
combinations of annotated documents reflecting the general-
ization capabilities of NEUTREX across layers, releases, and
generations. We first train NEUTREX on annotated 4G-NAS-
Release16 specifications [11] and evaluate on the 5G-NAS-
Release17 [5]. Again, we train a separate NEUTREX model
from scratch on 5G-NAS-Release17 specifications and evalu-
ate on both 4G-NAS-Release16 and 5G-RRC-Release17 [6].
We consider each paragraph of the documents as separate
datapoints during the training and the evaluation.

We show these results in Table 2, and NEUTREX signifi-
cantly outperforms the BIO entity tagger in RFCNLP. We

USENIX Association 32nd USENIX Security Symposium 4453

4G NAS → 5G NAS 5G NAS → 4G NAS 5G NAS → 5G RRC

UP UR UF LP LR LF UP UR UF LP LR LF UP UR UF LP LR LF

RFCNLP 8.22 27.53 12.66 8.15 27.27 12.54 39.52 38.71 39.12 38.92 38.12 38.52 13.45 10.84 12.01 11.45 9.22 10.22
NEUTREX 66.88 68.79 67.82 64.30 66.13 65.20 71.38 71.28 71.33 68.25 68.15 68.20 72.81 74.44 73.62 67.94 69.45 68.69

Table 2: NEUTREX and RFCNLP entity tagger [67] results on cellular specifications. X → Y means we train on X and text on Y.
UP, UR, and UF denotes unlabeled precision, recall, and F1-metrics. Similarly, LP, LR, and LF denotes labeled metrics.

BGPv4, DCCP, LTP, PPTP, SCTP → TCP BGPv4, LTP, PPTP, SCTP, TCP → DCCP

UP UR UF LP LR LF UP UR UF LP LR LF

RFCNLP 60.03 55.05 57.43 49.92 45.78 47.76 38.75 39.00 38.88 33.80 34.02 33.91
NEUTREX 64.53 55.60 59.73 61.64 53.11 57.06 53.78 59.97 56.71 52.98 59.08 55.06

Table 3: NEUTREX and RFCNLP entity tagger results on the RFC dataset
[67].

5G NAS 4G NAS

Action Condition Action Condition

Synthesizer FSM (MSyn) 93.86 94.45 92.23 92.24
Hermes FSM (MHermes) 81.39 86.40 81.14 87.21

Table 4: Transition accuracy against MGold : MSyn
for IR & FSM synthesizers, MHermes for Hermes.

find that BIO entity tagging in RFCNLP has no explicit span
handling mechanism, and thus, it suffers in the challenging cel-
lular dataset containing complex structure and several levels
of nested constituents. Moreover, RFCNLP breaks sentences
into chunks using an off-the-shelf chunker, often providing
erroneous results in highly technical cellular specifications. In
contrast, NEUTREX shows stable performance across different
generations, protocols, and releases of the cellular specifica-
tions, reaching 64−74% precision, recall, and F1 score. This
enables our method to be used in future generations of cel-
lular systems as well. The lost accuracy is mainly due to the
distribution shift resulting from the domain change (e.g., 4G
to 5G or NAS to RRC) and the difficulty of the dataset stem-
ming from the increasing degree of nested constituents, which
complicates the semantic relationship between hierarchical
spans. Additionally, compared to 4G NAS specifications, we
find that there is a slight accuracy drop in 5G NAS, which can
be attributed to the increased difficulty (length and nesting).
Results on the RFC dataset. To show NEUTREX’s generaliz-
ability to other domains, we train and test it using the RFC
dataset (TCP, DCCP, SCTP, PPTP, LTP, BGPv4) with the same
dataset split as RFCNLP [67]. For comparison, we compute
the same metrics on the predictions by RFCNLP [66]. Table 3
presents these results and shows that although NEUTREX is
primarily designed for cellular specifications, it outperforms
RFCNLP even in the RFC dataset. This manifests NEUTREX’s
applicability to other domains.

8.2 Effectiveness of IR and FSM Synthesizers
To answer RQ2, we use human-annotated ground truth tran-
sition components instead of using NEUTREX, and leverage
the IRSynthesizer and FSMSynthesizer components of
Hermes to synthesize transitions and generate FSMs (MSyn).
The annotations are from 4G NAS [11] and 5G NAS [5]
specifications. We check MSyn’s accuracy against the formal
models manually constructed by prior works [40, 42]. These
works, however, abstracted away a lot of details from the

original specification. As a result, a head-to-head comparison
with these models is not plausible. Thus, to evaluate MSyn, we
manually construct ground truth Gold FSMs (MGold) with the
same actions and scope as these prior works but matching the
same abstraction as MSyn. We use the ground truth annotations
of the same paragraphs within the scope of MGold to generate
MSyn. These include procedures covered by prior works, such
as (de-)registration, service request, security mode control,
etc. Finally, we compute the accuracy of conditions, actions,
and states in the transitions of MSyn, considering MGold as
ground truth. The summary of the FSMs is provided in Table
5, and details of computing this accuracy are in Appendix A.

The results of MSyn in Table 4 show 92 − 94% ac-
curacy of transitions extracted by IRSynthesizer and
FSMSynthesizer as compared to the transitions manually
crafted in MGold . This proves that our approach is better
than the state-of-the-art framework on network protocols,
RFCNLP [67], which achieves 67 − 80% accuracy. The
lost accuracy of 6 − 8% in MSyn can be attributed to the
wide diversity of natural language strings, imperfections in
Keyword Extractor, and off-the-shelf dependency parsers.
Instead of overfitting the DSL rules to these rare cases, we
strive to design IRSynthesizer generic to the cellular spec-
ifications across different generations, layers, and releases.

FSM TCNL Generated By TCIR Generated By

Gold FSM (MGold) Human Human
Synthesizer FSM (MSyn) Human IRSynthesizer & FSMSynthesizer

Hermes FSM (MHermes) NEUTREX IRSynthesizer & FSMSynthesizer

Table 5: Transition extraction for FSMs used in evaluation.

8.3 Accuracy of the Extracted FSM
We address RQ3 by extracting FSMs end-to-end with Hermes
(MHermes) for 4G NAS [11] and 5G NAS [5] specifications.
We compute the accuracy of conditions, actions, and states
in Hermes FSM (MHermes) against the Gold FSM (MGold).

