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Abstract
Differentially private synthetic data generation (DP-SDG) al-
gorithms are used to release datasets that are structurally and
statistically similar to sensitive data while providing formal
bounds on the information they leak. However, bugs in algo-
rithms and implementations may cause the actual information
leakage to be higher. This prompts the need to verify whether
the theoretical guarantees of state-of-the-art DP-SDG imple-
mentations also hold in practice. We do so via a rigorous
auditing process: we compute the information leakage via an
adversary playing a distinguishing game and running mem-
bership inference attacks (MIAs). If the leakage observed
empirically is higher than the theoretical bounds, we identify
a DP violation; if it is non-negligibly lower, the audit is loose.

We audit six DP-SDG implementations using different
datasets and threat models and find that black-box MIAs com-
monly used against DP-SDGs are severely limited in power,
yielding remarkably loose empirical privacy estimates. We
then consider MIAs in stronger threat models, i.e., passive
and active white-box, using both existing and newly proposed
attacks. Overall, we find that, currently, we do not only need
white-box MIAs but also worst-case datasets to tightly esti-
mate the privacy leakage from DP-SDGs. Finally, we show
that our automated auditing procedure finds both known DP
violations (in 4 out of the 6 implementations) as well as a new
one in the DPWGAN implementation that was successfully
submitted to the NIST DP Synthetic Data Challenge.

The source code needed to reproduce our experiments is
available from https://github.com/spalabucr/synth-audit.

1 Introduction

In modern data-driven ecosystems, organizations are of-
ten compelled or willing to share data within and with each
other [14]. However, even if it is “sanitized,” “anonymized,”
or aggregated, sharing data can still lead to severely violating
the privacy of the data subjects [10]. In this context, Synthetic

∗See https://www.imdb.com/title/tt15398776/quotes/?item=qt6969434.

Method Threat Model Violation
(Implementation)

PrivBayes (DS) Black-box Metadata
PrivBayes (DS) White-box Pre-processing
PrivBayes (Hazy) Black-box Metadata
MST (Smartnoise) Black-box Metadata
DPWGAN (NIST) Active White-box Early stopping
DPWGAN (Synthcity) Black-box Metadata
DPWGAN (Synthcity) Black-box PRNG Reuse

Table 1: Overview of identified privacy violations.

Data Generation (SDG) algorithms have been proposed as a
potential mitigation; by learning the underlying distribution
of the sensitive data and then sampling “fresh” synthetic data
points from it, SDGs enable entities to generate and release
artificial data that, ostensibly, only statistically resembles the
real data. However, without formal privacy protections, SDGs
can easily leak sensitive user data [6, 26, 28, 60, 70].

The standard, rigorous way to define algorithms with for-
mally bounded information leakage is through Differential Pri-
vacy (DP) [19]. Researchers have proposed a number of SDGs
that satisfy DP, aka DP-SDGs [8, 11, 32, 37, 43, 69, 75]. Partic-
ularly in the tabular data domain [36, 43, 75], DP-SDGs have
started to see real-world adoption; e.g., in 2021, Microsoft
and the UN International Organization for Migration released
a (DP) synthetic dataset that describes victim-perpetrator re-
lations in the context of human trafficking.

However, bugs that lead to DP violations have been found
in several popular DP tools [9,38,49], including in tabular DP-
SDGs [38, 60]. This motivates the need to audit state-of-the-
art DP-SDG implementations, i.e., designing and executing
experiments to derive empirical privacy leakage estimates.
These are then compared against the theoretical (provable) DP
guarantees to verify the correctness of implementations [38]
and/or detect DP violations [29, 30, 49].

The auditing process often relies on membership infer-
ence attacks (MIAs), where an adversary attempts to learn
whether or not a given record was used as input to the algo-
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rithm, following a distinguishing game meant to mirror the
DP definition [60]. The threat models in which MIAs can
be mounted include what, in Section 3.2, we define as black-
and white-box settings; in the former, the adversary only has
access to the synthetic data, while, in the latter, she also sees
the trained generative model and its internal parameters.

Prior work studying privacy in DP-SDGs has mostly fo-
cused on black-box attacks and used randomly sampled
(average-case) training datasets [60]. Alas, these are likely to
yield loose empirical bounds [28], i.e., the empirical estimates
are not close to the theoretical DP guarantees. Conversely,
prior work auditing DP algorithms in discriminative settings
has obtained tight estimates by considering active white-
box [50] attacks, where the adversary can manipulate the train-
ing process by inserting arbitrary canary gradients [49, 51].

In this work, we present a comprehensive audit of DP-
SDGs. This prompts two main research questions: 1) How
tightly can we empirically estimate privacy leakage in DP-
SDGs? 2) How do different threat models and datasets affect
tightness? To this end, we design an experimental framework
including MIAs against different DP-SDG implementations,
training datasets, and threat models. Using our framework,
we audit three state-of-the-art tabular DP-SDG algorithms
(PrivBayes [75], MST [43], and DPWGAN [4]), considering
two independent implementations for each algorithm.
Main Findings. Our analysis shows that:

• Common black-box MIAs like the distance to closest
record (DCR) heuristic are ineffective at exploiting pri-
vacy leakage from DP-SDGs.

• White-box and active white-box attacks provide much
tighter empirical privacy estimation, especially with spe-
cially crafted worst-case datasets. For instance, for MST
at theoretical ε = 4.0, white-box auditing produces em-
pirical privacy estimation of εemp = 3.10 compared to
black-box’s meaningless estimates (εemp = 0.00).

• The tightest possible settings may be implementation-
dependent, i.e., we need different worst-case datasets and
threat models to achieve tight empirical privacy estimates
for different DP-SDG implementations. E.g., passive
white-box audits of PrivBayes and MST are tight, while
DPWGAN requires active white-box attacks.

• As summarized in Table 1, we find DP violations in four
out of the six implementations we study, due to learn-
ing metadata directly from the input. We also identify
a new DP violation in the DPWGAN implementation
successfully submitted to the NIST DP Synthetic Data
Challenge [54].

Contributions. In summary, our main contributions include:

1. We perform the first large-scale audit of DP-SDG algo-
rithms and their implementations.

2. We craft implementation-specific worst-case datasets for
DP-SDGs, which enables us to achieve tight audits.

3. We present the first white-box MIAs against PrivBayes
and MST.

2 Preliminaries

We now introduce the concepts of differential privacy, au-
diting, membership inference, and synthetic data generation.

2.1 Differential Privacy (DP)

Definition 1 (Differential Privacy (DP) [19]). A randomized
mechanism M : D→ R is (ε,δ)-differentially private if for
any two neighboring datasets D,D′ ∈D and S⊆ R , it holds:

Pr[M (D) ∈ S]≤ eε Pr[M (D′) ∈ S]+δ

Definition 1 describes the so-called approximate DP variant,
which is a relaxation of the original (“pure”) DP definition
whereby δ = 0. We also consider two variants of DP depend-
ing on the definition of neighboring datasets: 1) add/remove,
aka unbounded, and 2) edit, aka bounded, DP. The former cor-
responds to inserting/deleting a single record from the dataset
(|D| = |D′| ± 1); the latter entails replacing a single record
with another (|D|= |D′|).

An important property of DP is given by the post-
processing theorem, which lets us use the output of DP mech-
anisms freely without worrying about further privacy leakage.

Theorem 1 (Post-Processing). Let M : D→ R be an (ε,δ)-
DP mechanism and f : R → R ′. Then f ◦M : D→ R ′ also
satisfies (ε,δ)-DP.

2.2 Auditing DP

Implicit to the DP definition is a theoretical limit on any ad-
versary’s ability to distinguish between outputs of an (ε,δ)-DP
mechanism M (i.e., M (D) and M (D′)). When observed in
practice, this limit can be used to estimate the empirical guar-
antees provided by a DP mechanism. The process of auditing
DP entails verifying the theoretical guarantees provided by
M by running an experiment where an adversary attempts
to distinguish between M (D) and M (D′) and estimating the
empirical guarantees (εemp,δ) from the adversary’s success.

