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Abstract
Control-flow hijacking attacks remain a significant challenge
in software security. Several means of protection and detec-
tion have been proposed but gaps still exist. To address such
gaps, leading processor manufacturers have introduced new
extensions in their latest-generation architectures, such as
Pointer Authentication (PA) and Branch Target Identification
(BTI) technologies in the ARMv8.5-A processor architecture.
However, simply enabling these technologies would offer only
limited security guarantees without trustworthy evidence of
runtime integrity.

To bridge this gap, we propose CFA+, a practical hardware-
assisted control flow attestation mechanism with prevention
capabilities. CFA+ leverages ARMv8.5-A’s BTI security ex-
tension in combination with selective software instrumenta-
tion to enable lightweight always-on monitoring of the execu-
tion state without the need for maintaining in-memory control
flow logs. The hybrid policy of CFA+ enables immediate pre-
vention or quick detection of control-flow violations while
providing trustworthy evidence of runtime integrity. CFA+
offers strong security guarantees for complex software stacks
while maintaining high efficiency and scalability. Evaluation
results demonstrate that CFA+ incurs an average runtime over-
head of less than 3% when applied to various benchmark
applications, including the SPEC CPU2006 suite and nginx.

1 Introduction
Despite advancements in system security, the foundation

of most software stacks still depends on unsafe programming
languages like C and C++ for their flexibility and perfor-
mance benefits. However, these languages necessitate man-
ual memory management, which often results in program-
ming errors and memory corruption vulnerabilities, leaving
software vulnerable to exploitation by adversaries. While
traditional code injection attacks have been largely miti-
gated through the deployment of defenses like Data Execu-
tion Prevention (DEP) [72] and static Remote Attestation
(RA) approaches [34, 86], control flow hijacking attacks,
such as Return-Oriented Programming (ROP) [53] and Jump-
Oriented Programming (JOP) [57], have gained popularity

as effective alternatives for determined adversaries. These
attacks exploit memory corruption vulnerabilities, such as
buffer overflows and use-after-free bugs, to achieve malicious
objectives, exemplified by privilege escalation. Adversaries
accomplish this by manipulating a program’s control flow
through the execution of carefully selected code snippets,
known as gadgets. ROP attacks are characterized by chain-
ing a sequence of gadgets, each ending with a return (ret)
instruction. On the other hand, JOP attacks construct chains
of gadgets on forward edges by targeting code fragments that
end with indirect jump or call instructions.

Problem Statement. Over the past two decades, re-
searchers have extensively studied Control Flow Integrity
(CFI) schemes, which aim to mitigate control flow hijacking
attacks by protecting both forward [13, 14, 17, 18, 35, 36]
and backward [14, 18, 24, 36, 88] edges through enforc-
ing various policies that must be respected during runtime.
However, despite these efforts, such attacks continue to per-
sist [19, 28, 33, 47, 58], highlighting the inherent limitations
of enforcement-only solutions. These limitations arise from
various factors, including the complex nature of target soft-
ware [62], compatibility issues [60], and unbalanced trade-
offs between security and performance [45]. Additionally,
implementation mistakes represent a significant avenue for
adversaries to exploit, bypassing detection by CFI defenses,
which primarily operate at a local level [58, 62]. The concept
of local detection within these mechanisms does not provide
external evidence that could offer valuable insights into the
execution flow of the target application, creating uncertainties
regarding the current state of runtime integrity.

This, in turn, has motivated the design and implementa-
tion of Control Flow Attestation (CFA) mechanisms, which
have emerged as a promising approach for providing exter-
nal evidence of runtime integrity. As such, they offer crucial
insights and enable remote detection of control flow viola-
tions [21, 22, 27, 56, 63]. The key idea behind CFA is the
remote verification of the runtime integrity status of a target
device/application, referred to as the prover (Prv), by an ex-
ternal trusted entity known as the verifier (Vrf). To ensure
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trustworthy guarantees, Prv is typically equipped with a trust
anchor to preserve the authenticity of collected execution
traces that comprise the attestation report. This report is regu-
larly or upon request transmitted to Vrf for verification.

However, despite the growing demand for verifying the
runtime integrity of complex applications [21], the major-
ity of existing CFA mechanisms are primarily designed for
and limited to simple embedded systems [12, 22, 27, 56, 65].
Porting such solutions to tackle complex software stacks is
hindered by several limiting factors. These include significant
runtime overhead, insufficient scalability, and compatibility
issues arising from intrusive hardware modifications.

While a few CFA proposals have been developed to tackle
complex software [21, 63], they still encounter performance
and scalability challenges, as discussed in Section 3.2. Fur-
thermore, these schemes primarily focus on remote attack de-
tection, which typically occurs late. Considering the broader
attack surface in complex software, early detection, similar
to local CFI mechanisms, is preferable whenever feasible but
without compromising the advantages of external evidence.
Unfortunately, activating separate CFI and CFA mechanisms
would impose significant performance overhead, rendering it
impractical for various real-world applications.

In particular, existing CFA schemes have largely over-
looked the potential benefits of incorporating elements from
CFI mechanisms. Such integration has the potential to en-
hance performance, accelerate attack detection, and achieve
greater scalability. This oversight has resulted in impractical
solutions that struggle with performance and scalability chal-
lenges. Remarkably, the potential synergies between CFI and
CFA approaches have not been extensively investigated, high-
lighting the significance of exploring this overlooked avenue
to mitigate control flow hijacking attacks.

Contribution. We take a first step to address the afore-
mentioned limitations by proposing CFA+, a hybrid runtime
defense approach that combines the strengths of CFI and
CFA approaches by offering both control flow attestation and
prevention capabilities for complex user-space applications.
Unlike traditional CFA mechanisms, CFA+ takes a different
approach to attest runtime integrity without explicit monitor-
ing and logging of execution traces or relying on costly and
non-scalable verification procedures. The key idea of CFA+
is to offer implicit monitoring of the execution state through
incorporating CFI building blocks in its design, prioritizing
prevention (i.e. local detection) over remote detection, while
always providing trustworthy evidence of runtime integrity.
For this purpose, CFA+ reserves two general purpose regis-
ters, referred to as State Register (SR) and Reference Register
(RR), which are leveraged to implicitly maintain awareness
of execution integrity. To achieve so, CFA+ generates unique
identifiers (IDs) for selected forward-edge control transfer
instruction, depending on a pre-generated function-level Con-
trol Flow Graph (CFG). It then selectively instruments these
instructions, to encode (before executing a call instruction)

and decode (after returning from a callee function), via XOR

operations, SR with the corresponding ID. This creates a two-
way execution-dependent function-call chain in SR, which
can be used to assess runtime integrity without the need for in-
memory history logs. Additionally, RR is employed to protect
native code from vulnerabilities in shared libraries. To miti-
gate ROP attacks when backwarding (executing ret), CFA+
applies a lightweight masking mechanism by XORing return
addresses being pushed to or popped from the stack with SR,
enabling quick detection of corrupted return addresses.

To prevent bypassing the inlined instrumentation instruc-
tions and enhance prevention capabilities, CFA+ leverages
the Branch Target Identification (BTI) feature, a security ex-
tension introduced as a CFI technology in the ARMv8.5-A
architecture [6]. BTI restricts the possible targets for indi-
rect branch instructions based on designated landing pad in-
structions. This ensures that indirect branches, including ret,
can only target landing pads, triggering a hardware-based
exception otherwise. The integration of BTI forms the core
of CFA+’s hybrid policy, enabling immediate prevention of
non-BTI-compliant control flow violations or quick remote
detection of sophisticated ones. Furthermore, CFA+ incorpo-
rates an efficient Vrf functionality based on SAT solvers. By
considering the generated CFG and a minimal attestation re-
port (including SR, RR, and Program Counter (PC) register
values) as inputs, the SAT solver-based Vrf could detect con-
trol flow violations by identifying inconsistencies in SR and
RR with respect to the execution context.

We evaluate CFA+ using various benchmarks, including the
C benchmarks of the SPEC CPU2006 suite and the nginx web
server. Evaluation results demonstrate that CFA+ introduces
an average runtime overhead of no more than 3% on Prv,
with an average increase in binary size by 22%. Additionally,
the verification process of attestation reports takes only a few
seconds when executed on a laptop-class machine

In summary, this paper presents several contributions:
• It introduces CFA+, an elegant hybrid control flow ver-

ification mechanism that efficiently combines runtime
attestation and enforcement capabilities in a single de-
sign. CFA+ targets complex user-space software stacks
at a large scale while incorporating a lightweight verifier
functionality based on SAT solvers.

• It sheds light on the strengths and weaknesses of
ARMv8.5-A’s Branch Target Identification (BTI) tech-
nology, integrating it as a CFI cornerstone within the
CFA+ design to enhance its precision and granularity.

• It provides extensive performance evaluation, demon-
strating superior advantages of CFA+ over existing state-
of-the-art CFA and CFI mechanisms.

Scope. This work primarily focuses on C applications for
simplicity, with the intention of discussing its applicability
to embedded applications based on the ARMv8.1-M archi-
tecture. Extension to C++ applications, where particularly
vtables should be handled, is left as future work.
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2 Background
2.1 Fundamentals of ARMv8-A Architecture

ARMv8-A (also known as AArch64 or ARM64) is the first
ARM architecture that supports a 64-bit address space, 64-bit
wide registers and pointers, and 64-bit arithmetic operations,
utilizing a 32-bit fixed-length instruction set, called A64 [5].
The architecture includes 31 64-bit general-purpose registers
(GPRs), denoted as x0 – x30. Additionally, there are special-
purpose registers (SPRs) such as the stack pointer (SP) and the
program counter (PC). While the PC is not directly accessible
as a GPR, it can be implicitly read by PC-relative address
compute instructions.