4454 32nd USENIX Security Symposium USENIX Association

Annotated span NEUTREX prediction Generated IR
<control> <action> The network shall stop
timer T3522 </action> <condition> upon re-
ceipt of the DEREGISTRATION ACCEPT mes-
sage . </condition> </control>

<control> The network shall <action> stop
timer T3522 </action> <condition> upon re-
ceipt of the DEREGISTRATION ACCEPT mes-
sage . </condition> </control>

condition: chan_ue_amf = deregistra-
tion_accept
actions: timer_t3522_started = FALSE

<control> The network shall, <condition> on
the first expiry of the timer T3460, </condition>
<action> retransmit the AUTHENTICATION
REQUEST message </action> </control>

<control> <condition> <condition> The net-
work shall, <condition> on the first expiry of
the timer T3460, </condition> </condition>
<action> retransmit the AUTHENTICATION
REQUEST message </action> </control>

condition: timer_t3460_started
& timer_t3460_expired &
timer_t3460_expire_counter = 1
actions: chan_amf_ue = auth_request

<control> <condition> If the SECURITY
MODE COMMAND message can be accepted,
</condition> <action> the UE shall take the
5G NAS security context indicated in the message
into use. </action> </control>

<control> If <condition> the SECURITY
MODE COMMAND message can be accepted,
</condition> <action> the UE shall take the
5G NAS security context indicated in the message
into use. </action> </control>

condition: accept_sm_command
actions: nas_security_context_update =
TRUE, nas_security_context_valid = TRUE

<control> <condition> The UE, when re-
ceiving the DEREGISTRATION ACCEPT mes-
sage, </condition> <control> <action> stop
timer T3519 </action> <condition> if running,
</condition> </control> </control>

<control> <condition> The UE, when re-
ceiving the DEREGISTRATION ACCEPT mes-
sage, </condition> <control> stop timer
T3519 <condition> if running, </condition>
</control> </control>

condition: chan_amf_ue = deregistra-
tion_accept & timer_t3519_started
actions: timer_t3519_started = FALSE

Table 6: Examples of spans with incorrect NEUTREX prediction, but correct IR [5, 11].

As shown in Table 4, MHermes has an overall accuracy of
81−87%, demonstrating the robustness of the approach be-
cause Hermes achieves a higher holistic accuracy than the
F1-score of NEUTREX (65−68% in Table 2). This improve-
ment can be attributed to cases where NEUTREX makes er-
rors in identifying the conditions or actions span boundaries,
but includes the action verbs and arguments in them (dis-
cussed in §5.4). In these cases, the rest of the framework is
robust enough to capture the logical meanings of the identi-
fied TCNLs and correctly produce the transitions. Moreover,
FSMSynthesizer identifies strings in ctl_block without any
tag and scans it to find action verbs and DSL arguments. A
few such cases are shown in Table 6. However, despite the
efforts in IRSynthesizer and FSMSynthesizer, we find
that 16 transitions are missing in MHermes. We analyze such
cases by consulting with the specification and find that they
can be attributed to errors in NEUTREX and IRSynthesizer

(details with examples are given in Table 7).
Conformance Testing. To further test the extracted FSM’s
accuracy, we translate MHermes to the nuXmv model following
the procedure in §8.4 without instrumenting adversary capa-
bilities into the model. Then, we translate 43 security-related
conformance test cases provided by 3GPP to Linear Temporal
Logic (LTL) properties and check them against the model. Vi-
olations of a property signify nonconformance/inaccuracies in
MHermes transitions. We found that the 5G NAS FSM passes
in 33 test cases and 4G NAS FSM passes in 32.

8.4 Effectiveness of FSMs Extracted by Hermes

To answer RQ4, we leverage the approach provided by prior
works [40, 42], which automatically transpiles compatible
FSMs to nuXmv [22] model and incorporate Dolev-Yao ad-
versary capabilities [32] (drop, modify, inject, or replay) into
communication channels based on sent/received messages.
These adversary-instrumented nuXmv models are amenable

to formal model checking of security properties on the FSMs.
Thus, to ensure compatibility with the transpiler, Hermes out-
puts FSMs for cellular specification documents in a Graphviz-
like format with conditions and actions as propositional logic
expressions, which are then translated to nuXmv and checked
against security properties. After performing the model check-
ing, nuXmv spits out traces of counterexamples when any of
the properties are violated.
Counterexample verification and vulnerability detection.
A counterexample from nuXmv is basically a trace of message
exchanges and internal variable updates leading to the viola-
tion of the property. However, FSMs, even manually crafted
ones, often include erroneous transitions [40], as is the case
with Hermes-extracted FSMs. Thus, after a counterexample
is extracted, we manually verify it by consulting the specifica-
tion document. Further, when we find an erroneous counterex-
ample, we manually refine the model and correct the related
incorrect transitions. This process is counterexample-guided
model refinement, which facilitates further checking security
properties on the refined model and identifying more coun-
terexamples. Finally, we follow prior works [40, 42] and man-
ually model the remaining counterexamples in ProVerif [18]
to verify their feasibility under cryptographic assumptions.
Experiment setup, properties, and procedures. We ex-
tract separate FSMs from 4G-NAS-Release16 [11], 5G-NAS-
Release17 [5], and 5G-RRC-Release17 [6] specifications,
and generate separate adversary-instrumented nuXmv mod-
els. While extracting the 5G-NAS-Release17 FSM, we use
NEUTREX trained with 4G-NAS-Release16 specification, and
while extracting the FSMs from 4G-NAS-Release16 and 5G-
RRC-Release17 specifications, we use NEUTREX trained with
5G-NAS-Release17 specification (the same setting as §8.1).

In this experiment, we check the 20 security properties
from prior works [40, 42] and 7 new properties that cover the
scope of other related works [20, 27, 28, 51, 70, 76, 80, 87]
written in Linear Temporal Logic (LTL). Moreover, for model
checking, adversary-instrumented nuXmv models are cre-

USENIX Association 32nd USENIX Security Symposium 4455

Cause Example #missing
transitions

NEUTREX missed
<action>

<control> <action> The MME shall ini-
tiate the GUTI reallocation ... </action>
and starting the timer T3450. </control>

6

NEUTREX merged
two separate
<action>s to-
gether

<control> <action> The MME initiates
the NAS security mode control ... and start-
ing timer T3460 (see example in figure
5.4.3.2.1). </action> </control>

2

NEUTREX divided
unit <action>

<control> <action> the UE shall in-
clude ... in SERVICE REQUEST message,
</action>, or in the REGISTRATION RE-
QUEST message. </control>

2

NEUTREX classi-
fied <action> as
condition

<control> <condition> b) proceed with
the pending procedure; and </condition>
</control>

2

NEUTREX missed
<control>

The detach procedure is initiated ... DE-
TACH REQUEST message. The Detach
type IE .. to a "switch off" or not.

2

DTGenerator
produces wrong
part-of-speech tag

a) enter 5GMM-IDLE mode; 1

Incomplete set
of DSL rules in
IRSynthesizer

a) the UE shall check the authenticity of
the core network by means of the AUTN ...
AUTHENTICATION REQUEST message.