Informally, when auditing a DP mechanism M , M is re-
peatedly run on a pair of fixed neighboring datasets D and
D′ to generate two sets of observations O = {o1,o2, ...} and
O ′ = {o′1,o′2, ...}, respectively. Next, an adversary attempts to
distinguish between the two sets of outputs, which results in a
false positive rate α and a false negative rate β. (We provide a
formal definition in Section 3.3). Then, upper bounds α and β

can be calculated using Clopper-Pearson confidence intervals,
as done in previous work [49, 51]. Finally, the upper bounds
on α and β are converted back into an empirical lower bound
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εemp using two known methods, i.e., auditing using either the
(ε,δ)-DP or the µ-GDP definition, described below.
Maximum auditable ε. The empirical lower bound, εemp, has
a confidence level that follows the upper bounds’ confidence
level. At the same time, this imposes an inherent limit on
the maximum εemp that can be derived in this way, which we
refer to as the maximum auditable ε. Intuitively, even if the
adversary can perfectly distinguish between O and O′ (i.e.,
α = β = 0), α and β are lower bounded by the confidence
interval thus resulting in an upper bound on εemp.
Auditing using (ε,δ)-DP In general, any mechanism that
satisfies (ε,δ)-DP bounds the possible false positive rates (α)
and false negative rates (β) attainable by an adversary to the
following privacy region [33]:

R (ε,δ) = {(α,β)|α+ eε
β≥ 1−δ∧ eε

α+β≥ 1−δ∧
α+ eε

β≤ eε +δ∧ eε
α+β≤ eε +δ}

An empirical lower bound εemp can be calculated according
to the privacy region using the following equation:

εemp = max

{
ln
(

1−α−δ

β

)
, ln

(
1−β−δ

α

)
,0

}
(1)

When auditing pure DP, we can use Eq. 1 with δ = 0.
Auditing using µ-GDP. While the (ε,δ)-DP auditing method
applies in general to all approximate DP mechanisms, Nasr
et al. [49] note that mechanisms can have privacy regions that
are specific to the mechanism as well. For example, mecha-
nisms that satisfy µ-Gaussian Differential Privacy (GDP) also
satisfy approximate DP but define a much smaller subset of
R (ε,δ) as its privacy region. Therefore, we can audit µ-GDP
mechanisms by first converting the bounds on α and β into a
lower bound on µ using the following equation:

µemp = Φ
−1(1−α)−Φ

−1(β) (2)

We can then convert the lower bound µemp to a lower bound
εemp using the following theorem for a fixed δ:
Theorem 2 (µ-GDP to (ε,δ)-DP conversion [18]). A mecha-
nism is µ-GDP iff it is (ε,δ(ε))-DP for all ε≥ 0, where:

δ(ε) = Φ

(
− ε

µ
+

µ
2

)
− eε

Φ

(
− ε

µ
− µ

2

)
(3)

2.3 Membership Inference Attacks (MIAs)

In a membership inference attack (MIA), the adversary
aims to determine if a target record, xT , was used in input
to a function – e.g., aggregation [57], training a model [59],
etc. In recent years, a number of MIAs against machine learn-
ing models have been presented that consider various threat
models and settings [12, 26, 59, 72].

In the DP auditing setting, we define an MIA as a function
that takes in input the two neighboring datasets (D, D′), the

target record (xT ), the mechanism being audited (M ), and
a single output y of the mechanism run on D or D′. The
MIA function outputs a (possibly unbounded) score, s, that
represents the confidence the attack assigns to the event that
D was the input to the mechanism based on the output (i.e.,
y∼M (D)). In short, we define the MIA function as:

s←MIA(xT ,y;M ,D,D′). (4)

2.4 Synthetic Data Generation (SDG)

Synthetic data generation (SDG) algorithms take in input
an original dataset D and output a synthetic dataset S. Typi-
cally, a generative model G is first fit on D using a (possibly
randomized) fitting function, i.e. G ∼ GM(D). A synthetic
dataset with m records is then sampled from this model, i.e.,
S∼ Gm.

In differentially private synthetic data generation algo-
rithms (DP-SDGs), the fitting function GM itself typically
satisfies DP. That is, the probability that the adversary can
infer if a given generative model G was fit on D or D′, i.e.,
G ∼ GM(D) or G ∼ GM(D′), is bounded by the ε parame-
ter. The guarantees of the overall SDG algorithm then follow
from the post-processing theorem, as the synthetic dataset is
simply sampled from the fitted generative model. However,
DP-SDGs might pre-process the dataset without proper DP
accounting, which in practice can result in DP violations [60].

3 Auditing DP-SDG Algorithms

3.1 Overview

We now set out to audit a differentially private synthetic
data generation (DP-SDG) algorithm MSDG using an adver-
sary and a distinguishing game; given neighboring datasets
D and D′, the adversary distinguishes between outputs from
MSDG(D) and MSDG(D′). More precisely, she distinguishes
using a membership inference attack (MIA). The attack’s
success rate – i.e., the number of false positives and false
negatives – is then used to compute a lower-bound empirical
estimate, εemp, of the privacy leakage.

We consider the auditing procedure to be “tight” if the
empirical estimate εemp is close to the theoretical guarantee ε.
Thus, the auditing procedure can be used to identify privacy
violations [16, 38, 49], if εemp ≫ ε. It can also be used to
determine if the theoretical guarantees are loose or if there is
significant room for the membership inference attacks to be
improved [51], if εemp≪ ε.

We instantiate a range of MIAs with varying adversarial
capabilities and study the impact of auditing decisions on
tightness. In the rest of this section, we define the threat mod-
els considered in this work, formalize the DP distinguishing
game, and define and introduce the methodology used to se-
lect worst-case target records and neighboring datasets.
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3.2 Threat Models

Our analysis considers progressively stronger threat mod-
els (introduced below) to study the power of the adversary
needed to achieve tight empirical estimates. While there have
been many different definitions of threat models introduced
in prior work, we follow the definitions provided by Houssiau
et al. [28] for the black- and white-box threat models as they
are meant specifically for SDGs. We will assume, in all threat
models, that the adversary can choose a worst-case target
record and has knowledge of the neighboring datasets D and
D′, as is standard for auditing DP mechanisms [29, 49, 51].

Black-Box. In the black-box setting, the adversary has access
to the synthetic dataset, S, as well as to the specifications of
the SDG algorithm, but, crucially, not to the trained generative
model G the synthetic dataset is sampled from.

Although this is the most practical (i.e., the weakest) threat
model we consider, it is not the adversarial capability as-
sumed by the DP guarantees provided by DP-SDGs. This
is because the generative model fitting function, GM(·), typ-
ically satisfies DP. The DP guarantees then transfer to the
entire SDG algorithm as per the post-processing theorem.
Thus, they should, in theory, hold even if the adversary has
access to G , and not just S. Nevertheless, many synthetic data
libraries use simple black-box attacks to evaluate the privacy
of differentially private synthetic data [28, 58]. Hence, we
include this setting to compare the effectiveness of different
black-box attacks in the DP setting and evaluate the impact
of reduced adversarial power on empirical privacy estimates.

Passive White-Box. Here, we assume the adversary has ac-
cess to the trained generative model G and its internal pa-
rameters, in addition to the synthetic dataset S. Examples of
MIAs in this setting include [26, 27].

Active White-Box. Finally, we consider an adversary with
not only access to the trained generative model but can also
actively manipulate training. This setting was introduced by
Nasr et. al. [49] in the context of auditing differentially pri-
vate stochastic gradient descent (in discriminative models).
In other words, the active white-box adversary can insert ar-
bitrary (“canary”) gradients into the training process of a
machine learning model.

Note that while DP-SDGs like DPWGAN [69] and PATE-
GAN [32] involve machine learning, they typically use dif-
ferent optimization algorithms rather than stochastic gradient
descent (e.g., RMSProp). Therefore, we include this threat
model to audit the DP guarantees of DP-SDGs that use ma-
chine learning models (e.g., GANs, VAEs, diffusion models).