ARMv8 ABI. The Application Binary Interface (ABI) de-
fines the guidelines for executing code, including calling con-
ventions and register usage. One aspect of the ABI focuses
on GPRs, which also might serve special purposes. For in-
stance, x30 functions as the link register (LR), responsible
for retaining the return address following a function call. As
described in Section 4, CFA+ reserves two GPRs to ensure
proper functionality without introducing compatibility issues.

2.2 Branch Target Identification (BTI)
BTI is a hardware feature introduced in the ARMv8.5-A

and ARMv8.1-M processor architectures [4,6]. It provides en-
hanced protection against control flow violations by offering
landing pad instructions, which prevent the execution of unin-
tended target instructions when a vulnerable indirect branch
is executed. When BTI is enabled, the processor restricts indi-
rect branch instructions to target only memory addresses that
contain landing pads, which act as entry points to guarded
memory blocks. Otherwise, a hardware-level exception is
triggered, as depicted in the left half of Figure 1.

The encoding of landing pads looks like bti <target>,
where <target> represents the assembler encoding of the
type of the indirect branch instruction that is allowed to tar-
get such a landing pad. The ARMv8.5-A-based processor
can distinguish between indirect jump and call instructions.
Therefore, <target> can be one of three valid values, which
are: c for indirect function calls, j for indirect jumps, and
jc for all indirect branches. This distinction would reduce the
number of possible JOP gadgets as shown in the right half of
Figure 1. Notable is that return (ret) instructions represent

Fun2:
     bti c
     add x1,x2, x3
     ...

Fun1:
     ...
     blr x9
     ...

Fun1:
     ...
     blr x9
     ...

Fun2:
     bti c
     add x1,x2, x3
     ...

Exception!
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// Function entry
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// Function entry

// Block entry

blr x9

br x10

blr x9

br x10

Figure 1: Possible valid targets by a vulnerable indirect call
(BLR) or jump (BR) instruction in the presence or lack of BTI.

a form of indirect jumps, which transform the control to the
caller function by jumping to the loaded address in the link
register (LR). Therefore, their possible valid targets can be
restricted by inserting bti j after each call instruction. Yet,
BTI alone offers only coarse-grained security guarantees.

3 Motivation & Related Work
3.1 Control Flow Integrity (CFI)

CFI is a principled approach that restricts all indirect branch
instructions to adhere to a statically determined control flow
graph (CFG) [36]. In general, CFI solutions insert inline
reference monitors (checks) before indirect branch instruc-
tions, whose transfer targets could be compromised, to en-
force that such instructions only jump to legitimate targets
at runtime [14, 17, 18, 35, 59, 61, 74, 75]. The effectiveness
of CFI mechanisms is strongly tied to the precision of the
generated CFG and the enforced policy [45]. Consequently,
CFI techniques are broadly categorized as coarse-grained or
fine-grained. The former is simpler and less computation-
ally expensive, favoring performance over security. The latter
is more effective in detecting control flow violations as it
inserts checks at a more granular level, imposing a higher
performance overhead. CCFIR [18] is one of the early coarse-
grained techniques that categorizes valid target addresses into
three sets, each can be approached by only one type of indi-
rect control transfer (ICT) instructions, i.e., returns, indirect
calls, or indirect jumps. While this approach reduces the
attack surface (by acting as a software-based BTI), the num-
ber of potential gadgets that an adversary could exploit in
complex applications is still quite large.

Several other coarse-grained CFI techniques have followed,
which aimed at improving the accuracy of the enforced pol-
icy, without increasing the performance overhead [38, 59, 71].
However, bypassing such techniques has been demonstrated
in various attacks [15, 19, 33, 46]. Therefore, a variety of fine-
grained CFI approaches have been proposed [14,17,35,74,75].
Yet, the vast majority of them have not been widely adopted
by industry due to their impact on performance. The few
others that have been supported in mainstream compilers,
e.g., LLVM CFI [17], are not comprehensive enough to com-
pletely prevent control flow violations [47, 52] or suffer from
compatibility issues with some applications [60].

The accommodation of context-insensitive policies signif-
icantly contributes to the gaps present in CFI solutions [26,
47, 62]. Despite recent advancements, context-sensitive CFI
schemes [11, 42, 43, 51] often suffer from limitations such as
high performance overhead, compatibility issues, or false pos-
itives, which raise doubts about their ability to provide strong
security guarantees [45, 60]. Additionally, the presence of
implementation mistakes introduces additional hidden vulner-
abilities that undermine the security of these approaches [62].
Consequently, the lack of external trustworthy evidence re-
garding the execution flow of the target application poses
challenges in accurately assessing its runtime integrity status.
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3.2 Control Flow Attestation (CFA)
CFA is a security service that enables a trusted party, i.e.,

verifier (Vrf), to verify the runtime integrity status of a prover
(Prv) application running on a remote device [56]. Unlike
CFI, CFA offers a distinct approach to identifying control
flow violations by leveraging insights derived from external
evidence obtained remotely. To this end, Prv is instructed to
build an authenticated log, referred to as CFreport , which con-
tains pointers for all ICT instructions that have been executed
since the last attestation operation. Vrf will eventually receive
CFreport to verify the integrity of the execution state and de-
tect potential control flow violations. CFreport is commonly
constructed by relying on software instrumentation [56], cus-
tomized hardware [22], or a combination thereof [27]. C-
FLAT [56] is the first to introduce CFA. It proposes a software-
based instrumentation technique to collect and log execution
traces, relying on ARM TrustZone to securely store and au-
thenticate the collected measurements, before reporting to Vrf.
The main disadvantage of C-FLAT is the high-performance
overhead due to frequent context switching to the TrustZone
when executing any ICT instruction. As a follow-up, vari-
ous CFA schemes with different assumptions and guarantees
have been proposed [12, 16, 22, 27, 65]. Unfortunately, these
schemes are mainly designed for simple bare-metal embed-
ded software. Attempting to port such designs to complex
user-space applications would either be infeasible or result in
excessive performance overhead.

ScaRR [21] and ReCFA [63] are the only two CFA schemes
that are aimed at handling complex software. In their essence,
they still follow the traditional CFA approach of explicitly
tracking and logging the execution order of ICT instructions.
To handle complex software, they leverage various optimiza-
tion techniques, such as skipping safe ICT instructions, com-
pressing logs, and fragmenting paths into smaller parts. While
both schemes address some of the shortcomings in other CFA
designs, they remain limited due to some fundamental issues:

• High runtime overhead on Prv: ReCFA incurs an
average runtime overhead of 42.3% when applied to
some benchmarks. ScaRR incurs a higher overhead than
ReCFA due to its design, which depends on frequent
context switching between the kernel and user modes.
This overhead is not acceptable in real-world scenarios.

• Limited scalability: This implies different limitations
on both Prv and Vrf, which are summarized as follows:

– The potential of Denial of Service: Having sev-
eral CFA-enabled Prv applications running on the
same device and continuously sending CFreports to
Vrf, as in ScaRR [21], might impact the availability
of the device as this would consume a significant
portion of the network bandwidth.

– Costly verification: The design of both ReCFA
and ScaRR requires a continuous and open-ended
verification process of all executed control flow
events by any Prv application. This approach is

neither scalable nor efficient since the occurrence
of attacks is typically an exceptional case

• Feasibility Concerns: The design of both schemes over-
looks the compatibility with static RA mechanisms in
the sense that the reported results are not anchored in the
same Root of Trust (RoT). This oversight not only com-
plicates the attestation process but also raises concerns
about the provided security guarantees. This is partic-
ularly crucial when aiming to ensure integrity through
relying on some form of confidentiality, as is the case
with ReCFA, which employs the Intel Memory Protec-
tion Keys (MPK) technology as a RoT [54], despite the
reported limitations and security flaws [50].

3.3 BTI & Friends
Several hardware extensions have been recently supported

in processor architectures to mitigate control flow hijacking
attacks. For instance, the ARMv8.5-A architecture supports
Pointer Authentication (PA), Memory Tagging Extensions
(MTE), and BTI [7]. Notably, Apple has integrated the PA
feature in several products [3], while Google has enabled
MTE in their latest Pixel phones [2]. Furthermore, Academia
has proposed various defenses, leveraging PA [23, 24, 55] as
well as MTE [48]. Nevertheless, certain measures have been
bypassed due to serious design flaws [9, 30, 62, 64].

On the other hand, BTI can be bypassed by a simple buffer
overflow vulnerability, as visualized in Figure 2, where: (i)
the else branch of the main function is entered and the
processInput function is invoked (ln. 8 and 21), (ii) a buffer
overflow vulnerability is triggered and overwrites the correct
return address inside the processInput function stack frame
(ln. 3), and (iii) returning inside the if statement body, where
only privileged users are allowed to enter, without violating
the BTI-enforced protection (ln. 4 and 13). Although Figure 2
demonstrates a ROP-like attack by manipulating backward
edges, the same also applies to forward ones. Furthermore, the
naive activation of BTI does not block control flow bending
attacks [47]. Nevertheless, contrary to PA and MTE, BTI has
the advantage of being simple and secret-independent, which
are important features when leveraged in security designs.

void executePrivilege(void){
    /*function that executes some syscalls, e.g., execv()*/
}

void processInput(char *arg[]){
    /* a function that has a stack buffer overflow 
        vulnerability that let's the attacker
        to control the next return instruction's target */
    ...
    return;
}

int main(int argc, char *argv[]){
    ...
    if(priviliged){
        getPermissions();
        ...
        executePrivilege(...);
    } 
    else 
    {
        processInput(argv);
        ...
    }
    ...
}
 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

processInput:          // @processInput
        bti   c
 /* buffer overflow vulnerability */
        ret
main:                        // @main
        bti   c
  ...
        tbnz    w8, #0, .LBB1_2
        b       .LBB1_1
.LBB1_1:                   // %if.then
        ldr     x0, [sp, #16]
        bl      getPermissions
        bti   j
        adrp   x0, .L.str
        add    x0, x0, :lo12:.L.str
        bl      executePrivilege
        bti   j  
        b       .LBB1_3
.LBB1_2:                   // %if.else
        ldr     x0, [sp, #16]
        bl      processInput
        bti   j
        b       .LBB1_3
.LBB1_3:                   // %if.end
        ...
        ret

1

2

3

(b) BTI-enabled assembly for ARMv8.5-A translated from (a).(a) Sample C code with a buffer overflow vulnerability.