1

Table 7: Examples of missing transitions [5, 11].

ated from the FSMs extracted from 4G-NAS-Release16 [11],
5G-NAS-Release17 [5], and 5G-RRC-Release17 [6] specifi-
cations. These models cover 9 NAS and 10 RRC layer pro-
cedures, including registration, deregistration, configuration
update, service request, RRC Setup, Reconfiguration, paging,
and Resume. The properties and procedures are listed in the
full version of this paper [44].
Results. The formal analysis identifies 19 previous and 3
new vulnerabilities in the extracted FSMs. Table 8 shows the
list of attacks and summarizes the findings of the security
analysis on the extracted FSMs. We also list the previous
vulnerabilities (within the scope of the analyzed specification)
not detected by the analysis with Hermes FSMs.

Among the not identified ones, attacks #15 and #30 are due
to errors in transition component extraction by NEUTREX, and
attack #10 is due to underspecification of the specifications.
For the rest of the non-identified attacks, a manual inspec-
tion uncovered that the corresponding vulnerabilities are not
present in the analyzed release of the specifications, and thus,
Hermes does not model those behaviors. For example, the
5G-RRC specification was updated due to the report of the
AKA-Bypass attack [51], so the version we analyzed does not
contain the related vulnerability. In addition, due to the imper-
fection in the extracted FSM, the counterexample verification
process, as discussed above, finds 8 erroneous counterexam-
ples from nuXmv model checker. We correct 47 transitions
to refine the model through the counterexample-guided re-
finement process. On the other hand, attacks #20-21 and #35
are new attacks identified using Hermes FSMs. These new at-
tacks are identified using properties from prior works [40,42],
which further bolsters that Hermes-generated FSMs exhibit
larger scopes and details than prior manually crafted models.
Note that similar issues as 20 and 21 are concurrently reported
in change requests [39, 65], but these reports do not discuss
the exploits.

ID Attack Gen/Layer N D

1 Downgrade to non-LTE network services [76] 4G NAS ✗ ✓
2 Denying all network services [76] 4G NAS ✗ ✓
3 Denying selected service [76] 4G NAS ✗ ✗
4 Signaling DoS [15, 48, 55, 56] 4G NAS ✗ ✓
5 S-TMSI catching [51] 4G NAS ✗ ✓
6 IMSI catching [80] 4G NAS ✗ ✓
7 EMM Information [70] 4G NAS ✗ ✓
8 Impersonation attack [27] 4G NAS ✗ ✗
9 Synchronization Failure attack [87] 4G NAS ✗ ✗

10 Malformed Identity Request [63] 4G NAS ✗ ✗
11 Neutralizing TMSI refreshment [42] 5G NAS ✗ ✗
12 NAS Counter Reset [42] 5G NAS ✗ ✓
13 Uplink NAS Counter Desynchronization [42] 5G NAS ✗ ✓
14 Exposing NAS Sequence Number [42] 5G NAS ✗ ✓
15 Cutting off the Device [42] 5G NAS ✗ ✗
16 Exposure of SQN [20] 5G NAS ✗ ✓
17 5G AKA DoS Attack [21] 5G NAS ✗ ✓
18 SUCI catching [28] 5G NAS ✗ ✗
19 IMSI cracking [41] 5G NAS ✗ ✗
20 NAS COUNT update attack 5G NAS ✓ ✓
21 Deletion of allowed CAG list 5G NAS ✓ ✓
22 Downgrade using ATTACH REJECT/ REGISTRATION REJECT [76] 4G/5G NAS ✗ ✓
23 AUTHENTICATION REJECT attack [87] 4G/5G NAS ✗ ✓
24 DETACH REQUEST/ DEREGISTRATION REQUEST attack [40] 4G/5G NAS ✗ ✓
25 SERVICE REJECT attack [76] 4G/5G NAS ✗ ✓
26 Denial-of-Service with RRCSETUPREQUEST attack [42] 5G RRC ✗ ✗
27 Installing Null Cipher and Null Integrity [42] 5G RRC ✗ ✓
28 Lullaby Attack [42] 5G RRC ✗ ✓
29 Incarceration with RRCREJECT and RRCRELEASE [42] 5G RRC ✗ ✓
30 Measurement report [76] 5G RRC ✗ ✗
31 RLF report [76] 5G RRC ✗ ✓
32 Blind DoS attack [51] 5G RRC ✗ ✗
33 AKA bypass [51] 5G RRC ✗ ✗
34 Paging channel hijacking [40] 5G RRC ✗ ✗
35 Energy Depletion with RRCSETUP 5G RRC ✓ ✓

Table 8: Vulnerabilities identified in Hermes extracted FSMs.
N: New, D: Detected.

8.4.1 Identified Three New Vulnerabilities

(1) Deletion of allowed CAG list. When a UE in a closed
access group (CAG) cell sends a REGISTRATION REQUEST mes-
sage through a gNB, the AMF determines whether any of the
CAG ID(s) from the gNB are in the list of Allowed CAGs for
that UE. In case this check fails, the AMF rejects the registra-
tion and sends a REGISTRATION REJECT message with 5GMM
cause #76. Upon receiving this message, if the integrity check
is successful, the UE deletes its allowed CAG list [5]. An
adversary can exploit this behavior and force the UE to delete
the allowed CAG list, resulting in a denial of service (DoS).
Root cause. The AMF sends the REGISTRATION REJECT based
on the received information from the gNB. However, the UE
has no means to verify the CAG IDs for which the AMF sends
the REGISTRATION REJECT message. Without this knowledge,
the UE cannot identify if there is a mismatch in CAG ID(s)
when it receives the REGISTRATION REJECT with 5GMM cause
#76. Thus, the vulnerability stems from a design flaw.
Attack. The adversary, at first, lets the victim UE connect to
a benign base station (gNB1) and complete registration with
the AMF. After that, the adversary lures the victim to connect
to a machine-in-the-middle (MitM) fake base station. She
then finds a gNB with a different set of CAG IDs (gNB2) and
relays the REGISTRATION REQUEST to it (Figure 9). gNB2 for-

4456 32nd USENIX Security Symposium USENIX Association

UE AMF

MitM

gNB1

gNB2

reg_req

reg_reject

reg_req reg_req

reg_accept

Authentication
Security context establishment

reg_accept

reg_complete reg_complete

MIB & SIB1

reg_req

reg_rejectreg_reject

reg_req

Figure 9: Deletion of allowed CAG list.