Worst-Case Dataset. We also consider a setting where the
adversary can choose worst-case neighboring datasets D and
D′. Recall that DP guarantees hold not only for average-
case neighboring datasets but also for worst-case ones [19].
While Nasr et al. [49] show that, for discriminative models,
tight empirical estimates can be achieved even for average-

Game Parameters: (D,n,m,GM,τ)

Adversary Challenger

[1] Pick xT ∈D
xT //

D− ∼D n−1 s.t. xT /∈ D−

[2] Pick D∗ ∈D n−1 D∗ // D− := D∗ [2]

D0 := D− [1]
D1 := D− ∪{xT }

D0, D1oo

b∼ {0,1}
[3] //...oo Gb ∼ GM(Db)

[3,4]
Gboo

S∼ Gm
b

Soo

s←MIA(xT ,S,Gb[3,4];GM,D,D′)

b̂ :=

{
0 s < τ

1 s≥ τ

Output: b̂

[1] Will be modified to accommodate edit DP (see below).
[2] Only executed in the worst-case dataset setting.
[3] Only executed in the active white-box setting.
[4] Only executed in the white-box setting.

Figure 1: Distinguishability Game between Adversary and Chal-
lenger for add/remove DP, given a raw dataset (D), the number of
records in the original dataset (n), the number of records in the syn-
thetic dataset (m), the generative model fitting function (GM), and a
decision threshold τ.

case datasets, MIAs are generally harder for generative mod-
els [26], thus motivating us to consider both average and
worst-case settings in our evaluation.

3.3 DP Distinguishing Game

In Figure 1, we formalize the distinguishing game, played
between an Adversary and a Challenger, used to audit the
(add/remove) DP guarantees of a given DP-SDG algorithm.

While the game is for the add/remove DP definition, some
SDGs – e.g., PrivBayes [75] – satisfy the edit DP definition
instead; to this end, we modify the game to audit SDG algo-
rithms that satisfy edit DP as follows. The Adversary chooses
a worst-case pair of target records xT and y instead of only
xT . Next, the Challenger sets D0 := D− ∪ {y} rather than
D0 := D−. Doing so ensures that the Adversary distinguishes
between D−∪{xT} and D−∪{y}.

3.4 Worst-Case Target Record

As mentioned, DP provides guarantees not only for the
average-case but also worst-case target record. Thus, all ad-
versaries have the ability to choose the target record. However,
naïvely evaluating the privacy guarantees for the worst-case
record would require every possible record in the domain to
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Figure 2: Choosing the worst-case target record to audit.

be audited; in practice, this is infeasible given the number of
records in common high-dimensional datasets.

Rather, we let the Adversary use the vulnerable record
identification procedure by Meeus et al. [46] to first select a
subset of V most vulnerable target records from the original
dataset. She then runs “mini” membership inference attacks
on these V records and evaluates the area under the receiver
operating characteristic curve (AUC) for each record. We call
these “mini”-MIAs as they are only run over a small number
of repetitions for each record (thus, they cannot be used to
audit the DP guarantees with high confidence) and use them
to let the Adversary choose the record with the highest AUC
as the worst-case target record during the audit.

We find that V = 100 vulnerable records and 64 repetitions
of each “mini”-MIA are enough to identify the worst-case
target record. This process is outlined in Figure 2.

3.5 Worst-Case Neighboring Datasets

Similar to the choice of target record, DP provides guaran-
tees not only against average-case (aka natural) neighboring
datasets but also against the worst-case pair. While attacks are
typically evaluated against the former [26, 28, 59], DP viola-
tions may not necessarily occur in these settings. Furthermore,
leakage from target records may not be maximized, leading
to loose empirical estimates that are far from the theoretical
guarantees. Therefore, when auditing DP, it makes sense also
to consider the worst-case neighboring datasets [38, 51].

However, worst-case neighboring datasets are likely
algorithm-dependent, as leakage from different algorithms
might be maximized in different settings. Designing worst-
case datasets may also not be trivial in practice as there may
be edge-case inputs the program may fail to execute. While
this behavior technically constitutes a DP violation in itself,
the audit, similar to error handling in compilers, should aim
to identify as many DP violations as possible and not just stop
at one. Thus, we experiment with different kinds of worst-
case neighboring datasets to determine which properties of

datasets maximize privacy leakage for different DP-SDGs.

We begin by using small neighboring datasets with very
few records. While Nasr et al. [51] use D′ =∅, when audit-
ing deployed SDG algorithms, none of the implementations
studied cover this edge case and, in fact, they even fail to
generate synthetic data. While this is a DP violation in itself,
for the purposes of finding other violations that may also be
present, we select neighboring datasets that are as small as
possible without running into trivial runtime issues. Thus,
we select |D−| = 2, which we find to work for almost all
SDG implementations.1 We then experiment with two dif-
ferent properties of the worst-case datasets, namely, “narrow”
datasets and repeating the target record.

Narrow Datasets. In theory, datasets with a large number of
columns (i.e., wide datasets) increase the dimensionality of
the generative model and may provide the Adversary with
more signals (e.g., # of queries) that can be exploited by the
MIA. However, DP mechanisms might make each signal more
noisy, thus reducing the utility of the data and making it harder
to exploit the signal [23]. As we do not know how the number
of columns will affect the tightness of the empirical estimates,
we test our attack against narrow datasets containing only 3
columns along with the original wide datasets.

Repeating the Target Record. MIAs are typically evaluated
against a “fresh” record xT that is only present in D (i.e.,
xT ∈ D, xT /∈ D′). However, in some cases (especially in the
context of anonymization), the number of times a target record
appears in D (i.e., multiplicity) can reveal sensitive informa-
tion about the dataset (e.g., homogeneity attack [40] against
k-anonymity [63]). Thus, we consider the setting where xT
appears once in D and twice in D′ to cover this edge case.

1For the DPWGAN (Synthcity) implementation, we set |D−|= 4 as it fails
to generate synthetic data for datasets with only two records.
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4 Evaluation Framework

In this section, we discuss our experimental setup, intro-
ducing the datasets, synthetic data generation algorithms, and
the membership inference attacks we use.

4.1 Datasets

We experiment with two tabular datasets used to train syn-
thetic data generation (SDG) algorithms, which have been
used extensively in prior work on synthetic data [8,11,37,43]
as well as in the 2018 NIST Synthetic Data Challenge [54]:

1. Adult [34], used to predict whether income exceeds
$50K from Census data. To make sure the dataset can
be used as input to all DP-SDGs, we trim and bin the
dataset to 11 categorical attributes (age, workclass, ed-
ucation, marital-status, occupation, relationship, race,
gender, hours-per-week, native-country, and income).

2. San Francisco Fire Dept Calls for Service (Fire) [15],
which records fire units’ responses to calls made to
them in 2016. It was used in the 2018 NIST Synthetic
Data competition. Following prior work [6], we trim the
dataset from 32 to 10 categorical attributes (ALS Unit,
Call Type Group, Priority, Call Type, Zipcode of Inci-
dent, Number of Alarms, Battalion, Call Final Disposi-
tion, City and Station Area) to reduce the computational
cost of generating thousands of synthetic datasets.

We focus on categorical datasets, primarily as many tabular
DP-SDGs can only take those in input (e.g., PrivBayes [75],
MST [43], AIM [44], RAP [8], and GEM [37]) and continu-
ous values are often binned to categorical values (up to the
practitioners’ discretion) to be used with these DP-SDGs.

4.2 DP-SDG Algorithms

In this work, we experiment with the algorithms that par-
ticipated in and won the 2018 NIST Differentially Private
Synthetic Data Challenge competition [54]. We do so both
due to their relevance and because these algorithms and their
original implementations were independently verified by a
team of experts to ensure the lack of privacy violations [43].
In other words, there is greater confidence that they do satisfy
differential privacy. Yet, subtle DP violations, such as floating
point bugs, have already been identified [38], which further
motivates the need to audit these implementations.

In particular, we focus on three of the top five submissions
to the NIST competition: PrivBayes [75], MST [43], and
DPWGAN [4]. These have been popularly used in both re-
search [56,58] and industry [21], and encapsulate the different
“paradigms” [6] of synthetic data generation.