Figure 2: A BTI-bypassable control flow violation Example.
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4 CFA+
Goal. The primary objective of CFA+ is to bridge the exist-

ing gap between control flow integrity and attestation schemes.
While these schemes diverge in various aspects, CFA+ specif-
ically aims to provide both local and remote detection capa-
bilities within a single, efficient, and scalable design.

Overview. CFA+ employs selective software instrumenta-
tion to implicitly monitor the execution flow and provide basic
detection capabilities, while it depends on BTI as a principled
CFI foundation to extend the detection capabilities and en-
sure proper execution of inlined instrumentation instructions.
In contrast to traditional CFA approaches that often suffer
from extensive measurement collection and reporting mecha-
nisms, CFA+ utilizes XOR operations to encode and decode
data in two dedicated registers, enabling implicit monitoring
and the preservation of relevant state data during runtime.
If a violation is detected, the application will optionally be
terminated and the values of these two registers in addition to
the PC register are logged in an append-only log file stored
in non-volatile memory, e.g., a hard disk. The updated hash
value of this file is always anchored in a RoT to verify its
integrity when necessary. When required, Vrf interacts with
an attestation agent (ATTESTagent), which a user-space pro-
cess, to obtain a signed CFreport for all active CFA+-enabled
Prv-s. Subsequently, the runtime integrity status of each Prv
is verified based on the received CFreport .

4.1 Threat Model & Assumptions
We consider a powerful adversary (Adv) attempting to

achieve arbitrary code execution on a potentially flawed but
benign application by exploiting memory corruption vulnera-
bilities to hijack the control flow. We assume a BTI-enabled
hardware architecture, specifically ARMv8.5-A or higher ver-
sions. Moreover, we assume that the underlying OS kernel
and hardware are trusted, providing the user space with essen-
tial protection features such as W⊕X [78]. It is worth noting
that the kernel should not store any user-level registers in
user-accessible memory during context switches, which is the
case in major OS kernels. Finally, we consider a Prv device
equipped with a root of trust (RoT) like a Trusted Platform
Module (TPM) [68] or ARM TrustZone [80]. Non-control
data attacks, side channels, and physical attacks are beyond
the scope of our threat model, which aligns with state-of-the-
art CFI [14, 17, 25, 39, 42] and CFA schemes [21, 63].

4.2 CFA+ Terminology
The following terms are used to simplify describing CFA+:
• State Register (SR) and Reference Register (RR): Two

GPRs exclusively reserved for CFA+, which are utilized
for maintaining relevant runtime state information.

• Call Identifier (ID): A distinctive hard-coded value as-
signed to each call instruction. It undergoes two XOR

operations with SR: (i) before executing the call to en-
code SR, and (ii) after the call to decode SR and restore
its original value.
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Figure 3: An overview of the entire attestation architecture
of CFA+ (Blue/Red components are added to support CFA+).

4.3 System Overview
An overview of the CFA+ architecture is depicted in Fig-

ure 3. During compilation, CFA+ employs a series of anal-
ysis and transformation passes (visualized as CFA+ plugin),
to harden the target software with its instrumentation. The
details of this phase are discussed in Section 4.4. On the
BTI-enabled Prv device, the kernel loads a custom kernel
module, known as CFA+ Exception Handler (EHCFA+), which
performs certain actions once triggered by a BTI violation.
These actions include logging essential attestation data and
communicating with the onboard RoT to sign the updated
log. The ATTESTagent process, responsible for sending and
receiving attestation-related messages, can be implemented
as an extension of any attestation agent used for static RA.
For instance, in the Linux kernel, the Integrity Measurement
Architecture (IMA) [86] enables staticRA through an attes-
tation agent that can be adapted to support CFA+ with minor
modifications. Whenever needed, Vrf initiates the attestation
procedure to verify the runtime integrity of all CFA+-enabled
user-space applications running on a target Prv. Further de-
tails on the attestation process are provided in Section 4.5.

4.4 Compiler Instrumentation
4.4.1 Target Instructions

To detect control flow violations, CFA+ needs to instru-
ment all ICT instructions, which can be divided into two
categories: forward-edge instructions, i.e., indirect calls and
jumps, and backward-edge instructions, i.e., returns. Ab-
stractly speaking, ret instructions can also be considered
as a form of indirect jumps, given that, in the AArch64 ar-
chitecture, returning from any non-leaf function means: (i)
the return address is loaded from the stack into LR, and (ii)
ret is then executed through jumping to the address in LR.
Therefore, one of the key principles of CFA+ is to bind the
genuineness of stack-saved return addresses to the correct
value of SR. This can be achieved by instrumenting direct
call instructions to non-leaf functions.

On the other hand, indirect jumps are mainly generated
from switch statements that are translated to jump tables by
compilers. These tables are usually read-only, bound-checked,
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call FunctionX

Encode SR (XOR with IDx)

call FunctionX

Landing pad for RET (bti j)
Decode SR (XOR with IDx)

FunctionX:

FunctionX:
Landing pad for indirect calls (bti c)

Verify legitimacy of caller

FunctionX_direct: //added entry point for direct calls

Mask return address (by XORing LR with SR)

Direct and Indirect Call instructions:
Instrumentation of calls to non-leaf functions

RET
Unmask return address (by XORing LR with SR)

RET

Function Prologue:
Instrumentation of entry blocks in non-leaf callees 

Function Epilogue:
Instrumentation of RETs in non-leaf callees 

Figure 4: Illustration of CFA+ instrumentation in the basic form.

and have entries targeting addresses within the same func-
tion body. Therefore, the vast majority of CFI schemes pay
attention to indirect calls, considering that indirect jumps
are protected by default [28]. CFA+ follows the same prin-
ciple but also adds some flags, i.e., -fno-jump-tables, in
the compilation pipeline to disable the generation of these
tables. While such a configuration might slightly increase
the runtime overhead, it has the advantage of not only elim-
inating some JOP gadgets but also protecting against some
microarchitectural attacks [49]. This is considered one of the
main countermeasures to mitigate such attacks in the Linux
kernel [20] and in some CFI mechanisms, e.g., RAP [87].

As such, CFA+ targets instrumenting indirect call and
ret instructions, in addition to some direct calls as a way
to map forward- and backward-edges and stay context-aware.
4.4.2 Basic Form of Instrumentation

CFA+ relies on two main pillars: (i) software instrumenta-
tion, and (ii) BTI. Figure 4 illustrates the positioning of these
pillars, considering a basic form of instrumentation, where
CFA+ targets instrumenting three types of code elements:

• Call Instructions: This includes all indirect calls in
addition to the direct ones that invoke non-leaf functions.
A unique ID is generated for each selected instruction,
which is used to encode and decode SR. A landing pad
for ret instructions (bti j) is inserted after each call.

• Function Prologue: Each candidate function for indirect
calls is guarded with bti c, followed by a block of
instructions to verify the legitimacy of the caller instruc-
tion. A new label (an entry point), is added for direct
calls targeting the corresponding function to skip non-
relevant instrumentation instructions. The return address
of each non-leaf callee function is masked with SR (i.e.,
LR = LR ⊕ SR) before being saved in the stack.

• Function Epilogue: This entails unmasking the return
address by XORing with SR again before executing ret.

4.4.3 Detailed Working Mechanism
The following steps are performed during compilation:

1. CFA+ generates a function-level CFG for any target ap-
plication. Considering the example application in Fig-
ure 5 (A), the resulting CFG is shown in Figure 5 (B).
To resolve indirect calls, CFA+ borrows the static anal-
ysis mechanism of TyPro [35], which is based on type
propagation. This approach would allow for identify-
ing the minimal, yet over-approximated, set of possible
targets for each indirect call at compile-time without
introducing compatibility issues.

main:
  ...
  bl Func1 //direct call func1 
  ...
  ret

func1: 
  ...
  blr x9 // indirect call type-   
       matching func2 or func3
  ...
  bl func2 // direct call func2 
  ... 
  ret

func2:
  ...
  bl func3 // direct call func3
  ... 
  ret

func3:
  ...
  bl func4 // direct call  func4
  ... 
  ret

func4:
  ...
  ret

(A) Sample app. with AArch64 Control-transfer ASM instructions.

main

func1

func2
func3

func4

(B) Function-level Control Flow Graph based on (A).

Direct Call
Indirect Call

Figure 5: Illustration of function-level CFG.

2. CFA+ extracts the strongly connected components in the
constructed CFG [76] and sorts them topologically [67].
It then traverses the CFG to analyze each function and
extract relevant information, such as the function type
(e.g., leaf, external, etc.), direct callers, number and type
of indirect calls, the set of callees and their types, etc.

3. Based on type propagation analysis, CFA+ tracks the
origin of each indirect call and constructs equivalence
classes (ECs) accordingly. Each candidate function for
an indirect call joins the corresponding EC. Partially
overlapping ECs remain disjoint to maintain a high level
of precision. Each EC is then carefully assigned a 48-bit
unique identifier (IDEC) as multiples of 2 to distinguish
individual bits as much as possible.