wards the message to the benign AMF, and the AMF checks
the CAG list from gNB2. After finding a mismatch, the AMF
responds with integrity-protected REGISTRATION REJECT with
5GMM cause #76. By forwarding this message to the UE, the
adversary forces it to delete the allowed CAG list. Note that
the initial registration through gNB1 ensures that the AMF re-
sponds with integrity-protected REGISTRATION REJECT. Without
integrity protection, the UE does not accept this message [5].
Impact. The deletion of the allowed CAG list results in DoS.
Without the allowed CAG list, the UE cannot get access to
the non-public network (NPN) that it is originally permitted
to. Repeating this attack will cause a prolonged DoS.
(2) Energy Depletion using RRCSETUP. The RRC resume pro-
cedure, introduced in 5G, strives to reduce power consump-
tion and connection setup overhead. However, during this
procedure, the UE accepts insecure RRCSETUP messages in re-
sponse to RRCRESUMEREQUEST. Upon receiving this message, the
UE deletes RRC security contexts and releases radio bearers.
Reestablishing a secure RRC connection requires expensive
cryptographic operations, leading to energy depletion.
Root cause. The root cause of this vulnerability can be at-
tributed to the specification allowing non-integrity-protected
RRCSETUP messages in response to the RRCRESUMEREQUEST [6].
Attack. As the RRCSETUP messages are not integrity protected
nor ciphered, an adversary can easily craft a plaintext RRCSETUP

message. Thus, she listens for an RRCRESUMEREQUEST message in
the communication channel. After that, as shown in Figure 10,
when she detects an RRCRESUME message from the legitimate
base station, she drops the message and spoofs a plaintext
RRCSETUP. As a result, upon receiving this message, the UE
deletes its RRC security contexts and releases radio bearers.
Impact. By interrupting the RRC resume procedure, the ad-
versary forces the UE to perform redundant, expensive cryp-
tographic operations to set up the security context again. This
leads to extraneous energy consumption. An adversary can
repeatedly perform this attack and cause battery depletion.
(3) NAS COUNT update attack. 5G NAS specification [5]
allows a UE to store the estimated NAS COUNT, i.e., the NAS

UE MitM gNB
Connection establishment

Moves to
RRC_INACTIVE

RRCRelease w/
SuspendConfig

RRCResumeRequest

RRCSetup

Derives keys

RRCSetupComplete

Moves to
RRC_CONNECTED

Connection establishment &
AS security activationDerives keys

again

Secure communication

...

RRCRelease w/
SuspendConfig

Derives keys

Figure 10: Energy depletion using RRCSetup.

COUNT used in the last successfully integrity-verified NAS
message. However, the adversary can exploit this behavior to
manipulate the NAS COUNT and perform replay attacks.
Root cause. The root cause is a design flaw– UE stores the
NAS COUNT of the last integrity-verified message [5]. This
allows the UE to accept integrity-protected NAS messages
that have been delayed and are received out of sequence.
Attack. The adversary sets up a MitM fake base station (gNB)
between the victim UE and a benign AMF. Then, she can
arbitrarily delay any message to update the NAS COUNT to
a lower value. For example, in Figure 11, the NAS COUNT
of msg1 is X ||a, where X is the overflow counter, a is the
sequence number, and || denotes concatenation. The adversary
delays msg2 (NAS COUNT: X ||a+1) and sends it after msg4
(NAS COUNT: X ||a+3). This message (msg2) is valid and
integrity-protected by the AMF. Thus, this out-of-sequence
message causes the victim to update its NAS COUNT to
X ||a+ 1. This opens the scope of replayed messages with
NAS COUNTs X ||a+2 and X ||a+3.
Impact. As the UE becomes vulnerable to replayed NAS mes-
sages, the adversary can exploit this to perform traceability at-
tacks to extract a victim’s presence in a target area [12,14,42].
This violates security requirements in 5G networks [7].

8.5 Analysis of Unannotated Document
We also analyze an unannotated document, i.e., 5G-NAS-
Release15 [3], by using NEUTREX trained on the 4G-NAS-
Release16 and extracting the FSM of 5G-NAS-Release15.
Following the formal analysis technique discussed in §8.4,
we check the same properties and procedures. This analysis
finds the attacks migrating from 4G to 5G (attacks #22-25

USENIX Association 32nd USENIX Security Symposium 4457

UEAMF MitM

msg1 msg1

msg2

msg3

msg4

msg3

msg4

msg2

NAS Count
Updated

NAS Count

Figure 11: NAS COUNT update attack.

ID Deviation Detected

1 Replayed GUTI reallocation at specific sequence ✓
2 Replayed GUTI reallocation anytime ✓
3 Plaintext AUTHENTICATION REQUEST ✗
4 Plaintext IDENTITY REQUEST ✗
5 Selective replay of SECURITY MODE COMMAND ✓
6 GUTI reallocation before attach procedure completed ✓
7 AUTHENTICATION RESPONSE after SECURITY MODE REJECT ✓
8 AUTHENTICATION FAILURE reply ✓
9 Replayed SECURITY MODE COMMAND ✓

Table 9: Identified deviations in 4G UE implementations [43].

in Table 8), and five previous 5G attacks (attacks #12-14
and #16-17 in Table 8). The analysis also found 5 spurious
counterexamples, handled similarly as discussed in §8.4.

8.6 Analysis of Cellular Implementations

To further address RQ4, we analyze the security of 4G NAS
FSM [11] of 9 cellular baseband implementations (MI) us-
ing MHermes. We run DIKEUE’s equivalence checker [43]
between MHermes and MI and detect exploitable deviations in
MI from MHermes. As shown in Table 9, MHermes identifies 7
deviations, which were also identified by DIKEUE. However,
the other two deviations that MHermes misses (#3 & #4), but
DIKEUE detects result from conflicts between two separate
documents [43]. In addition, due to imperfect FSM, we face
3 false positive deviations, which we manually verify.

8.7 Efficiency of Hermes

To address RQ5, we compute the time required for FSM
extraction and subsequent security analysis by Hermes. On
an NVIDIA RTX A6000 machine, training NEUTREX takes
∼4 hours, and prediction takes less than a minute for each
document. Keyword Extractor takes 8-12 hours of compu-
tation on a machine with an Intel Core i7-10610U proces-
sor and 48 GB RAM and around 5 hours of manual effort.
IRSynthesizer and FSMSynthesizer require 1.5-2 hours,
and formal model checking requires 1-2 minutes. Finally,
manually verifying the counterexamples requires ∼5 hours
for each FSM. These requirements are detailed in Table 10.

Component Document Time required

NEUTREX training 4G-NAS-Release16 4 hour 3 minutes
5G-NAS-Release17 4 hour 9 minutes

NEUTREX prediction

4G-NAS-Release16 42 seconds
5G-NAS-Release17 33 seconds
5G-NAS-Release15 16 seconds
5G-RRC-Release17 19 seconds

Keyword Extractor

computation

4G-NAS-Release16 13 hour 6 minutes
5G-NAS-Release17 13 hour 39 minutes
5G-RRC-Release17 7 hour 8 minutes

Keyword type assignment
4G-NAS-Release16 5 hour 27 minutes
5G-NAS-Release17 5 hour 19 minutes
5G-RRC-Release17 5 hour 46 minutes

IRSynthesizer &
FSMSynthesizer

4G-NAS-Release16 43 minutes
5G-NAS-Release17 43 minutes
5G-NAS-Release15 35 minutes
5G-RRC-Release17 12 minutes

Formal model checking

4G-NAS-Release16 78 seconds
5G-NAS-Release17 117 seconds
5G-NAS-Release15 106 seconds
5G-RRC-Release17 67 seconds

Counterexample verification

4G-NAS-Release16 5 hour 24 minutes
5G-NAS-Release17 5 hour 39 minutes
5G-NAS-Release15 6 hour 16 minutes
5G-RRC-Release17 2 hour 34 minutes

Table 10: Time requirement for FSM extraction and analysis.