For MST and DPWGAN, we audit the original imple-
mentations used in the NIST competition, which are pub-
licly available on GitHub [52], and refer to them as MST

Method DP Neighboring Auditing
(Implementation) Variant Dataset Method

PrivBayes (DS)
ε-DP Edit (ε,δ)-DP

PrivBayes (Hazy)

MST (NIST)
(ε,δ)-DP Add/Remove µ-GDP

MST (Smartnoise)

DPWGAN (NIST)
(ε,δ)-DP Add/Remove µ-GDP

DPWGAN (Synthcity)

Table 2: Algorithms (and implementations) audited.

(NIST) and DPWGAN (NIST), respectively.2 However, as
PrivBayes is not included in the repository, we audit the pop-
ular publicly available implementation from the DataSynthe-
sizer repository [56], which has been extensively used in prior
work [6, 60], and refer to this as PrivBayes (DS).

Besides the three original implementations, we also au-
dit three newer re-implementations. Given the algorithms’
popularity, many companies and research labs have since
included (and potentially modified) the algorithms in their
software suites. However, as these modifications have not
been independently verified, they may contain mistakes and
privacy violations, once again prompting the need to audit
them. More precisely,we audit PrivBayes (Hazy) [42], MST
(Smartnoise) [47], and DPWGAN (Synthcity) [58].

A summary of all the algorithms tested and auditing meth-
ods used is reported in Table 2. Note that the PrivBayes imple-
mentations can only be audited using (ε,δ)-DP, with δ = 0, as
the underlying Laplace mechanism does not satisfy µ-GDP.

4.3 MIA Instantiations

4.3.1 Black-Box

For black-box audits, we focus on two attacks widely used
as a measure of privacy leakage from the synthetic data.

Distance to Closest Record (DCR). DCR is a popular heuris-
tic used by many software libraries [28, 55, 58] and compa-
nies [3,61,64,66,71]. Intuitively, synthetic data is expected to
cause privacy leakage if it contains samples that are too close
to the training dataset. Formally, given synthetic data S and
target record xT , the MIA outputs the score−minx∈S d(x,xT ),
for some distance metric d.

In our experiments, we first one-hot encode categorical
features and use the Euclidean distance metric as done in
prior work [28]. Furthermore, we make the score negative to
ensure that a larger “score” corresponds to the presence of the
target record in D and is consistent with our distinguishing
game that outputs b̂ = 1 if and only if s≥ τ.

Querybased. This attack [28] builds on shadow modeling
techniques. Prior work using it include [25, 28, 46]. First, the

2In the rest of the paper, we use the Algorithm (Implementation) notation to
denote the algorithm and its corresponding implementation we audit.
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adversary generates many shadow synthetic datasets from D
(S1, ...,Sn) and D′ (S′1, ...,S

′
n). Then, she evaluates the answers

to queries targeted at xT from the shadow synthetic datasets
as features. We then train a Random Forest meta-classifier
on these features to distinguish between synthetic datasets
generated from D and D′. Finally, the adversary extracts the
answers from the target synthetic dataset S and returns the
output of the meta-classifier on its features as the score.

4.3.2 White-Box

Unlike black-box attacks that exploit privacy leakage from
the synthetic datasets, white-box attacks exploit the leakage
from the trained generative model parameters directly. As
DP-SDG algorithms include a variety of generative models,
ranging from simple statistical models to complex neural
network architectures, the same attack cannot be generally ap-
plied to all algorithms. Therefore, we develop and instantiate
different attacks for the different DP-SDG algorithms.
PrivBayes & MST. We develop a simple novel white-box
attack against PrivBayes and MST that uses the shadow mod-
eling technique. First, the adversary generates many shadow
generative models G1, ...,Gn such that ∀i Gi ∼ GM(D) and
G ′1, ...,G ′n such that ∀i G ′i ∼ GM(D′). Then, she extracts a
set of white-box features from each of the shadow generative
models. We experiment with two such features, namely, Fnaive
and Ferror. In the former, the adversary simply extracts the
model parameters (joint conditional probability distributions
for PrivBayes and marginals for MST) directly. In the latter,
she first calculates the difference between each value in the
model parameter and the corresponding exact value in D and
sums these differences together. For PrivBayes and MST, each
model parameter corresponds to a “measurement” (aka query)
on the original dataset. Intuitively, this feature set represents
the total error in the “noisy measurements” assuming D was
the original dataset on which the generative model was fitted.

The adversary then trains a (Random Forest) meta-classifier
on the extracted white-box features and assigns the output of
the trained meta-classifier on the target generative model’s
extracted features as the score. In our experiments, we find
that the Fnaive feature set works best for PrivBayes, while,
for MST, the Ferror feature set produced marginally tighter
guarantees (see Appendix A). Therefore, in the rest of this
work, we use Fnaive for PrivBayes and Ferror for MST.
DPWGAN. For DPWGAN, we instantiate the LOGAN at-
tack by Hayes et al. [26]. Intuitively, if the trained DPWGAN
model overfits on a sensitive dataset, the discriminator will as-
sign a higher confidence to records from that sensitive dataset.
Thus, the adversary uses the output of the trained discrimina-
tor on the target record as the score.

4.3.3 Active White-Box

As mentioned, we only consider the active white-box attack
against DPWGAN. In this setting, we instantiate the gradi-

ent canary attack by Nasr et al. [51]. Intuitively, since the
adversary can manipulate the training process of the target
generative model, at each iteration, she replaces the target
record’s actual gradient with a canary gradient. Next, the
gradients of each record are clipped, aggregated, and noised
to satisfy DP. The adversary calculates the dot product of the
noised gradient update and the canary gradient to obtain an
observation at each iteration. Finally, she sums these observa-
tions to derive a “score” for the target generative model.

While Nasr et al. [51] show that the active white-box attack
produces tight guarantees when auditing discriminative mod-
els, we make a few modifications to the attack so that it can
be applied to generative models. Unlike discriminative mod-
els, generative ones like GANs consist of multiple models
(namely, a generator and a discriminator) trained in tandem.
Since only the discriminator is trained with DP, in our work,
we insert the canary gradient only in the discriminator, instead
of the entire model architecture. More precisely, we insert the
Dirac canary gradient (i.e., a gradient with zeros everywhere
except a single index) as this produces the tightest empirical
estimates in practice [49].

Also, models are often trained using software libraries like
Opacus [73] or TensorFlow Privacy [24], which may not read-
ily expose the aggregated gradient for users to audit. There-
fore, we extract the gradients by calculating the difference in
model parameters before and after a single iteration of train-
ing. Although this might lead to additional terms contributing
to the gradient update (e.g., the RMSProp optimizer adds a
moving average to the gradient update), from a software au-
diting point of view, we find this method more practical to
implement, and it also remains effective in producing tight
empirical guarantees. We illustrate the gradient canary at-
tack [49, 51] with our adaptations to the DPWGAN model in
Algorithm 1 highlighting the changes made by the adversary
to the training algorithm in red (e.g., in lines 10 to 12, the
adversary replaces the gradient of the target record with a
canary gradient).

5 Experimental Results

This section presents our experimental evaluation geared
to audit six state-of-the-art DP-SDG implementations with
different, increasingly stronger threat models. First, we com-
pare black-box attacks and analyze the differences in em-
pirical guarantees (εemp) with average-case and worst-case
neighboring datasets. We then experiment with white-box at-
tacks (namely, LOGAN [26] for DPWGAN and a novel attack
for PrivBayes and MST) as well as an active white-box one
(adapting Nasr et al. [49]’s attack to the generative setting).
Finally, we investigate whether our auditing procedure can
identify common DP violations and discover new DP ones.

For each experiment, we train 10,000 SDG models; we use
6,000 as shadow models to train the meta-classifier for attacks
that use shadow modeling (for attacks that do not, we do not
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Algorithm 1 Active white-box auditing of DPWGAN

Require: Target record, xT . Canary gradient, g′. Learning rate, α.
Clipping parameter, c. Batch size, m. Number of iterations of
the critic per generator iteration, ncritic. Noise scale, σ. Group
size, L. Gradient Norm bound, cp.