4. Considering the above analysis, CFA+ visits each func-
tion according to its topological order and generates a
64-bit unique ID for each call instruction (e.g., using
a hash function). The ID generation process for indirect
calls considers generating only a unique 16-bit value,
which when combined with the corresponding IDEC, the
resulted combination represents the real unique ID for
any indirect call. A key property to maintain is that
XORing any ID with one or more IDs in the same path
should result in a unique value at the program level.
Maintaining this requirement is feasible even in many
complex applications, given the entropy of 64 bits. Con-
sidering that the return addresses of leaf functions are
not stored in memory, their corresponding direct call
instructions are skipped from ID generation or additional
instrumentation, except for adding landing pads.

5. To instrument target calls, CFA+ reserves two GPRs
(SR and RR) for its exclusive use, which are initialized to
zero in the main function. Listing 4.1 showcases the base
control-transfer instructions of three functions (func1,
func2, and func3) from the ones shown in Figure 5.
Listing 4.2 depicts the instrumentation of func1’s call
instructions, where each call is preceded by an encod-

6638    33rd USENIX Security Symposium USENIX Association



1 func1: ; non-root caller
2 ... ; start of func1 prologue
3 str x30, [sp,-16]! ; saving (pushing) LR value on the stack
4 ... ; end of func1 prologue
5 blr x9 ; indirect call type-matching with func2 and func3
6 ...
7 bl func2 ; direct call to func2
8 ...
9 ... ; start of func1 epilogue

10 ldr x30, [sp], 16 ; restoring (popping) the value of LR
11 ... ; end of func1 epilogue
12 ret
13 func2: ; non-leaf callee
14 ... ; func2 prologue
15 ...
16 ... ; func2 epilogue
17 ret
18 func3: ; non-leaf callee
19 ... ; func3 prologue
20 ...
21 ... ; func3 epilogue
22 ret

Listing 4.1: Sample machine code (AArch64) for a subset of
functions from the sample application shown in Figure 5.

ing XOR instruction of SR (cf. ln. 8 and 15), and followed
by a ret-specific landing pad along with a decoding XOR

instruction of SR (cf. ln. 10-12 and 17-19).
6. To detect tampering with spilled return addresses, non-

leaf functions that are not candidates for any indi-
rect call simply have their prologue and epilogue in-
strumented with a single encoding and decoding XOR

instruction, respectively. For instance, in Listing 4.2,
func1’s return address, which is in LR (x30), is masked
(i.e., XORed) using SR before saving it in the stack mem-
ory (cf. ln. 3). The retrieved address is unmasked again
before returning the control back to the caller function
(cf. ln. 23). Malicious tampering with the stored address
would yield a corrupted one when unmasked, which
would trigger a BTI violation.

7. The prologue of any function that might be invoked in-
directly is divided into two parts. The upper part is the
main entry point for indirect calls, which starts with a
landing pad, i.e., bti c (cf. ln. 2 in Listing 4.3 and List-
ing 4.4), followed by a block of instructions to validate
the legitimacy of the indirect call instruction. The lower
part starts with a symbol, introduced by CFA+, that has
the same visibility as the corresponding function to act
as an entry point for direct calls (which are rewritten
accordingly in caller functions), skipping the execution
of irrelevant instrumentation instructions (cf. ln. 8 in
Listing 4.3 and ln. 7 in Listing 4.4). If the target function
is a member in one EC and is targeted by one indirect
call, the verification procedure is simple, where only
the ID of the indirect call instruction is checked (cf.
ln. 3-6 in Listing 4.4). If the expected ID is verified, the
execution proceeds normally, bypassing the trap instruc-
tion. Otherwise, a BTI violation is triggered by indirectly
jumping to an invalid random address (i.e., performing
an indirect call to the middle of an arbitrary function

1 func1: ; non-root caller, not a cadidate for any indirect call
2 ... ; start of func1 prologue
3 eor x30, x30, x28 ; masking (XORing) the value of LR (x30) using SR (x28)
4 str x30, [sp,-8]! ; saving (pushing) LR value on the stack
5 ... ; rest of func1 prologue
6 ...
7 ldr x15, =IDx ; loading the ID of this (in-)direct call instruction into x15
8 eor x28, x28, x15 ; encoding - via XORing- SR(i.e. x28) using x15
9 blr x9 ; indirect call type-matching with func2 and func3

10 bti j ; landing pad for RET instructions
11 ldr x15, =IDx ; loading ID once again into a corruptible register, i.e., x15
12 eor x28, x28, x15 ; decoding - via XORing- SR(i.e. x28) using x15
13 ...
14 ldr x15, =IDy ; loading the ID of this (in-)direct call instruction into x15
15 eor x28, x28, x15 ; encoding - via XORing- SR(i.e. x28) using x15
16 bl func2_direct ; direct call to func2
17 bti j ; landing pad for RET instructions
18 ldr x15, =IDy ; loading ID once again into a corruptible register, i.e., x15
19 eor x28, x28, x15 ; decoding - via XORing- SR(i.e. x28) using x15
20 ...
21 ... ; start of func1 epilogue
22 ldr x30, [sp], 8 ; restoring (popping) the value of LR
23 eor x30, x30, x28 ; unmasking the value of LR (x30) by XORing again with SR (x28)
24 ...
25 ret

Listing 4.2: CFA+ instrumentation of func1 (cf. Figure 4).

using the value in LR (x30). Assuming that func2 can
be targeted by more than one indirect call instruction,
CFA+ generates, during the analysis phase, a mask value,
which will be used to verify the legitimacy of the indirect
call instruction. This per-function value is generated
by ORing the IDs of all legitimate indirect call instruc-
tions to the underlying function. Performing a bitwise
AND operation between the resulted mask and ID of the
indirect call instruction should yield the same ID as
a correct result (cf. ln. 3-7 in Listing 4.3). Given the
way of generating IDs for indirect calls, bypassing this
check by non-legitimate calls is difficult and would
eventually be detected if happened.

8. To detect malicious tampering, the return addresses of in-
directly called functions are also masked and unmasked
in certain places as described in point 6 (cf. ln. 9 and 15
in Listing 4.3 and ln. 8 and 14 in Listing 4.4).

Corner Cases. The previous discussion did not delve into
scenarios such as setjmp/longjmp, where non-traditional
control flow transfers may occur, leading to a return to an
unexpected location. While cases like setjmp/longjmp are
considered unsafe and have become rare in production soft-
ware, our approach has the potential to support them by mod-
ifying the relevant stack unwinding library in the underlying
compiler (e.g., LLVM-Libunwind [69] in the LLVM/Clang
compiler). The concept involves saving a copy of SR on the
stack whenever the return address in LR is stored there. Upon
reloading LR, the copy of SR would be discarded. During
stack unwinding for exceptional circumstances, each inter-
mediate stack frame between the current stack pointer and
the target stack pointer needs to be traversed to restore each
stored copy of SR and perform an XOR operation with the
current value. This serves as an alternative approach to the
typical SR decoding method. In this particular case, even if
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1 func2: ; non-leaf callee; belong to more than one EQ
2 bti c ; landing pad for indirect calls; start of func2 prologue
3 ldr x27, =mask ; load the identified mask value into RR (i.e., x27)
4 and x27, x27, x15 ; a bitwise AND between the mask (in x27) and the ID (in x15)
5 cmp x27, x15 ; compare the result in x27 with the ID in x15
6 b.eq func2_direct ; if equal, execute the rest of the prologue normally
7 blr x30 ; otherwise, raise an exception by jumping to an invalid address in LR
8 func2_direct:
9 eor x30, x30, x28 ; masking (XORing) the value of LR (x30) using SR (x28)

10 str x30, [sp,-8]! ; saving (pushing) LR value on the stack
11 ... ; rest of func2 prologue
12 ...
13 ... ; start of func2 epilogue
14 ldr x30, [sp], 8 ; restoring (popping) the value of LR
15 eor x30, x30, x28 ; unmasking the value of LR (x30) by XORing again with SR (x28)
16 ret

Listing 4.3: CFA+ instrumentation of func2 (cf. Figure 4).

malicious tampering occurs with the copies of SR, it would
not compromise the security of CFA+, as it would result in
an inconsistent SR value in the target location, which would
eventually be detected.
4.4.4 Handling Shared Libraries

The previous discussion aligns well with statically com-
piled software. However, complex applications usually rely
on shared libraries, which can be used by any process running
on the same device. In general, handling shared libraries in
runtime defenses is a challenge by itself, which is not consid-
ered by many defenses, including the recent ones that depend
on Pointer Authentication (PA) [23]. Therefore, CFA+ pro-
poses a lightweight protection approach for shared libraries
that brings two main advantages. First, it maintains compati-
bility with legacy software stacks. Second, it shields native
CFA+-enabled software from exploitable vulnerabilities in
shared code. To achieve so, CFA+ requires compiling shared
code with extra flags that would do the following:1

• Reserve SR and RR to ensure they remain uncorrupted
by any instruction in shared code. For instance, to ex-
clude the x27 and x28 registers from the register allo-
cation phase in the LLVM/Clang compiler, the follow-
ing flags should be added to the compilation pipeline:
-ffixed-x27 -ffixed-x28.

• Emit bti c instructions at the start of any address-taken
function. Additionally, after each call instruction, emit
bti j instructions.

This lightweight instrumentation provides coarse-grained
protection to shared libraries without introducing compatibil-
ity issues with legacy code, as the added landing pads will be
interpreted as NOPs for any non-BTI-enabled code.

On the Prv side, the instrumentation of calls to external
functions in shared libraries is illustrated in Listing 4.5. The
main difference, compared to the instrumentation of calls
to native functions, is that SR is backed up in RR before exe-
cuting the encoding XOR and call instructions (cf. ln. 3-4),
and it is immediately verified after executing the decoding

1We note that CFA+ considers the Procedure Linkage Table/Global Offset
Table (PLT/GOT) entries protected using the available security features in
compilers or kernels, such as Relocation Read-Only (RELO) [82].