9 Related Work

Security Protocol Analysis Using NLP Methods. RFC-
NLP [67] extracts FSMs from RFC documents with a BIO
entity tagging mechanism. However, it fails to address nested
constituents nor identify control blocks. Some works [46, 85]
also parse RFCs to extract source code, ambiguities, or test
cases. Chen et al. [25] analyze payment system guidelines to
find logical flaws. Several works also leverage explicit rules
to extract permissions, inputs, or ontology from software doc-
umentation [68, 83, 84]. Atomic [26] finds proof-of-concept
of vulnerabilities using hazard identifiers, while CREEK [24]
identifies security-relevant change request documents. These
works do not extract any formal model of the analyzed sys-
tem. Another group of works uses NLP tools and program
analysis on source code to extract logical errors or formal
models [58, 91, 92]. In contrast, Hermes aims to build a for-
mal representation from the specifications.
Text-to-logic conversion Using NLP. Several works use se-
mantic parsing to transform natural language into logical
forms, such as lambda calculus [90], meaning representa-
tion [13], programming language [45, 88, 94], and first-order
logic [36]. Variations of neural encoder-decoder models have
been adopted for these tasks [34,78,86]. However, these works
are not easily applicable to the extraction of formal represen-
tations from cellular specifications because of the domain gap,
lack of cellular text-to-logic dataset, or increased complexity.
Security Analysis of Cellular Specifications. Several works
manually build formal models from cellular specifications
[14, 29, 40, 42, 64, 71], and use model checkers to detect vul-

4458 32nd USENIX Security Symposium USENIX Association

nerabilities. Some works also extract formal models from
white-box [49] or black-box [43] cellular implementations. In
contrast, Hermes generates a formal model from the specifica-
tions. Further, LTEFuzz [51] generates test cases from security
properties. DoLTEst [69] provides a comprehensive negative
testing framework for UE implementations using properties
and security-relevant states. Moreover, several works test base-
band implementations [35, 50, 61, 82]. These works focus on
testing cellular systems but do not build formal models, which
is the primary objective of this work.

10 Discussion and Limitations

❏ Underspecifications, ambiguities, and conflicts. Hermes
does not deal with identifying underspecifications (e.g., im-
plicit reject, unspecified reject cause, etc. [69]), and we con-
sider this orthogonal to this work. For ambiguities stemming
from directives, e.g., “should”, “may”, etc., in cellular speci-
fications, Hermes utilizes uniform random variables, and re-
sulting security analysis can consider all possibilities equally
likely, uncovering potential security flaws. For ambiguities or
inconsistencies originating from table information or informa-
tion from multiple specification documents, we consider these
as our future work as we currently do not incorporate table
data into the generated FSM or perform security analysis on
FSMs from multiple documents.
❏ Multiple documents. One of the challenges of extract-
ing FSMs for cellular systems is that the protocols are de-
scribed across multiple documents. Although Hermes has the
capabilities to handle text from multiple documents and ex-
tract the corresponding transitions constituting the full FSM,
we restrict our experiments to single documents to facilitate
comparison with prior works [67]. In the future, we plan to
incorporate multiple documents and evaluate Hermes.
❏ Manual efforts. In Keyword Extractor, after automati-
cally extracting the keywords from a document and assigning
types to most of them, the user needs to assign types for the
rest. This effort is significantly less than manually extracting
and typing all the keywords from scratch. For new function-
alities or operations, the user needs to define the syntax and
semantics for new DSL rules. Furthermore, security analysis
on the extracted models requires manual efforts to define secu-
rity properties and to analyze model checker outputs. In case
a spurious counterexample is identified, relevant transitions
are manually traced and fixed according to the specifications.
Further, to check the feasibility of the counterexamples, we
manually model them in ProVerif [18].
❏ Utility of Hermes generated imperfect FSM. In the ab-
sence of 3GPP-defined standard formal models, prior research
focuses on manually modeling the specifications and verify-
ing security properties [14, 29, 40, 42, 64, 71]. However, due
to frequent updates, changing the formal models demands
strenuous efforts. Conversely, although imperfect, Hermes-
generated FSMs can significantly reduce this effort. When

the formal model checker provides any output, we manually
verify them by consulting the specifications and detecting
any errors. In case of errors, we track the relevant transitions
in the FSM and correct them according to the specification.
Compared to manually building the FSM from scratch, which
may also entail errors [40], this effort is reasonable.
❏ No gold FSM. If the standard body, i.e., 3GPP provides
a gold FSM and it is sufficiently detailed for comprehensive
formal analysis, it could potentially provide better results
than hand-crafted or automatically extracted FSMs. However,
3GPP does not provide any such FSM for cellular protocols.
In fact, 3GPP plans against that since constructing such a
gold FSM is extremely tedious, often error-prone, and may
cause inconvenience in handling interoperabilities among
stakeholders as the specifications leave many details to the
developers’ discretion.

11 Conclusion and Future Work

We present Hermes, a novel framework that automatically ex-
tracts FSMs from cellular specifications. Its NEUTREX, lever-
aging CellulaRoBERTa, provides large improvements to cap-
ture transition components in natural language compared to
existing works. The transitions generated by Hermes achieve
81-87% accuracy, and security analysis on the extracted FSMs
enables us to identify 3 new attacks and 19 previous attacks ex-
ploiting design flaws. For future work, we will extend Hermes
to detect underspecifications and conflicting sentences in cel-
lular specifications. We will also incorporate multiple docu-
ments while extracting FSMs with Hermes.

Acknowledgements

We thank the anonymous reviewers and the shepherd for their
feedback and suggestions. We also thank GSMA for cooper-
ating with us during the responsible disclosure. This work has
been supported by the NSF under grants 2145631, 2215017,
and 2226447, the Defense Advanced Research Projects
Agency (DARPA) under contract number D22AP00148, and
the NSF and Office of the Under Secretary of Defense– Re-
search and Engineering, ITE 2326898, as part of the NSF Con-
vergence Accelerator Track G: Securely Operating Through
5G Infrastructure Program.

References

[1] 3GPP Standard. www.3gpp.org.

[2] 3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Specification drafting rules (Release
17). [Online]. Available: http://www.3gpp.org/dynareport/
21801.htm.

[3] 5G; Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage
3 (3GPP TS 24.501 version 15.7.0 Release 15). [Online]. Available:
http://www.3gpp.org/dynareport/24501.htm.

USENIX Association 32nd USENIX Security Symposium 4459

www.3gpp.org
http://www.3gpp.org/dynareport/21801.htm
http://www.3gpp.org/dynareport/21801.htm
http://www.3gpp.org/dynareport/24501.htm

[4] 5G; Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage
3 (3GPP TS 24.501 version 16.5.1 Release 16). [Online]. Available:
http://www.3gpp.org/dynareport/24501.htm.