Require: w0, initial critic parameters. θ0, initial generator’s param-
eters.

1: score← 0
2: for t ∈ [T ] do
3: for i = 0, ...,ncritic do
4: wstart ← w
5: Pick a random sample Lt,i = {x( j)}L

j=1 ∼ Pdata(x)
6: from the real data
7: Sample {z( j)}L

j=1 ∼ p(z) a batch of prior samples
▷ Compute the per-example gradient

8: gw(x( j)) = ∇w fw(x( j)) for x( j) ∈ Lt,i

9: gw(z( j)) = ∇w fw(G(z( j);θ)) for j ∈ [L]
10: if xT ∈ Lt,i then
11: gw(xT ) = g′

12: end if
▷ Clip gradients

13: for x( j) ∈ Lt,i do
14: ḡw(x( j)) = gw(x( j))/max(1, ||gw(x( j))||2

cp
)

15: end for
16: for j ∈ [L] do
17: ḡw(z( j)) = gw(z( j))/max(1, ||gw(z( j))||2

cp
)

18: end for
▷ Add Noise

19: g̃w = 1
L

(
∑

L
j=1 ḡw(x( j))+N (0,σ2c2

pI)
)
−

20: 1
L ∑

L
j=1 ḡw(z( j))

21: w← w+α ·RMSProp(w, g̃w)
22: w← clip(w,−c,c)
23: wdi f f ← w−wstart
24: score← score + ⟨wdi f f ,g′⟩
25: end for
26: Sample {z( j)}L

j=1 ∼ p(z) a batch of prior samples

27: gθ←−∇θ
1
m ∑

m
j=1 fw(G(z( j);θ))

28: θ← θ−α ·RMSProp(θ,gθ)
29: end for
30: return score, θ, w

train any shadow models), and 2,000 models to choose the op-
timal threshold yielding the largest lower bound εemp. We then
test all attacks on the remaining 2,000 models and calculate
the false positive and false negative rates needed for the εemp
estimation. Following prior work [49, 51], all lower bounds
are given with 95% confidence (Clopper-Pearson [13]). We
also report error bars, which we obtain via five-fold cross-
validation – i.e., we split the 10,000 models into 5 partitions
of 2,000 models each and repeatedly test the attack on each
of the five partitions using the other four partitions to train
the meta-classifier and choose the optimal threshold.

The source code needed to reproduce our experiments is
available from https://github.com/spalabucr/synth-audit.
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Figure 3: Black-box auditing, Querybased and DCR attacks.

5.1 Black-Box Auditing

5.1.1 Average-Case Dataset

We start by auditing the DP-SDG implementations by in-
stantiating the DP distinguishing game (Section 3.3) with
an average-case dataset (|D|= 1000) and two popular black-
box attacks, i.e., Querybased and DCR [28]. In Figure 3, we
report the empirical εemp guarantees for the six DP-SDG im-
plementations, using Adult and Fire datasets, at two ε values
corresponding to high and moderate privacy – respectively,
ε = 1.0 and ε = 4.0.

DP Violations. We observe that the empirical privacy leakage
is much larger than the theoretical guarantee (i.e., εemp ≫
ε) for all the implementations not submitted to the NIST
competition, i.e., DPWGAN (Synthcity), MST (Smartnoise),
PrivBayes (Hazy), and PrivBayes (DS). By manually inspect-
ing the code, we find that these directly extract the meta-
data from the input dataset. This “metadata violation” occurs
as metadata like categories, minimum/maximum numerical
value, etc., might unexpectedly leak information, especially
for vulnerable target records with rare values [60]. Although
this violation was already identified in 2022 for numerical
datasets in PrivBayes (DS) and PATE-GAN [32], it still re-
mains unfixed in the DataSynthesizer library. The same in-
fringement also occurs in other implementations, such as
PrivBayes (Hazy), MST (Smartnoise), and DPWGAN (Syn-
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Figure 4: Distribution of Querybased/DCR attack scores against
PrivBayes (Hazy) trained on D vs D′ at ε = 1.0.

thcity). Note that we reported these and all other violations to
the respective library authors; see Section 7.6.

While Querybased identifies violations in 16 out of 24 ex-
periments, DCR only identifies 7 of them. For the 9 violations
identified by Querybased but not by DCR, the AUC of the
latter is close to random (≈ 0.5), while that of the former is
≥ 0.95. In other words, DCR not only misses privacy viola-
tions but also severely underestimates privacy leakage from
synthetic data. Evidently, it is ineffective at providing an ef-
fective measure of privacy and, in practice, should not be used
to evaluate (differentially private) synthetic data.

Querybased vs DCR. We then investigate why this may be
happening. To do so, we plot the raw scores output by the
DCR and Querybased attacks against the PrivBayes (Hazy)
implementation in Figure 4. Recall from Section 3.3 that
these represent the confidence the attack assigns to SDG be-
ing trained on D; specifically, Querybased outputs a proba-
bility score (i.e., s ∈ [0,1]), whereas DCR outputs a distance,
which we make negative (i.e., s ∈ (−∞,0]), as discussed in
Section 4.3.1. Regardless, for both attacks, higher scores rep-
resent stronger confidence.

For Querybased, the distinct score separation when the DP-
SDG is fitted on D and D′ indicates that the meta-classifier
learns and exploits the queries targeted at the target record
effectively. For DCR, the distances between the target record
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Figure 5: Black-box auditing at ε = 4.0 with different worst-case
datasets using the Querybased attack.

and the closest synthetic record remain relatively similar re-
gardless of whether the DP-SDG was fit on D or D′. As DCR
relies on whole target records being memorized and output
by the SDG, it seems unable to exploit more complex ways
in which information can be leaked from synthetic data [6].

Loose Estimates. Finally, auditing using black-box attacks re-
sults in several empirical privacy estimates much smaller than
the theoretical upper bounds (i.e., εemp ≪ ε). Interestingly,
this happens for the DP-SDG implementations submitted to
NIST, as εemp ≈ 0 for MST (NIST) and DPWGAN (NIST),
with both ε = 1.0 and 4.0. Arguably, it is unclear whether this
is due to 1) leakage not being maximized under average-case
neighboring datasets or 2) state-of-the-art black-box attacks
being limited in power. To answer this, we next evaluate black-
box attacks using worst-case neighboring datasets.

5.1.2 Worst-Case Datasets

To avoid the metadata violation discussed above, we craft
worst-case neighboring datasets such that the domain of D
is the same as D′ (thus, the metadata extracted will be the
same). Additionally, as the exact worst-case dataset could po-
tentially be algorithm-dependent, we use worst-case datasets
with a small number of rows (small) and experiment with
two properties, i.e., 1) a small number of columns (narrow)
and 2) repeating the target record (repeat). Finally, to focus
on auditing the underlying noise-addition mechanism of the
implementations, we use a provisional dataset to standardize
the “structure” of the DP-SDGs, as done by the top NIST sub-
missions [43]. More precisely, in the rest of the experiments,
we standardize the Bayesian network built by PrivBayes and
the marginals selected by MST across all models. In Fig-
ure 5, we plot the empirical guarantees (εemp) obtained by
auditing using Querybased, for different worst-case datasets
at theoretical ε = 4.0.