1 func3: ; non-leaf callee; belong to one EQ
2 bti c ; landing pad for indirect calls; start of func3 prologue
3 ldr x27, =IDx ; load the expected ID into RR (i.e., x27)
4 cmp x27, x15 ; compre the value in x27 with the value in x15 (loaded by the caller)
5 b.eq func3_direct ; if equal, execute the rest of the prologue normally
6 blr x30 ; otherwise, raise an exception by jumping to an invalid address in LR
7 func3_direct:
8 eor x30, x30, x28 ; masking (XORing) the value of LR (x30) using SR (x28)
9 str x30, [sp,-8]! ; saving (pushing) LR value on the stack

10 ... ; rest of func3 prologue
11 ...
12 ...
13 ldr x30, [sp], 8 ; restoring (popping) the value of LR
14 eor x30, x30, x28 ; unmasking the value of LR (x30) by XORing again with SR (x28)
15 ret

Listing 4.4: CFA+ instrumentation of func3 (cf. Figure 4).

1 funcX: ; non-leaf callee
2 ...
3 mov x27, x28 ; Saving (backing up) the value of SR (x28) into RR (x27)
4 eor x28, x28, #0x17E8 ; encoding - via XORing- SR(i.e. x28) using a unique bitmask (ID)
5 bl printf
6 bti j ; landing pad for RET instructions
7 eor x28, x28, #0x17E8 ; decoding - via XORing- SR(i.e. x28) using same bitmask (ID)
8 cmp x28, x27 ; Check whether RR (x27) is equal to SR (x28) as expected
9 b.eq funcX_printf_1 ; If equal, execute normally by skipping the EHCFA+ triggering instr.

10 blr x30 ; otherwise, raise an exception by jumping to an invalid address in LR
11 funcX_printf_1:
12 ...
13 ret

Listing 4.5: CFA+ instrumentation of a call to external func.

XOR instruction (cf. ln. 6-10). Given that each call instruc-
tion has a unique ID, returning to a different location than
the expected one would be immediately prevented due to the
mismatch between SR and RR values.

As can be seen in Listing 4.5, the instrumentation of calls
to external functions is further optimized, where XOR instruc-
tions operate directly on immediate values. Thus, extra load
instructions to load the hard-coded IDs are no longer needed.
A crucial aspect in the ARMv8 architecture is that logical in-
structions, e.g., XOR, accept specific 13-bit bitmask immediate
values as a third operand, which each would map to a 64-bit
unique value when the instruction is executed [5]. This mech-
anism can generate 5,334 unique 64-bit values. For instance,
the shown bitmask 0x17EB would be translated to a 64-bit
ID equal to 0xFFFFFFFE000003FF. Leveraging these pattern-
based generated values as IDs would yield many collisions in
terms of getting the same SR value in different locations. This
will not be the case for call instructions to external functions,
given that SR will not be updated by these external callees
and it will be immediately checked upon return.

4.5 Runtime Attestation & Verification
CFA+ not only prioritizes prevention over remote detection

but also reduces the frequency of Vrf-Prv interaction, as signs
of violations can be inferred at any time from SR and RR.

Attestation Procedure. The instrumented Prv application
is expected to run normally. When a BTI violation is triggered,
control will be transferred to EHCFA+, which maintains a cen-
tral append-only log file for all Prv-s. This log file is stored
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Figure 6: Illustration of the verification procedure of CFA+.

in non-volatile writable memory, such as a hard disk. EHCFA+
will then add a new record in the log file, trigger the RoT to
sign the hash value of the updated version of it, and optionally
terminate or restart the victim Prv. The record will contain
(i) the Prv process name and ID, (ii) IMA measurement (if
exists), which is the hash value of the Prv binary image when
loaded, (iii) the values of SR, RR, and PC, and (iv) a binary
flag indicating whether this record is added due to a viola-
tion (1 means a violation, and 0 otherwise). When necessary,
Vrf asks ATTESTagent to send CFreport for all CFA+-enabled
Prv applications running on the same device. Taking into
account the potential compromise of certain Prv-s, which
may result in a violation of the expected control flow without
local detection (i.e., no BTI violation), ATTESTagent instructs
EHCFA+ to record the most recent execution status of all ac-
tive Prv-s. EHCFA+ will then create an information record
for each Prv, indicating the latest values of SR, RR, and PC,
while setting the binary flag to 0 to indicate its inclusion
for attestation purposes only. Eventually, Vrf will receive a
signed CFreport from ATTESTagent , which mainly consists of
the log-file records in addition to the RoT signature.

Verification Procedure. After successfully verifying the
integrity of CFreport , Vrf can verify the runtime integrity sta-
tus of any Prv in the log file. Prv-s with records indicating
violations are considered compromised without verification.
For other Prv-s, Vrf does the verification by checking the
consistency of the reported register values w.r.t. the legitimate
control flow of the corresponding CFG, as depicted in Fig-
ure 6. Given that the idea of CFA+ is to dynamically label
the CFG edges depending on the execution context, where
SR always holds the label of the last visited edge by PC, one
way to verify the control flow integrity is to extract the related
path and check the consistency of the reported values, e.g.,
the value of SR should equal to the XOR operation of all IDs
starting from the root function until reaching the last ICT in-
struction executed by PC. To achieve so, Vrf turns the path(s)
extraction process into a Boolean satisfiability problem, to be
solved by a SAT solver. The input to the SAT solver would be
(i) the CFG of the corresponding Prv, represented as a com-
plex data structure that contains all the needed information
about caller and callee functions along with the associated IDs
of related call instructions, and (ii) the reported SR value.
Despite the low probability of having collisions (as we discuss
later), the SR value is expected to be seen in more than one

part of the program. Thus, the SAT solver can be configured
to output all possible root-anchored paths that would lead
to such a value.2 If eventually no path is found, the Prv is
regarded as compromised due to the illegitimate SR value. If
a path or more are found, the following checks are performed
to further verify the execution integrity:

• For each path, Vrf checks the consistency of RR, which
should have limited values compared to SR, as follows:

– If the last assignment to RR was made before a call
to a function in a shared library, then the correct
value of RR should equal to the reported value of
SR (potentially XORed with intermediate IDs if SR
is updated in a further different location).

– If the last assignment to RR was made due to an
indirect call, then the RR value would be the ID
of that call instruction or the result of XORing
this ID with the corresponding mask in the callee.

If the above checks fail for all paths, a control flow vio-
lation is likely the cause and thus the corresponding Prv
is considered compromised.

• After passing the aforementioned checks, Vrf proceeds
to verify the consistency of SR with the value of PC for
each validated path. To accomplish this, Vrf needs to
access the Executable and Linking Format (ELF) file
associated with the corresponding Prv. This access al-
lows Vrf to examine whether PC points to an instruction
within one of the functions that constitute the underly-
ing path. This verification step can still be easily con-
ducted despite the potential activation of Address Space
Layout Randomization (ASLR) at runtime, which ran-
domizes the base address but leaves the lower part of
PC unchanged. If at least one valid path is found, Vrf
concludes that Prv is benign.

5 Implementation
CFA+ prototype consists of three parts: (i) the compiler

toolchain, (ii) the helper software modules on Prv, and (iii)
the Vrf framework. On the compiler side, CFA+ is imple-
mented as a set of in-tree analysis and transformation passes
that extend the LLVM 15.0 compiler framework. The analysis
pass is implemented in the LLVM Intermediate representation
(IR) layer at the Module level. The transformation pass is real-
ized at the Machine Function level and implemented in the

2The details of the constructed Boolean formulas and variables are de-
scribed in Appendix A.
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Table 1: CFA+ implementation details.

Component Language LoC Description

Compiler Toolchain
Analysis Pass C++ 1876 CFG and ID generation
Transformation Pass C++ 1419 Instrumenting target code elements
Modifications to sources C++, cmake 15 Modifying related LLVM sources

Prv
Kernel Module (EHCFA+) C 738 Handling BTI violations and logging data
Attestation Agent (userspace) Rust 746 Receiving and sending attestation data

Vrf
SAT-based verification Python 639 Verifying reported register values
Communication Server Rust 1153 communication purposes
Automation Scripts Bash 312 Automating the verification process

AArch64 backend. The LLVM Linker (LLD) is used to enable
Link Time Optimization (LTO) [70], which is a requirement
for CFA+. On the Prv side, EHCFA+ is implemented as a ker-
nel module on top of the ARM kernel v5.11, extending the
default handler of BTI instructions. Furthermore, ATTESTagent
is implemented as a user-space process that provides not only
support for CFA+ but also for any RA scheme that depends
on IMA [86], which is the de-facto standard for static attes-
tation in the Linux kernel. To maintain further compatibility
with IMA, we leverage the TPM as a RoT, where a differ-
ent Platform Configuration Register (PCR) is used to store
the hash value of CFreport . On the Vrf side, we build on top
of the open-source SAT solver from Google Optimization
tools (aka OR-Tools [66]) for verification. The noise proto-
col framework is used for secure communication between
Vrf and Prv [1]. The Concise Binary Object Representation
(CBOR) is used as an efficient data serialization format that
produces small message sizes, which is recommended by the
Trusted Computing Group (TCG) specifications [89].

The current prototype for the entire CFA+ architecture con-
sists of 6898 Lines of Code (LoC), excluding libraries. Further
details about each component are provided in Table 1.