[5] 5G; Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage
3 (3GPP TS 24.501 version 17.8.0 Release 17). [Online]. Available:
http://www.3gpp.org/dynareport/24501.htm.

[6] 5G; NR; Radio Resource Control (RRC); Protocol specification (3GPP
TS 38.331 version 17.0.0 Release 17). [Online]. Available: http:
//www.3gpp.org/dynareport/38331.htm.

[7] 5G; Security architecture and procedures for 5G System (3GPP TS
33.501 version 17.5.0 Release 17). [Online]. Available: http://www.
3gpp.org/dynareport/33501.htm.

[8] Hermes. https://github.com/SyNSec-den/
hermes-spec-to-fsm.

[9] Hugging face – the ai community building the future. https://
huggingface.co/.

[10] Universal Mobile Telecommunications System (UMTS); LTE; 5G; Non-
Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage
3 (3GPP TS 24.301 version 12.6.0 Release 12). [Online]. Available:
http://www.3gpp.org/dynareport/24301.htm.

[11] Universal Mobile Telecommunications System (UMTS); LTE; 5G; Non-
Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage
3 (3GPP TS 24.301 version 16.8.0 Release 16). [Online]. Available:
http://www.3gpp.org/dynareport/24301.htm.

[12] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico Golde,
Kevin Redon, and Ravishankar Borgaonkar. New privacy issues in
mobile telephony: Fix and verification. In Proceedings of the 2012
ACM Conference on Computer and Communications Security, 2012.

[13] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira
Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer,
and Nathan Schneider. Abstract meaning representation for sembank-
ing. In Proceedings of the 7th linguistic annotation workshop and
interoperability with discourse, pages 178–186, 2013.

[14] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf
Sasse, and Vincent Stettler. A formal analysis of 5g authentication. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery.

[15] Ramzi Bassil, Imad H Elhajj, Ali Chehab, and Ayman Kayssi. Ef-
fects of signaling attacks on lte networks. In 2013 27th International
Conference on Advanced Information Networking and Applications
Workshops, pages 499–504. IEEE, 2013.

[16] Evert Willem Beth. Semantic Entailment and Formal Derivability.
Noord-Hollandsche, 1955.

[17] Steven Bird. Nltk: The natural language toolkit. In Proceedings of the
COLING/ACL on Interactive Presentation Sessions, COLING-ACL
’06, USA, 2006. Association for Computational Linguistics.

[18] Bruno Blanchet et al. Modeling and verifying security protocols with
the applied pi calculus and proverif. Foundations and Trends® in
Privacy and Security, 1(1-2):1–135, 2016.

[19] Leonard Bolc and Tomasz Strzalkowskl. Transformation of natural
language into logical formulas. In Coling 1982: Proceedings of the
Ninth International Conference on Computational Linguistics, 1982.

[20] Ravishankar Borgaonkar, Lucca Hirschi, Shinjo Park, and Altaf Shaik.
New privacy threat on 3g, 4g, and upcoming 5g aka protocols. Pro-
ceedings on Privacy Enhancing Technologies, 2019(3):108–127, 2019.

[21] Jin Cao, Maode Ma, Hui Li, Ruhui Ma, Yunqing Sun, Pu Yu, and Lihui
Xiong. A survey on security aspects for 3gpp 5g networks. IEEE
Communications Surveys & Tutorials, 22(1):170–195, 2020.

[22] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Grig-
gio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri,
and Stefano Tonetta. The nuxmv symbolic model checker. In Computer
Aided Verification. Springer International Publishing, 2014.

[23] Danqi Chen and Christopher D Manning. A fast and accurate depen-
dency parser using neural networks. In Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP).

[24] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang, Xi-
aozhong Liu, Haixu Tang, and Dongfang Zhao. Seeing the forest for the
trees: Understanding security hazards in the 3GPP ecosystem through
intelligent analysis on change requests. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, 2022.

[25] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng Wang, Kai
Chen, and Wei Zou. Devils in the guidance: Predicting logic vulnerabil-
ities in payment syndication services through automated documentation
analysis. In Proceedings of the 28th USENIX Conference on Security
Symposium, SEC’19, page 747–764, USA, 2019. USENIX Association.

[26] Yi Chen, Yepeng Yao, XiaoFeng Wang, Dandan Xu, Chang Yue, Xi-
aozhong Liu, Kai Chen, Haixu Tang, and Baoxu Liu. Bookworm game:
Automatic discovery of lte vulnerabilities through documentation anal-
ysis. In 2021 IEEE Symposium on Security and Privacy (SP), 2021.

[27] Merlin Chlosta, David Rupprecht, Thorsten Holz, and Christina Pöpper.
Lte security disabled: Misconfiguration in commercial networks. In
Proceedings of the 12th Conference on Security and Privacy in Wireless
and Mobile Networks. Association for Computing Machinery, 2019.

[28] Merlin Chlosta, David Rupprecht, Christina Pöpper, and Thorsten Holz.
5g suci-catchers: still catching them all? In Proceedings of the 14th
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, pages 359–364, 2021.

[29] Cas Cremers and Martin Dehnel-Wild. Component-based formal anal-
ysis of 5g-aka: Channel assumptions and session confusion. In 26th
Annual Network and Distributed System Security Symposium, NDSS,
2019. The Internet Society.

[30] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, June 2019.

[32] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[33] Li Dong and Mirella Lapata. Coarse-to-fine decoding for neural se-
mantic parsing. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).

[34] Li Dong and Mirella Lapata. Language to logical form with neural
attention. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 2016.

[35] Nico Golde and Daniel Komaromy. Breaking band: reverse engineering
and exploiting the shannon baseband. Recon 2016, Recon, 2016.

[36] Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Rid-
dell, Luke Benson, Lucy Sun, Ekaterina Zubova, Yujie Qiao, Matthew
Burtell, David Peng, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm
Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang,
Shafiq Joty, Alexander R. Fabbri, Wojciech Kryscinski, Xi Victoria
Lin, Caiming Xiong, and Dragomir Radev. Folio: Natural language
reasoning with first-order logic. arXiv preprint arXiv:2209.00840.

[37] James Henderson. Inducing history representations for broad coverage
statistical parsing. In Proceedings of the 2003 Human Language Tech-
nology Conference of the North American Chapter of the Association
for Computational Linguistics, pages 103–110, 2003.

[38] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction
to automata theory, languages, and computation. Acm Sigact News,
32(1):60–65, 2001.