DP Violation. We find a DP violation for DPWGAN (Synthc-
ity), regardless of the type of worst-case dataset. Recall that
we prevent metadata violations by design (see Section 5.1);
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Figure 6: White-box vs black-box auditing at ε = 4.0 using
implementation-specific worst-case neighboring datasets.

thus, this must be caused by something else. After manually
inspecting the source code, we found that a random seed was
re-used by the library for reproducibility, but this was not men-
tioned in the sample code. This removes any randomization
from the code, thus making it deterministic, which results in
a major DP violation. Alas, this type of bug was also found
in other DP libraries, e.g., JAX [31].
Implementation-dependent worst-case. Next, we find that,
even for the same algorithm, the worst-case dataset can
be specific to the implementation. For PrivBayes (Hazy),
the small+narrow+repeat dataset yields the highest pri-
vacy leakage estimate (εemp = 2.64), much higher than
the estimate for small+narrow (εemp = 1.38). Whereas
for PrivBayes (DS), the estimates are roughly the same
for small+narrow+repeat and small+narrow datasets
(εemp = 4.36 and 4.35, respectively). Ostensibly, this is due
to each implementation introducing specific additional steps
(pre-processing, validation, etc.), which might subtly alter the
overall privacy leakage of the implementation itself.
Zero εemp. Finally, for MST (NIST), MST (Smartnoise), and
DPWGAN (NIST), we see that εemp ≈ 0 for all worst-case
datasets. This suggests that even in the worst-case setting,
state-of-the-art black-box MIAs are not powerful enough to
exploit the privacy leakage from these DP-SDG implemen-
tations. DP-SDGs’ theoretical guarantees typically apply to
the underlying generative models directly and only transfer
to the generated synthetic data through the post-processing
theorem of DP; thus, loose estimates could also be due to the
inability of state-of-the-art black-box MIAs to fully exploit
the information available from DP-SDGs, which motivates us
to explore stronger threat models.

5.2 White-Box Auditing

We now move on to adversaries with stronger capabilities,
i.e., with access to the (final) fitted generative model. Specifi-
cally, we use the LOGAN [26] white-box attack against DP-
WGAN and a novel one against PrivBayes and MST.

First, we determine if white-box attacks can exploit the ad-
ditional information available compared to black-box attacks.
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Figure 7: White-box auditing at ε = 1.0,2.0,4.0,10.0.

Specifically, we compare the εemp values obtained with the
white-box attacks vs. the Querybased black-box one in Fig-
ure 6. Experiments consider DP-SDGs trained with ε= 4.0 on
the worst-case pair of neighboring datasets that produces the
largest empirical guarantees for each DP-SDG implementa-
tion (which we find empirically, as discussed in Appendix B).
White- vs Black-box. For almost all implementations, the
white-box attacks result in significantly tighter εemp estimates,
i.e., closer to the theoretical ε-s, than the black-box attack.
This is particularly evident for MST (NIST) and MST (Smart-
noise), where the former obtain εemp = 2.06 and 3.22, re-
spectively, while the latter is unable to detect any leakage
(i.e., εemp ≈ 0). Similarly, for PrivBayes (DS) and PrivBayes
(Hazy), white-box audits produce tighter estimates of 4.62
and 3.35, respectively, compared to 4.35 and 2.64 for black-
box attacks.

Note that, in the white-box setting, εemp > ε for PrivBayes
(DS) indicates another DP violation in the DataSynthesizer
library. This violation was not obvious in the black-box setting
as the standard deviation of εemp was larger, whereas, in the
white-box setting, the theoretical ε is well outside the standard
deviation of εemp. As mentioned previously, PrivBayes (DS)
includes a number of pre-processing steps, other than inferring
the metadata, that may not satisfy DP. Thus, we believe this
is the most likely cause of the DP violation here.
Impact of privacy parameter. Next, as DP-SDGs can be in-
stantiated with different levels of privacy (typically depending
on the use case), we investigate whether our white-box audits
can produce tight estimates at different ε values; see Figure 7.
The empirical estimates are tightest for PrivBayes (DS) and
PrivBayes (Hazy) across most ε-s.3 Furthermore, εemp values
for MST (NIST) and MST (Smartnoise) grow consistently
with increasing ε, which indicates that the white-box attacks
do leverage the increasing privacy leakage in practice. How-
ever, the estimates are not as tight as those of the PrivBayes
implementations, especially at smaller ε-s. This may be due to
the domain compression techniques used by MST; these are
more aggressively applied at smaller ε-s, and might result in
3Note that we do not consider PrivBayes (Hazy) at ε = 2.0 a privacy violation
as it lies within the standard deviation of εemp = 2.01±0.35.
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Figure 8: Black-box vs white-box vs active white-box auditing
DPWGAN (NIST) at ε = 1.0,2.0,4.0,10.0.

a loss of information, thus making it harder for white-box at-
tacks to precisely estimate the privacy leakage. Nevertheless,
using our white-box attacks, and worst-case dataset setting,
we can audit the MST implementations much more tightly
than prior work [28].

Finally, we find that white-box auditing does not produce
tight εemp estimates for DPWGAN (NIST), even in the worst-
case neighboring dataset setting. This indicates that not even
the white-box adversary is powerful enough in this setting,
thus motivating us to consider active white-box attacks.

5.3 Active White-Box Auditing

As discussed in Section 3.2, in the active white-box attack,
the adversary manipulates training by inserting arbitrary gra-
dients into the model, in this case, DPWGAN’s discriminator.

In Figure 8, we report the resulting εemp estimates, using a
worst-case neighboring dataset (small+repeat), to audit DP-
WGAN (NIST) at various theoretical ε-s . For completeness,
we also report the εemp values for the black-box (Querybased)
and white-box (LOGAN) attacks. We observe that the active
attack produces relatively tight empirical εemp estimates, es-
pecially with large ε-s. Specifically, for ε = 1.0,2.0,4.0,10.0,
we obtain, respectively, εemp = 0.56,1.29,2.88,8.31. This
confirms that for DPWGAN, unlike PrivBayes and MST, au-
diting using the strongest active white-box attack is necessary
to produce tight empirical estimates.

5.4 Finding Other DP Violations

The experimental analysis presented above allows us to
identify the threat models and adversarial capabilities needed
to tightly audit different DP-SDG implementations, high-
lighting the prevalence of metadata violations in DP-SDGs.
Nonetheless, there could also be more subtle/less egregious
violations. These are inherently harder to identify, and previ-
ous work had to rely on manual code inspection by experts
to verify DP guarantees and find DP violations in DP-SDG
implementations [54].
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Figure 9: Black-box auditing of DPWGAN.

In the rest of this section, we investigate whether our au-
diting procedure can identify DP violations and verify DP
guarantees automatically. In fact, using our auditing proce-
dure, we identify a new violation in the implementation of
DPWGAN submitted to NIST, along with violations that were
previously found through manual inspection.

5.4.1 Early Stopping

Recall that the DPWGAN (NIST) implementation was sub-
mitted to the Differentially Private Synthetic Data Challenge
competition [54]; participants had to submit their code and a
technical report proving their algorithm satisfies DP [43]. The
experts that reviewed both did not identify any violations, in
other words, confirming that the implementation does satisfy
(ε,δ)-DP. Our experiments presented so far also support this.

However, as seen earlier, tight empirical estimates may only
be possible in worst-case settings. DPWGAN is a much more
complex algorithm than PrivBayes/MST, involving many
hyper-parameters that can be tuned. While we have only
looked at worst-case target record and worst-case neighboring
datasets thus far, for DPWGAN, we now look at worst-case
hyper-parameters as well. After experimenting with different
worst-case hyper-parameters, we find a DP violation when
the batch_size hyperparameter is set to 1. In Figure 9, we
plot the εemp estimates with batch_size set to 1, finding that,
with small ε values (0.1,0.4), εemp≫ ε. Specifically, auditing
using the black-box attack with ε = 0.1 and 0.4 results in
empirical estimates εemp = 35.8 and 34.9, respectively, while
εemp < ε for ε = 1.0 and 4.0.

We believe that the issue stems from the “early stopping”
feature of the privacy accounting method. In the code, a pri-
vacy accountant tracks the privacy budget at each iteration,
and training is aborted when that is exceeded. DPWGAN
(NIST) applies two different accountants, depending on ε: for
ε< 0.7, the privacy accountant is data-dependent as it uses the
size of the dataset (|D|) without adding differentially private
noise. Therefore, the model goes through a different number
of iterations when trained on D and D′, which is exploited
by the black-box attack. Interestingly, the white-box and ac-
tive white-box attacks do not detect a large DP violation in

USENIX Association 33rd USENIX Security Symposium    4865



1.0 2.0 4.0 10.0
Theoretical Y

0

1

2

3

4

5

6

7

8

9

10

11

Em
pi

ri
ca

lY
em

p

PrivBayes (DS) v0.1.4

Theoretical Y

Maximum auditable Y

White-box

Figure 10: White-box auditing of DataSynthesizer v0.1.4.

this setting since they were only auditing the discriminator,
whereas this bug affects the generator more significantly. As
is not clear to us how to effectively attack the generator in the
white-box/active white-box settings, we believe this prompts
an interesting area for further research.