6 Evaluation
Goal. We evaluate CFA+ in terms of performance overhead,

security, and compatibility.
Methodology. To the best of our knowledge, until the time

of writing this paper, the Apple M2 and M3 MacBook devices
are the only commercially available hardware that has support
for BTI. Yet, the support of Apple devices in the mainstream
Linux kernel is still a work in progress [79]. While Asahi
Linux is making faster progress in this direction, the support
of the BTI feature is not there yet [83]. Therefore, we use the
QEMU 5.2.0 emulator for our evaluation, which has support
for BTI [81]. We note that the obtained results are expected to
be higher on QEMU compared to real systems due to the em-
ulation of certain instructions in software. We run QEMU on
a machine that supports the ARMv8.2 architecture (i.e., Kun-
peng 920-3226 processor with 32-core ARMv8.2 CPUs oper-
ating at 2.6GHz, accompanied with 128GB of DDR4 mem-
ory), running Ubuntu 20.04.5 LTS AArch64. This will further
reduce the emulation impact on performance as QEMU will
take advantage of the native support of all instructions by the
host system and will only emulate the landing pad ones.

Compilation flags. CFA+ introduces the -cfaplus com-
piler flag to harden the target software. x27 and x28 registers
have been used as RR and SR respectively, which can be re-
served by adding the -ffixed-x27 and -ffixed-28 flags to
the compilation pipeline. Finally, our target benchmarks are
compiled with -O2 optimization flag.

Benchmarks. The following benchmarks are considered:
• SPEC CPU2006 (C only) [85]: We run each benchmark

for 5 iterations, considering the ref (real) dataset.
• nbench-byte [90]: We run each test for 200 iterations,

adopting the same methodology followed in state-of-the-
art (SOTA) runtime defenses [23].

• nginx v1.22.1 [73]: We use the wrk benchmarking
client [91], running on the host machine, to continuously
request a static 4KB HTML page for 30 seconds.

6.1 Performance Overhead
Runtime overhead on Prv. Figure 7a illustrates the run-

time overhead of CFA+ on the selected benchmarks. The high-
est observed overhead 4.6% occurs in the 400.perlbench ap-
plication, while the lowest overhead of approximately 0.12%
is recorded in the Fourier application. The SPEC CPU2006
benchmarks exhibit 2.2% overhead on average, whereas for
the nbench-byte and nginx benchmarks, the average over-
head is 0.7% and 2.7% respectively. Considering all bench-
marks, the overall average runtime overhead of CFA+ amounts
to 1.5%. We note that the primary factor contributing to the
runtime overhead of CFA+ is the ratio and type of call in-
structions compared to the total number of instructions, as
well as the frequency of executing them. For instance, accord-
ing to the statistics shown in Table 4, the call instructions
in the nbench-byte benchmark account for 5% of the to-
tal number of instructions, with the majority being calls to
external functions that do not require CFA+ related load (mem-
ory access) instructions as part of the call instrumentation.
Conversely, while the 400.perlbench benchmark shares the
same ratio of call instructions, a smaller fraction consists of
direct calls to external functions, where the instrumentation
is optimized. Moreover, the number of indirect calls and can-
didate functions for such calls is higher in 400.perlbench,
resulting in the execution of more CFA+ related instructions.

While achieving an objective comparison is challenging
due to variations in systems and other factors, Figure 7b
presents a comparison of the runtime overhead of CFA+ with
two representative SOTA CFA and CFI schemes, namely
ReCFA [63] and OS-CFI [43], considering the common
benchmarks used in evaluation. The reported results are just
for demonstrating impact, which show that CFA+ outperforms
ReCFA by several orders of magnitude, highlighting the per-
formance advantage of its non-traditional design in attesting
runtime integrity. Additionally, CFA+ does not suffer from
compatibility issues encountered in ReCFA, such as the case
with the 458.sjeng application. On the other hand, although
the average runtime overhead of CFA+ is 5x faster than OS-
CFI, OS-CFI exhibits better performance in certain appli-
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Figure 7: Overview of the runtime overhead of CFA+ on selected benchmarks, highlighting its superiority over SOTA approaches.

Table 2: An overview of the compile-time overhead of CFA+

Compile time (in seconds)Benchmark without CFA+ with CFA+
CFA+ Analysis

(in seconds) Overhead (%)

400.perlbench 72 74 0.417 2.7%
401.bzip2 9 9 0.006 ≈ 0%
403.gcc 189 191 1.28 1.05%
429.mcf 4 4 0.002 ≈ 0%
445.gobmk 52 53 0.685 1.9%
456.hmmer 20 20.5 0.075 2.5%
458.sjeng 9 9 0.022 ≈ 0%
462.libquantum 5 5 0.007 ≈ 0%
464.h264ref 41 42 0.18 2.4%
nginx 61 63 0.27 3.27%

Average 1.382%

cations like 401.bzip2 and 429.mcf, where indirect call
instructions are minimal or non-existent. We note that OS-CFI
focuses solely on forward-edge protection.

Overall, CFA+ demonstrates superior performance com-
pared to many coarse- and fine-grained CFI schemes, while
providing stronger security guarantees [14, 17, 18, 25, 59, 61].
However, it is essential to acknowledge that there is no one-
size-fits-all solution, as specific application-dependent factors
may favor other schemes for individual benchmarks.

Compile-time overhead. To assess the additional compila-
tion time introduced by CFA+ passes, we employed the LLVM
command-line option -time-passes. Table 2 presents the
normalized compilation time (in seconds) for selected bench-
marks, comparing runs with and without CFA+, and highlight-
ing the analysis pass duration. On average, the compile-time
overhead of CFA+ remains below 1.5%. Notably, the nbench-
byte benchmark is excluded as it exhibits negligible overhead.

Binary Size Overhead. While many CFI and CFA schemes
struggle to balance the trade-off between security and perfor-
mance, the design of CFA+ prioritizes both features, albeit
with increased binary size overhead. Table 3 demonstrates
the size of the .text section, which contains all instructions,
including CFA+ instrumentation instructions and hard-coded
IDs. ELF binaries’ precise sizes (in bytes) were measured us-
ing the size command in the Linux kernel. The 456.hmmer
benchmark exhibits the highest binary size overhead, amount-
ing to 48.44%. However, in more complex applications like
403.gcc and 400.perlbench, this overhead is reduced by at
least 10%, resulting in 38.69% and 34.28% respectively. The

Table 3: An overview of the binary size overhead of CFA+

Size of .text section (bytes)Benchmark without CFA+ With CFA+ Overhead (%)

400.perlbench 1232822 1655538 34.28%
401.bzip2 61362 66146 7.79%
403.gcc 3447278 4781374 38.69%
429.mcf 10331 11995 16.10%
445.gobmk 2100743 2412647 14.84%
456.hmmer 154771 229747 48.44%
458.sjeng 129096 145428 12.65%
462.libquantum 19905 26009 30.66%
464.h264ref 552757 680965 13.7%
nbench-byte 651432 666180 2.26%
nginx 780283 962427 23.34%

Average 22.06%

nbench-byte benchmark demonstrates the lowest overhead,
with only 2.26% increase in binary size. The average binary
size overhead across all benchmarks is approximately 22%.

The binary size overhead is influenced by various factors,
with the ratio of call instructions to the total number of
instructions being particularly significant, along with their
distribution across functions. Table 4 provides detailed statis-
tics on the selected benchmarks, showing that the 456.hmmer
benchmark exhibits the highest ratio of call instructions at
9% of the total instruction count. This indicates the addition
of at least 5 extra 4-byte instructions as pre- and post-call
instrumentation, along with 8 bytes as a hard-coded unique
ID for each call instruction. While this explains the signif-
icant binary size overhead observed in certain applications,
it is worth noting that, by excluding certain outlier cases,
e.g., the 456.hmmer benchmark, the average binary size over-
head of CFA+ remains comparable to other forward-edge CFI
schemes, such as LLVM-CFI (up to 23.21% code increase)
and FineIBT (up to 19.05% code increase) [13].

Verification speed. The speed of the verification process
is primarily determined by the performance of the SAT solver
module, which has a dominant impact. To evaluate it, Vrf
was configured to attest each benchmark 50 times during ex-
ecution. The reported register values were then offloaded to
the SAT solver for path(s) extraction, which ran on a lap-
top equipped with an Intel Core i7-1185G7 3GHz CPU, and
16GB of DDR4 RAM, running Ubuntu 20.04.5. Figure 8 de-
picts the minimum, average, and maximum time (in seconds)
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Table 4: Statistics about the various benchmarks that are tested with CFA+.
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Figure 8: Insight on the speed of the SAT-based verification.

required to find the first path confirming the reported values.
While most applications took only fractions of a second, com-
plex applications like 403.gcc took up to 80 seconds to find
the matching path. On average, the verification process was
completed in less than half a minute in most cases.

6.2 Security Evaluation
The security of CFA+ relies on five pillars:
• Transparency. CFA+ is inherently transparent as it does

not rely on any confidential data, rendering it immune to
a wide range of attacks, including certain side-channels.

• Register-level atomicity. CFA+ is not susceptible to race
conditions in multi-threaded applications, where the in-
termediate values of the inline reference monitors can
be manipulated while residing in memory. The values
of the inline reference monitors of CFA+ are protected
by design as they never leave the SR and RR registers,
which are not shared among threads.

• Strong collision resistance. The entropy source to main-
tain collision-free SR values based on the generated IDs
is 64 bits, which is big enough to achieve this property.
For small and mid-sized applications, all potential val-
ues of SR can be checked during compile-time, where
custom IDs can be regenerated in case of detecting a col-
lision. This check is hard to perform for big and complex
applications. Nevertheless, we note that the biggest ap-
plication, i.e., 403.gcc, we encountered has around 259

unique paths. This means that the probability of having
collisions is ( 1

264−259 ) ≈ 3%, which is low and unlikely to
yield sufficient gadgets to launch an attack that complies
with BTI instructions and eventually bypasses CFA+.