4460 32nd USENIX Security Symposium USENIX Association

http://www.3gpp.org/dynareport/24501.htm
http://www.3gpp.org/dynareport/24501.htm
http://www.3gpp.org/dynareport/38331.htm
http://www.3gpp.org/dynareport/38331.htm
http://www.3gpp.org/dynareport/33501.htm
http://www.3gpp.org/dynareport/33501.htm
https://github.com/SyNSec-den/hermes-spec-to-fsm
https://github.com/SyNSec-den/hermes-spec-to-fsm
https://huggingface.co/
https://huggingface.co/
http://www.3gpp.org/dynareport/24301.htm
http://www.3gpp.org/dynareport/24301.htm

[39] Huawei and HiSilicon. CHANGE REQUEST: Prevention of deletion of
allowed CAG list due to man in middle attack. [Online].

[40] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa
Bertino. Lteinspector: A systematic approach for adversarial testing
of 4g LTE. In 25th Annual Network and Distributed System Security
Symposium, NDSS , 2018. The Internet Society.

[41] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowdhury, Ninghui
Li, and Elisa Bertino. Privacy attacks to the 4g and 5g cellular paging
protocols using side channel information. Proceedings 2019 Network
and Distributed System Security Symposium, NDSS, 2019.

[42] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowd-
hury, and Elisa Bertino. 5greasoner: A property-directed security and
privacy analysis framework for 5g cellular network protocol. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery.

[43] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq, Omar Chowd-
hury, and Elisa Bertino. Noncompliance as deviant behavior: An auto-
mated black-box noncompliance checker for 4g lte cellular devices. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery.

[44] Abdullah Al Ishtiaq, Sarkar Snigdha Sarathi Das, Syed Md Mukit
Rashid, Ali Ranjbar, Kai Tu, Tianwei Wu, Zhezheng Song, Weixuan
Wang, Mujtahid Akon, Rui Zhang, and Syed Rafiul Hussain. Hermes:
Unlocking security analysis of cellular network protocols by synthesiz-
ing finite state machines from natural language specifications. arXiv
preprint arXiv:2310.04381.

[45] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy,
and Luke Zettlemoyer. Learning a neural semantic parser from user
feedback. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 2017.

[46] Samuel Jero, Maria Leonor Pacheco, Dan Goldwasser, and Cristina
Nita-Rotaru. Leveraging textual specifications for grammar-based
fuzzing of network protocols. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 9478–9483, 2019.

[47] Ran Ji and Jianmin Ji. Transferring knowledge from structure-aware
self-attention language model to sequence-to-sequence semantic pars-
ing. In Proceedings of the 29th International Conference on Computa-
tional Linguistics, pages 3164–3174, October 2022.

[48] Georgios Kambourakis, Constantinos Kolias, Stefanos Gritzalis, and
Jong Hyuk Park. Dos attacks exploiting signaling in umts and ims.
Computer Communications, 34(3):226–235, 2011.

[49] Imtiaz Karim, Syed Rafiul Hussain, and Elisa Bertino. Prochecker: An
automated security and privacy analysis framework for 4g lte protocol
implementations. In 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), pages 773–785, July 2021.

[50] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun, and Yongdae
Kim. Basespec: Comparative analysis of baseband software and cel-
lular specifications for l3 protocols. Proceedings 2021 Network and
Distributed System Security Symposium, NDSS, 2021.

[51] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. Touching the
untouchables: Dynamic security analysis of the lte control plane. In
2019 IEEE Symposium on Security and Privacy (SP), May 2019.

[52] Nikita Kitaev, Steven Cao, and Dan Klein. Multilingual con-
stituency parsing with self-attention and pre-training. arXiv preprint
arXiv:1812.11760, 2018.

[53] Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive
encoder. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), July 2018.

[54] Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. Neural
semantic parsing with type constraints for semi-structured tables. In
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics.

[55] Patrick PC Lee, Tian Bu, and Thomas Woo. On the detection of signal-
ing dos attacks on 3g/wimax wireless networks. Computer Networks,
53(15):2601–2616, 2009.

[56] Wai Kay Leong, Aditya Kulkarni, Yin Xu, and Ben Leong. Unveil-
ing the hidden dangers of public ip locationes in 4g/lte cellular data
networks. In ACM Workshop on Mobile Computing Systems and Appli-
cations (HotMobile). ACM, 2014.

[57] Vladimir I Levenshtein et al. Binary codes capable of correcting dele-
tions, insertions, and reversals. In Soviet physics doklady, volume 10.

[58] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and X. Zhang. Automatic
protocol format reverse engineering through context-aware monitored
execution. In Network and Distributed System Security Symposium,
NDSS, 2008.

[59] Jiangming Liu and Yue Zhang. In-order transition-based constituent
parsing. Transactions of the Association for Computational Linguistics,
5:413–424, 2017.

[60] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[61] Dominik Maier, Lukas Seidel, and Shinjo Park. Basesafe: Baseband
sanitized fuzzing through emulation. In Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
WiSec ’20, NY, USA, 2020. Association for Computing Machinery.

[62] Kenneth L McMillan. The smv system. In Symbolic Model Checking,
pages 61–85. Springer, 1993.

[63] Benoit Michau and Christophe Devine. How to not break lte crypto. In
ANSSI Symposium sur la sécurité des technologies de l’information et
des communications (SSTIC), 2016.

[64] Rhys Miller, Ioana Boureanu, Stephan Wesemeyer, and Christopher
J. P. Newton. The 5g key-establishment stack: In-depth formal verifi-
cation and experimentation. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, 2022.

[65] OPPO, Huawei, HiSilicon, Vodafone, Apple, and Deutsche Telekom.
CHANGE REQUEST: Contradictory requirements on update of local
NAS COUNT. [Online].

[66] Maria Lenore Pacheco, Max von Hippel, Ben Weintraub, Dan Gold-
wasser, and Cristina Nita-Rotaru. Rfcnlp/rfcnlp: Open-source code for
rfcnlp paper. https://github.com/RFCNLP/RFCNLP.

[67] Maria Lenore Pacheco, Max von Hippel, Ben Weintraub, Dan Gold-
wasser, and Cristina Nita-Rotaru. Automated attack synthesis by ex-
tracting finite state machines from protocol specification documents.
In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.

[68] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie.
Whyper: Towards automating risk assessment of mobile applications.
In Proceedings of the 22nd USENIX Conference on Security, SEC’13.

[69] CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee, Eunkyu Lee,
Insu Yun, and Yongdae Kim. DoLTEst: In-depth downlink negative test-
ing framework for LTE devices. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, August 2022.

[70] Shinjo Park, Altaf Shaik, Ravishankar Borgaonkar, and Jean-Pierre
Seifert. White rabbit in mobile: Effect of unsecured clock source in
smartphones. In Proceedings of the 6th Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM ’16.

[71] Aleksi Peltonen, Ralf Sasse, and David Basin. A comprehensive formal
analysis of 5g handover. In Proceedings of the 14th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, WiSec ’21.

[72] Hoifung Poon. Grounded unsupervised semantic parsing. In Proceed-
ings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 933–943, August 2013.

USENIX Association 32nd USENIX Security Symposium 4461

https://github.com/RFCNLP/RFCNLP

[73] Hoifung Poon and Pedro Domingos. Unsupervised semantic parsing. In
Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 1–10, Singapore, August 2009.