5.4.2 Noise Scale

One issue with DP-SDG implementations previously found
through manual inspections is the noise scale bug, where the
noise parameter of the algorithm is incorrectly configured.
For instance, this was identified in the PrivBayes (DS) imple-
mentation at v0.1.4 and raised as a GitHub issue by a privacy
researcher.4 Unlike the early stopping bug, this one does not
completely break the DP guarantees of the algorithm; rather,
it results in the DP guarantee (slightly) overestimating the
actual privacy protections. Thus, this type of bug can only be
caught if the auditing procedure is tight (i.e., εemp ≈ ε); other-
wise, even if the actual ε parameter is much larger than what
is claimed, the auditing procedure may not return εemp≫ ε,
thus not flagging it as a DP violation.

Next, we investigate whether our auditing procedure can
automatically detect the noise scale bug without the need
for manual expert analysis. Specifically, we use our white-
box attack to audit PrivBayes (DS) v0.1.4. Figure 10 shows
the results of our white-box auditing procedure at various
levels of theoretical ε. For ε = 1.0 and 2.0, our auditing pro-
cedure produces empirical estimates εemp = 2.03 and 3.92,
respectively—clearly flagging the DP violation. It actually
calculates the magnitude of the violation accurately, as the
true ε is approximately twice the claimed ε.

However, at ε = 4.0, our procedure only identifies that the
noise scale is configured wrongly but does not accurately
calculate the magnitude of the error; at ε = 10.0, it does not
even detect the violation as it reaches the maximum auditable
ε limit. Recall from Section 2.2 that the maximum auditable
ε limit is an inherent limitation of our auditing procedure.

4https://github.com/DataResponsibly/DataSynthesizer/issues/34

5.5 Takeaways

Our experimental analysis shows that the state-of-the-art
black-box MIAs commonly used to evaluate privacy in DP-
SDGs may be severely limited in power. For instance, the
DCR heuristic vastly underestimates privacy leakage from
the synthetic data, often achieving AUCs close to a random
guess (≈ 0.5), in settings where Querybased yields ≥ 0.95
AUC. With the latter, we also find metadata violations in many
DP-SDG implementations (stemming from learning metadata
directly from the input dataset). Nonetheless, auditing using
Querybased still generally results in loose empirical estimates
of privacy leakage, even in worst-case settings.

Arguably, to estimate the privacy leakage from DP-SDGs
tightly, we need implementation-specific worst-case datasets
and stronger threat models. Our experiments show that the
privacy leakage of different DP-SDG implementations is
maximized for different types of worst-case datasets. Au-
diting using a novel white-box attack yields tight estimates for
PrivBayes and MST implementations; however, for machine
learning models like DPWGAN, we need attacks in a much
more powerful, active white-box threat model. When auditing
PrivBayes (Hazy), MST (Smartnoise), and DPWGAN (NIST)
at ε = 4.0 using our auditing procedure, we obtain nearly tight
empirical privacy estimates of εemp = 3.23, 3.10, and 3.02,
respectively. In comparison, using Querybased only achieves
loose estimates of εemp = 2.64, 0.00, and 0.00, respectively.

Last but not least, our auditing procedure can find several
DP violations (e.g., noise scale bug) in DP-SDGs automati-
cally, without the need for manual inspection. It also identifies
a new DP violation in the DPWGAN (NIST) implementation.

6 Related Work

DP-SDG Auditing. To our knowledge, our work presents the
first large-scale audit of DP-SDG algorithms and implemen-
tations. Houssiau et al. [28] introduce, and audit DP-SDGs
with, the TAPAS toolbox, though for only a single implemen-
tation of a single DP-SDG. They empirically estimate the
privacy guarantees of MST [43] at ε = 10 using the black-box
Querybased attack, but only achieve loose guarantees. By con-
trast, our audits include multiple algorithms/implementations,
stronger threat models, and are considerably tighter.

MIAs against synthetic data. The DCR heuristic is one
of the earliest black-box methods used for MIAs [27, 39],
although having limited effectiveness. Stadler et al. [60] use
shadow modeling to show that outlier records in synthetic
data are often vulnerable to black-box MIAs. They also find
DP metadata violations in implementations of PrivBayes and
PATE-GAN (i.e., they extract metadata from the input dataset).
However, their goal meaningfully differs from ours as they
do not focus on auditing and only consider black-box attacks.

The only white-box MIA against SDGs is LOGAN [26],
which attacks GANs (we use it for DPWGAN); we present the

4866    33rd USENIX Security Symposium USENIX Association

https://github.com/DataResponsibly/DataSynthesizer/issues/34


first white-box MIAs against PrivBayes [75] and MST [43].

Empirically Estimating Privacy in DP-ML. Prior work has
extensively focused on empirically estimating the privacy of
differentially private discriminative models (DP-ML) in both
centralized and federated settings [5, 29, 30, 35, 41, 49, 51, 62,
68, 74]. Jayaraman et al. [30] and Jagielski et al. [29] present
auditing schemes for DP-ML but generally only achieve loose
empirical estimates. Nasr et al. [51] audits DP-ML using the
(ε,δ)-DP definition and Clopper-Pearson intervals, requiring
a million runs at ε = 10. Zanella-Béguelin et al. [74] focus on
reducing the number of training runs using so-called credible
intervals, while Nasr et al. [49] audit DP-ML using the µ-GDP
definition and credible intervals and show that 1,000 runs are
in fact enough to audit models at ε = 10. While auditing
with 1,000 runs is generally feasible for centralized learning,
it might be less so in resource-constrained settings typical
of federated learning; thus, another line of work focuses on
reducing the number of runs to one [5, 41, 62].

Tightly Auditing DP-ML. Nasr et al. [49] present a tight au-
diting scheme for discriminative models trained using differ-
entially private stochastic gradient descent [1]. They show that
natural (i.e., not adversarially crafted) datasets are enough for
tightness, considering a white-box adversary who can choose
arbitrary canary gradients at each step. Arguably, our work
is broader in nature and scope. We consider three different
training algorithms for generative models, compared to just
stochastic gradient descent. Also, in discriminative models,
there is a single signal (i.e., the model’s loss on the target
record) that can be exploited by MIAs, whereas generative
models’ outputs lie in a higher dimensional space, producing
many possible signals. Thus, we experiment with multiple
MIAs for each threat model (e.g., Querybased and DCR for
black-box), studying the disparity of their effectiveness. In-
cidentally, we find that in DP-SDGs, unlike discriminative
models, adversarially crafted implementation-specific worst-
case datasets are necessary to achieve tightness.

Auditing DP Implementations. Prior audits of DP imple-
mentations include DP-Sniper [9], DP-Opt [53], and Delta-
Siege [38]. Note that [9, 53] do not consider DP-SDGs,
while [38] is orthogonal to our work as it aims to amplify ex-
isting distinguishers and classifiers to identify floating-point
DP violations in DP implementations (including MST [43]).

7 Discussion & Conclusion

7.1 Summary

This paper focused on tightly auditing (six) differentially
private synthetic data generation (DP-SDG) implementations.
We analyzed the key factors affecting tightness, running sev-
eral MIAs in different threat models and experimenting with
worst-case datasets. Our analysis shows that the privacy leak-
age of DP-SDGs can indeed be tightly estimated empirically,

but only for strong adversaries and worst-case neighboring
datasets. In the process, we proposed novel white-box MIAs
against PrivBayes and MST and presented an adaptation of
Nasr et al. [49]’s gradient canary attack to DPWGAN.

Furthermore, our automated auditing procedure discovered
DP violations in most DP-SDG implementations, including
a new DP one in the DPWGAN implementation submitted
to the NIST DP Synthetic Data Challenge. Overall, we are
confident that our work will encourage more research into
automated auditing tools so that DP-SDG implementations
can be verified easily and at scale.