• Resilience. The hybrid design of CFA+ renders it highly
resilient against sophisticated attacks. For instance, con-
sider the scenario where SR is XORed (encoded) with
a call’s ID before its execution to invoke an interme-
diate function. Within this function, the return address
is masked and saved on the stack. Tampering with this
address, such as overwriting it, would result in one of
two cases upon unmasking: (i) targeting a non-landing
pad location and thus immediately triggering EHCFA+, or
(ii) leading to an arbitrary landing pad with a different ID,
resulting in an inconsistent SR value. This inconsistency
can lead to either (i) quick detection and prevention of
the attack if the SR value is used to unmask previously
masked return addresses along the execution path, or (ii)
eventual detection by Vrf during attestation and verifi-
cation. Vrf can determine that either (i) no legitimate
path could have the reported SR value, or (ii) there are
inconsistencies between SR and PC, indicating that SR
appears in the wrong path. A similar approach is em-
ployed during the verification process to detect control
flow bending attacks [47].

• Shielded execution. As discussed in Section 4.4.4, CFA+
does not allow vulnerable shared code to return to a dif-
ferent location as this would be immediately detected
and prevented due to mismatch values between SR and
RR. This shields native code from exploitable vulnera-
bilities in shared code.

6.2.1 Experimental Security Evaluation

Limited short gadgets. The incorporation of BTI in CFA+
design significantly reduces the number of short gadgets,
which are the most common ones in real-world attacks [31].
This further complicates any adversarial attempts to exploit
potential collisions in complex applications. For instance, we
leveraged capstone 5.0 [10] and Ropper 1.13.8 [84] to filter
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Table 5: Number of potential gadgets w.r.t. CFA+

Benchmark
Number of ROP gadgets

(Up to 6 instructions long)
Number of JOP gadgets

(Up to 6 instructions long)

Without CFA+ With CFA+ Without CFA+ With CFA+

400.perlbench 932 0 461 0
401.bzip2 9 0 19 0
403.gcc 1791 0 2456 0
429.mcf 12 0 1 0
445.gobmk 473 0 548 0
456.hmmer 86 0 116 0
458.sjeng 37 0 6 0
462.libquantum 19 0 1 0
464.h264ref 193 0 113 0

out all potentially useful ROP and JOP gadgets that are up to
6-instruction long in the SPEC CPU2006 suite. We did not
record any gadget in CFA+ enabled applications compared to
their unprotected versions. Table 5 shows the impact of CFA+
on the number of available gadgets.

Real World Exploits. Although it is hard to reproduce
CVEs, especially for the AArch64 architecture, we managed
to reproduce CVE-2013-2028. It is a stack-based buffer over-
flow vulnerability (triggered via an integer underflow), which
affects nginx 1.3.9, allowing for a ROP attack that causes a
denial of service and arbitrary code execution. We were able
to reproduce this CVE on the AArch64 architecture and ille-
gally execute the execve system call in the absence of CFA+.
Although the entire nginx binary did not have the encoding of
the syscall SVC #0 instruction, i.e., 0x010000d4, we directed
the ngx_execute_proc function to perform execve on our
behalf as part of the exploit. When running the recompiled ver-
sion of nginx with CFA+ enabled, this attack is immediately
prevented, due to attempting to jump to a corrupted address
that when unmasked, resulted in an invalid target. We further
performed a deliberate follow-up attestation that concluded
the compromise of the corresponding Prv after observing the
related record in CFreport .

6.3 Compatibility.
Functional correctness CFA+ successfully maintains the

functionality of all the benchmarks under consideration, as it
does not cause any execution failures or unexpected results
that would prevent performance numbers from being reported
by the evaluation frameworks. Additionally, the borrowed
type propagation analysis mechanism from Typro [35] en-
sures compatibility with potential valid targets for indirect
calls. This stands in contrast to other approaches, such as
LLVM-CFI [17] and ReCFA [63], which are incompatible
with at least one application in the SPEC CPU2006 suite.

Impact of instrumented shared libraries on legacy code.
Considering that the evaluation frameworks we employed
utilize static linking for objective performance measurement
reporting, we aimed to investigate the impact of instrumented
shared libraries on legacy code in terms of compatibility and
runtime overhead. To achieve this, we made modifications
to the evaluation scripts of the SPEC CPU2006 benchmark

suite, enabling dynamic linking against a custom GLIBC that
we pre-compiled with instrumentation, as described in Sec-
tion 4.4.4. By comparing the runtime of each application
using this modified dynamic linking configuration to the de-
fault static linking configuration, we observed a negligible
overhead, averaging at 0.03%. These results not only confirm
the absence of compatibility issues but also demonstrate the
functional correctness of our approach.

7 Discussion
Precision of CFA+. CFA+ exhibits a precision that is on

par with other CFA schemes [21, 63], despite generating a
CFG at the function-level and primarily instrumenting call
instructions. The need for generating a CFG at a lower level,
e.g., the basic-block level, only arises when indirect jump
instructions are a concern, which is not the case for CFA+. As
discussed in Section 4.4.1, CFA+ adopts a recommended prac-
tice of disabling the generation of jump tables, where most
indirect jump instructions typically reside [87]. This proac-
tive measure reduces the number of JOP gadgets and provides
protection against specific microarchitectural attacks [20].

Nevertheless, even in rare scenarios where the compiler
emits indirect jump instructions for optimization purposes,
the number of such instructions and their legitimate targets
remain limited. The CFA+ compiler toolchain will then ensure
the generation of relevant landing pads, particularly bti j,
to handle these cases appropriately. Based on the results pre-
sented in Table 5, these instructions are unlikely to form useful
gadgets. Furthermore, they cannot target other valid landing
pads designed for ret instructions (i.e., the call-preceded
ones), as triggering such landing pads means executing sub-
sequent instrumentation instructions that introduce arbitrary
updates to SR. This inconsistency would have a cascading
effect on the entire invocation chain, violating its integrity.
This violation would eventually be detected, as elaborated in
Section 6.2.

CFA+ vs other defenses. As discussed in Section 3, while
the current CFA and CFI schemes vary in their designs and
security guarantees, CFA+ stands out as the first solution
to combine the advantages offered by both approaches. Ta-
ble 6 and Table 7 compare CFA+ with the most relevant CFA
and CFI techniques respectively. In addition to its distin-
guishing prevention capabilities, Table 6 shows that CFA+ is
the only attestation scheme that handles complex software
stacks with minimal runtime and network overhead. Further-
more, it is the only scheme that performs attestation at scale,
where the status of many Prv applications is reported in one
compact report and verified smoothly. Please note that the
CFA schemes reported in the upper part of Table 6 are in-
cluded for illustrative purposes and are not directly compa-
rable to CFA+ as they primarily focus on embedded soft-
ware. Table 7 highlights CFA+’s superiority over relevant CFI
schemes, as it is the only one that covers forward and back-
ward edges, while providing trustworthy evidence of runtime
integrity. We note that FineIBT [13] introduces an optimized
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Table 6: CFA+ vs relevant CFA mechanisms.

CFA Scheme Target Objective RoT Scalability Runtime
overhead

memory
overhead

Network
overhead

C-FLAT [56] ▼ RD TZ - ● ● ⋆
OAT [65] ▼ RD TZ - ● ● ⋆
ARI [29] ▼ RD TZ - ● ● ⋆

ISC-FLAT [16] ▼ RD TZ - ● ● ⋆
BLAST [92] ▼ RD TZ - ● ● ⋆

ScaRR [21] ∎ RD kernel ✗ ● ✗ ☀

ReCFA [63] ∎ RD MPK ✗ ● ✗ ⋆
CFA+ ∎ LD+RD TPM ✓ ● ● ☆

Legend:▼ Embedded SW, ∎ Complex user-space SW, RD: Remote Detection,
LD: Local Detection, TZ: ARM TrustZone, MPK: Intel Memory Protection Keys,
TPM: Trusted Platform Module, - Not applicable, ✓ Has this feature, ✗ Lacks this
feature, ● Low overhead (runtime: ≤ 5%, memory: ≤ 10%), ● Moderate overhead

(runtime: between 5% and 10%, memory: between 10% and 30%), ● High overhead
(runtime: > 10%, memory: > 30%), ✗ Not reported,☀ (Potentially) High network

overhead, ⋆ Moderate network overhead,☆ Low network overhead.

Table 7: CFA+ vs context-sensitive CFI mechanisms.

CFI
Scheme Target Coverage Objective Trust.

Evidence
HW

assist.
Runtime
overhead

memory
overhead

PathArmor [11] ∎  LD ✗ LBR ● ●
PittyPAT [51] ∎  LD ✗ PT ● ●
µCFI [25] ∎  LD ✗ PT ● ●
OS−CFI [43] ∎ H# LD ✗ MPX+TSX ● ●
CFI−LB [42] ∎ H# LD ✗ TSX ● ●
VIP−CFI [39] ∎ H# LD ✗ MPK ● ●
µRAI [44] ▼ G# LD ✗ MPU ● ●
FineIBT [13] ∎ H# LD ✗ IBT ● ●

CFA+ ∎  LD+RD ✓ BTI ● ●

Legend:▼ Embedded SW, ∎ Complex user-space SW,H# Forward edges,
G# Backward edges, Full Protection, LD: Local Detection, RD: Remote Detection,
✓ Has this feature, ✗ Lacks this feature, LBR: Last Branch Records (Intel), PT: Intel
Processing Tracing, MPX: Memory Protection Extensions (Intel), TSX: Transactional

Synchronization Extensions (Intel), MPK: Intel Memory Protection Keys,
MPU: Memory Protection Unit, IBT: Indirect Branch Tracking (Intel), BTI: Branch

Target Identification (ARM), ● Low overhead (runtime: ≤ 5%, memory: ≤ 10%),
● Moderate overhead (runtime: between 5% and 10%, memory: between 10% and

30%), ● High overhead (runtime: > 10%, memory: > 30%).

and hardware-assisted version of LLVM-CFI [17], leveraging
Indirect Branch Tracking (IBT), which is Intel counterpart of
ARM BTI [88]. IBT is part of Intel’s control flow Enforce-
ment Technology (CET) where hardware-assisted shadow
stack is available as well [88]. Therefore, the contribution
of FineIBT is limited to protecting indirect forward edges,
without providing any evidence of runtime integrity.