[74] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D.
Manning. Stanza: A python natural language processing toolkit for
many human languages. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations.

[75] Satoshi Sekine and Michael Collins. Evalb bracket scoring program.
http://www.cs.nyu.edu/cs/projects/proteus/evalb, 1997.

[76] Altaf Shaik, Jean-Pierre Seifert, Ravishankar Borgaonkar, N. Asokan,
and Valtteri Niemi. Practical attacks against privacy and availability in
4g/lte mobile communication systems. In 23rd Annual Network and
Distributed System Security Symposium, 2016. The Internet Society.

[77] Jeremy Singer-Vine. jsvine/pdfplumber: Plumb a pdf for detailed
information about each char, rectangle, line, et cetera — and easily
extract text and tables. https://github.com/jsvine/pdfplumber.

[78] Hrituraj Singh, Milan Aggrawal, and Balaji Krishnamurthy. Exploring
neural models for parsing natural language into first-order logic. arXiv
preprint arXiv:2002.06544, 2020.

[79] Richard Socher, John Bauer, Christopher D Manning, and Andrew Y
Ng. Parsing with compositional vector grammars. In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 455–465, 2013.

[80] Fabian van den Broek, Roel Verdult, and Joeri de Ruiter. Defeating
imsi catchers. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15, 2015.

[81] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2017.

[82] Ralf-Philipp Weinmann. Baseband attacks: Remote exploitation of
memory corruptions in cellular protocol stacks. In Proceedings of the
6th USENIX Conference on Offensive Technologies, WOOT’12, 2012.

[83] René Witte, Qiangqiang Li, Yonggang Zhang, and Juergen Rilling.
Text mining and software engineering: an integrated source code and
document analysis approach. IET Softw., 2:3–16, 2008.

[84] Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan. Dase:
Document-assisted symbolic execution for improving automated soft-
ware testing. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 620–631, May 2015.

[85] Jane Yen, Tamás Lévai, Qinyuan Ye, Xiang Ren, Ramesh Govindan,
and Barath Raghavan. Semi-automated protocol disambiguation and
code generation. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, SIGCOMM ’21. Association for Computing Machinery.

[86] Pengcheng Yin, Chunting Zhou, Junxian He, and Graham Neubig.
StructVAE: Tree-structured latent variable models for semi-supervised
semantic parsing. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).

[87] Chuan Yu and Shuhui Chen. On effects of mobility management sig-
nalling based dos attacks against lte terminals. In 2019 IEEE 38th
International Performance Computing and Communications Confer-
ence (IPCCC), pages 1–8, 2019.

[88] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang,
Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin
Zhang, and Dragomir Radev. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic parsing and text-to-SQL
task. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, 2018.

[89] Luke Zettlemoyer and Michael Collins. Online learning of relaxed CCG
grammars for parsing to logical form. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL),
Prague, Czech Republic. Association for Computational Linguistics.

[90] Luke S. Zettlemoyer and Michael Collins. Learning to map sentences
to logical form: Structured classification with probabilistic categorial
grammars. In Proceedings of the Twenty-First Conference on Uncer-
tainty in Artificial Intelligence, Virginia, USA. AUAI Press.

[91] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chun-
rong Fang, Shiqing Ma, Lin Tan, and Xiangyu Zhang. C2s: Translat-
ing natural language comments to formal program specifications. In
Proceedings of the 28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020. Association for Computing Machinery.

[92] Shiyu Zhang, Juan Zhai, Lei Bu, Mingsong Chen, Linzhang Wang, and
Xuandong Li. Automated generation of ltl specifications for smart
home iot using natural language. In 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE), March 2020.

[93] Yu Zhang, Houquan Zhou, and Zhenghua Li. Fast and accurate neural
crf constituency parsing. arXiv preprint arXiv:2008.03736, 2020.

[94] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Gener-
ating structured queries from natural language using reinforcement
learning. arXiv preprint arXiv:1709.00103, 2017.

A Evaluation Metric To Compare FSMs

For a paragraph in the specification, we have a set of ground
truth transitions SGT and a set of inference transitions SI. The
Boolean expression present as the condition can be complex,
and inferring quantitative accuracy from it is non-trivial. Thus,
to make the conditions in SGT and SI consistent, we convert
them to disjunctive normal form (DNF). Moreover, in this
DNF form, if there is a disjunction, we split it into multiple
conditions, leading to multiple transitions with the same ac-
tions. This further ensures that the conditions from SGT and
SI are mapped consistently. We also append the start state
to conditions and the end state to actions to take them into
account while computing the transition accuracy. After these
conversions, we have revised sets of transitions S′GT and S′I.
For each transition TGT ∈ S′GT, we compare it with each tran-
sition TI ∈ S′I. We then obtain the following match scores:
Conditions. The modified conditions in TGT ∈ S′GT and TI ∈
S′I only have terms connected with conjunctions. We count
the number of terms in the ground truth condition cGT of TGT
accurately present in condition cI of TI . We finally divide this
count with the number of terms present in cGT to obtain a
match score for each transition TI . Thus, the match score is
|mGT,I |
|cGT | , where |mGT,I | is the number of matched terms, and
|cGT | is the number of terms in cGT . We finally compute the
average of the highest match scores for each TI ∈ S′I for all
TGT ∈ S′GT and report as the condition accuracy of SI. The
computation is discussed in more detail with an example in
the full version of this paper [44].
Actions. For each action aGT ∈ TGT , we consider the infer-
ence transitions TI where aGT ∈ TI . We again compare the
condition expressions for all the obtained TI , and report the
average of the highest match scores (similarly computed as
the condition accuracy above) as the action accuracy of SI.
An example of this computation is provided in the full version
of this paper [44].

4462 32nd USENIX Security Symposium USENIX Association

http://www.cs.nyu.edu/cs/projects/proteus/evalb
https://github.com/jsvine/pdfplumber

	Introduction
	Background
	Overview of Hermes
	Problem Statement
	Solution Sketch of Hermes
	Challenges and Insights of Extracting FSM

	Extracting Transition Components
	Grammar and Annotated Dataset
	Constituency Parsing - NEUTREX
	Pretraining CellulaRoBERTa

	Synthesizing IR from TCNL
	Domain-Specific Language
	Keyword Linking
	Constructing Dependency Trees
	Synthesizing Intermediate Representation

	Synthesizing FSM
	Implementation
	Evaluation
	Effectiveness of NEUTREX
	Effectiveness of IR and FSM Synthesizers
	Accuracy of the Extracted FSM
	Effectiveness of FSMs Extracted by Hermes
	Identified Three New Vulnerabilities

	Analysis of Unannotated Document
	Analysis of Cellular Implementations
	Efficiency of Hermes

	Related Work
	Discussion and Limitations
	Conclusion and Future Work
	Evaluation Metric To Compare FSMs