7.2 The Importance of Automated Auditing

Designing automated auditing tools is an important area
of research as these enable researchers and practitioners to
find bugs and violations of formal guarantees in real-world
implementations. Arguably, this is particularly relevant in
the context of Differential Privacy (DP), as DP is increas-
ingly used in the wild to protect the privacy of real-world
users [7, 17, 20, 45], as well as citizens in critical settings like
the U.S. Census [2]. This extends to differentially private
synthetic data generation (DP-SDG) tools, which are being
deployed to protect the data of sensitive populations like the
individuals in Microsoft’s human trafficking dataset [48] or
in healthcare settings [67]. Bugs in these production systems
break these protections and enable adversaries to learn sensi-
tive information about end users [22, 65].

This makes it crucial to audit algorithms and implemen-
tations as a systematic way to verify and guarantee the pri-
vacy of vulnerable groups in the wild. To this end, our work
showcases how manual “inspection” by experts to find DP
violations might miss some subtle violations; overall, manual
analysis may not be scalable, as each version of a released
DP-compliant software will have to be verified individually.
Conversely, automated auditing can cover a wider range of
violations and be included in continuous integration pipelines,
thus reducing the potential for DP violations to be missed.
Indeed, our experiments show that our auditing procedure can
automatically find DP violations in DP-SDGs, including new
ones that were previously missed.

7.3 Powerful Threat Models

As discussed, our auditing procedure goes beyond black-
box threat models typically used in state-of-the-art MIAs
against tabular synthetic data [60], considering more power-
ful ones – i.e., white-box, active white-box, and worst-case
dataset attacks. Naturally, the stronger the threat models, the
stronger the assumptions in place. In particular, white-box
attacks are generally less practical to mount, as it is not al-
ways clear how the adversary can gain access to the final fitted
generative model. Arguably, the active white-box and worst-
case dataset attacks may be even less practical – e.g., the
former assumes that the adversary can actively, yet possibly
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stealthily, manipulate model training. On the other hand, as
argued in [26], white-box attacks can be considered practical
when models are released following a data breach or when
they are compressed/deployed to smartphones.

Nevertheless, we emphasize that the purpose of auditing is
to ensure that the provably correct privacy guarantees of DP
are not “lost” in practice – e.g., due to implementation bugs
– regardless of the threat model. Furthermore, DP violations
can sometimes result in realistic privacy leaks as well. For
instance, our work shows that the metadata violation leads to
a membership inference attack, in the black-box setting, with
an AUC of ≥ 0.95 for PrivBayes (DS), PrivBayes (Hazy),
MST (Smartnoise), and DPWGAN (Synthcity) (see Figure 3).
Similarly, prior work [7] has also demonstrated that sensitive
information (e.g., skin tone or political orientation) can leak
from DP algorithms when empirical privacy guarantees do
not match the intended theoretical ones. Finally, DP is, by de-
sign, a robust mathematical framework that provides privacy
protections even against worst-case threat models, including
the ones considered in this paper.

7.4 Computational Cost of Auditing

A potential concern with automated auditing is the compu-
tational cost incurred. Not only are state-of-the-art auditing
tools affected by the number of models that have to be built,
but they also depend on the computational efficiency of the
individual implementations. For instance, in our experiments,
it took 6.72s to generate a synthetic dataset from the (down-
sized) ADULT dataset with PrivBayes (Hazy) and more than
5x longer (39.0s) with PrivBayes (DS). Fitting the 10,000
models required for auditing took, respectively, 35 mins and
3 hours 24 mins for PrivBayes (Hazy) and PrivBayes (DS) by
parallelizing the computation on a server with an Intel Xeon
CPU with 32 2.20GHz cores and 128GB of RAM. DPW-
GAN and MST took longer, with their NIST implementations
taking 4 hours 8 mins and 14 hours 18 mins, respectively.

While we believe this is ultimately reasonable, reducing the
number of models needed for auditing could be interesting
for future work. Incidentally, note that recent work [5, 62]
has presented one-shot auditing techniques (i.e., only using
one model); however, these methods are specific to auditing
differentially private stochastic gradient descent and do not
provide tight empirical guarantees.

7.5 Limitations & Future Work

Although our work succeeds in providing (almost) tight em-
pirical estimates of privacy for the DP-SDG implementations
studied, it is, naturally, not without limitations.

First, our auditing procedure requires thousands of syn-
thetic datasets and models to be trained; this is due both to the
use of shadow models, which trains a classifier on potentially
thousands of samples, and the Clopper-Pearson confidence in-
tervals limiting the maximum auditable ε. For a given number

of test observations, even when an adversary can perfectly dis-
tinguish between M (D) and M (D′), i.e., α = β = 0, the 95%
upper bounds α and β are lower bounded. As these bounds
are used to calculate εemp, this results in an upper bound on
the εemp as well.

Second, we need millions of observations to audit at rela-
tively large values of ε, such as ε = 10, using (ε,δ)-DP [51].
While using credible intervals from [74] could improve on
this, we find that, for 2,000 test observations, the difference
in maximum auditable ε is only 0.51. Auditing with µ-GDP
requires much fewer observations (≈ 22) but can only be ap-
plied to mechanisms that satisfy µ-GDP, thus excluding pure
DP mechanisms like PrivBayes.

Recent work [5, 62] propose techniques to audit DP dis-
criminative models using only one trained model (“one-shot”).
However, they do not provide tight empirical guarantees, and
it is not clear how they can be applied to generative models.
Therefore, we leave exploring these directions to future work.

In the future, we also plan to explore one or few-shot empir-
ical privacy estimation of DP-SDGs and explore the deploy-
ment of our procedure into continuous integration pipelines.

7.6 Ethics & Disclosure

Our work does not involve attacking live systems or private
datasets. In the spirit of responsible disclosure, in February
2024, we reported the five DP violations discussed in this
paper to the respective library authors. We offered to clarify,
assist in fixes, and provide initial suggestions and recommen-
dations. We also refrained from making our findings public
for at least 90 days from disclosure.

As of May 2024, only the authors of PrivBayes (Hazy)
and DPWGAN (Synthcity) have responded to our disclosure.
The PrivBayes (Hazy) library now displays a privacy warning
to users when it automatically learns the metadata from the
dataset. Unfortunately, the latest version of DPWGAN (Syn-
thcity) (v0.2.10) still contains both the metadata and PRNG
reuse violations. PrivBayes (DS), MST (Smartnoise), and DP-
WGAN (NIST) have not made any commits to their GitHub
repository since then; thus, the violations are still present in
the publicly available libraries.
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Figure 11: White-box auditing of PrivBayes implementations for
different feature sets.
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Figure 12: White-box auditing MST implementations for different
feature sets.
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A Comparing Feature Sets for White-Box
Attacks

PrivBayes. In Figure 11, we plot the empirical εemp
guarantees obtained when auditing PrivBayes using the

implementation-specific worst-case dataset (see Appendix B)
but for different white-box features (Fnaive and Ferror) that are
extracted from the fitted generative models. We find that the
raw model parameters (Fnaive) result in much better guaran-
tees than the error value feature set (Ferror) for all ε-s.

MST. In Figure 12, we plot the empirical εemp guarantees ob-
tained when auditing MST using the implementation-specific
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Figure 13: White-box auditing DP-SDG implementations at ε = 4.0
for different worst-case datasets.

worst-case dataset (see Appendix B) but for different white-
box features (Fnaive and Ferror) that are extracted from the
fitted generative models. We find that the error value feature
set (Ferror) results in marginally tighter guarantees for all ε-s.

B Comparing Worst-Case Datasets for White-
box Auditing

Figure 13 compares the empirical εemp guarantees obtained
by the white-box attacks (specific to the DP-SDG implementa-
tion) for different worst-case datasets. Similar to the black-box
setting, we find that the worst-case dataset is implementation-
dependent even for white-box attacks.

Specifically, for the PrivBayes (DS) and PrivBayes
(Hazy) implementations, the small+narrow dataset and
small+narrow+repeat dataset produce the tightest guaran-
tees similar to the black-box setting. On the other hand, for
the MST (NIST), MST (Smartnoise), and DPWGAN (NIST),
the small+repeat dataset produces the tightest guarantees.
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