Compatibility with RA. CFA+ prioritizes seamless inte-
gration with static RA approaches. It not only utilizes and
shares the same RoT with IMA [86] but also follows a sim-
ilar design for maintaining attestation reports. In particular,
likewise IMA, CFA+ maintains a unified log file for all events,
with its hash value stored in a designated PCR register within
the TPM. When required, Vrf can obtain the two signed log
files in one attestation request.

Integration with Pointer Authentication (PA). PA is a
hardware security feature introduced in the ARMv8.3 archi-
tecture, which aims at ensuring pointers integrity with cryp-
tographic primitives [7]. To achieve this, new instructions
are added to sign and verify pointers. The computed crypto-
graphic hash, known as Pointer Authentication Code (PAC),
is stored in the unused upper bits of 64-bit pointers. Main-
stream compilers like LLVM/Clang and GCC now include
support for signing return addresses using PA by adding the
-mbranch-protection=pac-ret flag.

CFA+ proposes a lighter-weight alternative for sign-
ing and verifying return addresses using XOR instruc-
tions. Nevertheless, the current design and implementa-
tion of CFA+ are fully compatible with PA. When the
-mbranch-protection=pac-ret flag is added to the com-
piler pipeline, the transformation pass of CFA+ relies on it
for return address integrity. As a result, CFA+ emits fewer
instrumentation instructions accordingly.

Based on experimental evaluations, incorporating PA as
a primary component in the CFA+ design offers an average
reduction of approximately 2% in binary size overhead. How-
ever, we did not consider so for two key reasons. First, PA
instructions introduce additional runtime overhead. Reports
indicate that executing 7 XOR instructions can be 0.15% faster
than executing 1 PA instruction [40]. Considering that signing
and verifying a ret instruction requires at least two PA instruc-
tions, the worst-case scenario of CFA+ would be faster with 7
additional non-cryptographic instructions (2 pre-call, 1 bti c,
4 post-call) executed within a call-ret edge. Furthermore,
recent research concludes that signing ret instructions with
PA could result in an average runtime overhead of 3% [24],
with extreme outlier cases reaching a runtime overhead of
17% [77]. As previously discussed, CFA+ could effectively
protect both backward and forward edges with a comparable
average runtime overhead. Second, PA relies on confidential
data, such as secrets, which exposes it to a wider range of
attack surfaces including various side channels [9, 30, 64].
In contrast, the current design of CFA+ is transparent, i.e.,
secret-independent, resulting in a smaller attack surface.

Applicability to embedded software. The ARMv8.1-M
architecture has recently introduced ISA extensions that add
support for BTI and PA [4]. ARM Cortex-M85 and ARM
Cortex-M52 are examples of microcontroller units (MCUs)
that incorporate these security features [8]. The CFA+ design
is applicable to these MCUs with two minor modifications.
First, unlike the A-profile processors, ret instructions in these
MCUs do not adhere to the restrictions imposed by landing
pads. However, this can be overcome by replacing each ret
instruction with its equivalent form (i.e., br LR) that can be
restricted by landing pads. Second, in many scenarios, these
MCUs operate in a bare-metal execution mode, where there is
no trusted kernel available to implement EHCFA+ as part of it.
In such cases, EHCFA+ can be implemented within an integrity-
protected memory area, utilizing the available TrustZone for
isolation, or even as pure software, similar to the approach
taken in PISTIS [37]. It’s worth noting that the CFA+ design
is not limited to the TPM as the RoT. Other RoTs can be
utilized, as their primary purpose is to sign the attestation
report and store the cryptographic hash of its records.

Non-control-data Attacks. C-FLAT [56] and other CFA
proposals, such as OAT [65], have expanded their threat mod-
els to cover certain non-control-data attacks [32]. While ad-
dressing these attacks served as one of the primary moti-
vations for the development of CFA mechanisms [56], the
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underlying assumptions of the proposed defenses may only
be applicable to simple specialized embedded software, which
C-FLAT and OAT, among others, target. For instance, C-
FLAT relies on recording all executed inputs and including
them in the attestation report for verification, whereas OAT
requires manual efforts to annotate critical data variables.
These assumptions may not hold for general-purpose complex
software, which CFA+ aims to address. Nonetheless, CFA+’s
threat model encompasses control flow bending attacks, which
is the relevant generalization of non-control-data attacks that
manipulate control data [47]. As previously discussed, the
detection of these attacks relies only on identifying inconsis-
tencies between SR and PC values. We note that CFA+ has
the potential to leverage other architectural features to cover
non-control-data attacks. For instance, it could utilize PA to
enforce data-flow integrity, as proposed by RSTI [41]. Further
exploration of these possibilities is left for future research.

Limitations of CFA+. One limitation of CFA+ is its re-
liance on reserving two registers, which can pose compatibil-
ity issues for software that utilizes inline assembly and relies
on these registers. For these cases, CFA+ would terminate the
compilation process, indicating the potential compatibility
issue. Additionally, the binary size overhead associated with
CFA+ may not be acceptable in certain scenarios or appli-
cations. To address this limitation, CFA+ could benefit from
several compiler optimization techniques that have not been
considered so far, including static pruning of instrumentation
points, redundant checks eliminations, and instrumentation
hoisting (especially for provably safe call instructions).

8 Conclusion
This paper presented CFA+, a novel hybrid runtime defense

approach that combines the strengths of Control Flow In-
tegrity (CFI) and Control Flow Attestation (CFA) schemes to
provide both local and remote detection capabilities in an effi-
cient design. By leveraging the Branch Target Identification
(BTI) feature of ARMv8.5 and selective software instrumenta-
tion, CFA+ not only enforces a local policy to mitigate control
flow hijacking attacks but also enables lightweight always-on
monitoring of the execution state without the need for main-
taining in-memory control flow logs. To facilitate trustworthy
verification, CFA+ encapsulates relevant runtime state infor-
mation in dedicated registers that can be securely obtained by
an external verifier. Furthermore, CFA+ features an efficient
design for the verification process of attestation reports, allow-
ing for easy detection of control flow violations. Evaluation
results demonstrate that CFA+ achieves high efficiency and
scalability, effectively balancing strong security guarantees
with performance advantages.
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A SAT-based Verification Procedure
As described in Section 4.5, the Vrf turns the verification

process into a Boolean satisfiability problem, which can be
solved by any efficient SAT solver. To this end, the SAT solver
would need to determine whether there exists an assignment of
truth values to variables in a given logical formula so that such
a formula evaluates to True. In the context of CFA+, the SAT
problem involves determining whether a valid assignment of
truth values to the variables exists in the corresponding CFG,
such that the set of connected edges identified in the CFG
would correspond to the reported SR value. To solve this, we
only need one Boolean variable to mark the taken edges (1
means taken, 0 means not taken).

More formally, a Boolean variable eused is created for each
edge e, which is set to 1 if the corresponding edge e is selected.
The solver takes the function-level CFG and the reported SR

value as inputs and produces a labeled CFG with 0s and 1s.
In this labeled CFG, the edges labeled with 1s lead to the
specified SR value. Two constraints must be satisfied when
assigning these values:

• Connectivity: the selected edges should form a path, i.e.,
a spanning tree.

• Equity: the XOR value of the ID of these edges should
equal to the input SR, which is formalized as

XOR({eID ∣ e ∈ E,eused }) = SR

We note that the ID in eID is the ID of the related call instruc-
tion.

Assuming a collision-free CFG, where only one path would
lead to the reported SR value, the first constraint can be met
by looking for the Eulerian path, where each edge should be
visited only once, and every chosen edge should be reachable
from the root vertex (root function). This means that for any
vertex (function), except for the root and leaf vertices, the
number of incoming edges that are selected should equal to
the number of outgoing selected ones. This is formalized in
the following formula:

∀v ∈V ∖{vroot,vleaf} ∶ ∣{e ∈ E ∣ eused,ecaller = v}∣ =
∣{e ∈ E ∣ eused,ecallee = v}∣

The balance mentioned above is not mandatory for the root
vertex, which should have an additional outgoing edge, as well
as for leaf vertices, each of which should have an additional
incoming edge. The following two formulas formalize these
statements for the root and leaf vertices, respectively:

∣{e ∈ E ∣ eused ,ecaller = vroot }∣ =
∣{e ∈ E ∣ eused ,ecallee = vroot }∣+1

∣{e ∈ E ∣ eused ,ecaller = vlea f }∣+1 =
∣{e ∈ E ∣ eused ,ecallee = vlea f }∣

The second constraint can be satisfied by formulating in-
dividual equations for each of the 64 bits in the ID. This ap-
proach allows for grouping the edges based on the XOR value
of their respective bit, ensuring alignment with the correspond-
ing counter bit in SR. The formalization of this approach is
as follows:

∀bit ∈ {1,2,3, . . . ,64} ∶ XOR({eused ∣ e ∈ E,ebit
id = 1})
= SRbit

where xi denotes i-th bit of x, and x refers to either e or SR.
If the SAT solver successfully finds a solution, the path

can be simply recovered using a Depth-First Search (DFS)
algorithm.

To address potential collisions and extract multiple paths,
additional measures can be taken in the SAT formulation.
One approach is to introduce duplicated edges in the CFG to
extract more distinct paths. Another approach is to introduce
several boolean variables. These variables serve the same
goal but target different choices within the CFG, allowing for
the exploration of alternative paths. It is important to ensure
that the assignment of these variables is not exactly the same
across all paths, as this would result in identical paths being
extracted.
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