
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

A Flushing Attack on the DNS Cache
Yehuda Afek and Anat Bremler-Barr, Tel-Aviv University;

Shoham Danino, Reichman University; Yuval Shavitt, Tel-Aviv University
https://www.usenix.org/conference/usenixsecurity24/presentation/afek

USENIX Security ’24 Artifact Appendix: A Flushing Attack on the
DNS Cache

Yehuda Afek
Tel-Aviv University

Anat Bremler-Barr
Tel Aviv University

Shoham Danino
Reichman University

Yuval Shavitt
Tel-Aviv University

A Artifact Appendix

A.1 Abstract

To fully understand the root cause of the CacheFlushAt-
tack and to analyze its effective flush rate, we developed
a mini-lab setup, disconnected from the Internet, that
contains all the components of the DNS system, clients,
resolvers, and authoritative name servers. This setup is
built to analyze and examine the behavior of a resolver
(or any other component) in details. On the other hand it
is not useful for performance analysis (stress analysis).
Here we provide the code and details of this setup en-
abling to reproduce our analysis. Moreover, researchers
may find it useful for farther behavioral analysis and ex-
amination of different components in the DNS system.

A.2 Description & Requirements

DNS-CacheFlushSimulator is an Inner-Emulator envi-
ronment for DNS protocol which was built as part of
CacheFlushAttack research. DNS-CacheFlushSimulator
includes clients, resolver and three authoritative name
servers. The resolver is a BIND9 recursive resolver with
the latest version (9.18.21). The three authoritative name
servers are: a ‘root’ and two malicious delegation author-
itative name servers.

Most of the CacheFlushAttack measurements were car-
ried out on a BIND9 version 9.18.21 resolver compiled to
work with the local ‘root’ authoritative name server. The
authoritative name servers are implemented with Name
Server Daemon (NSD) version 4.5.1. The clients are de-
ployed on the same machine, which was configured to
send DNS queries directly to the local recursive resolver.
The setup configuration and environment are provided in
GitHub.

In order to use DNS-CacheFlushSimulator, a docker
docker is required.

A.2.1 Security, privacy, and ethical concerns

To ensure that no harm may be done outside of the setup,
the environment runs locally in closed Docker container
environment. It is thus important to use “–dns 127.0.0.1”
flag to configure this. Changing the “resolv.conf” con-
figuration inside the docker container is not enough (see
Appendix A.3).

A.2.2 How to access

DNS-CacheFlushSimulator source code can be found at
DNS-CacheFlushSimulator GitHub (v1.0 Tag). The en-
vironment docker image can be accessed through Dock-
erHub (latest Tag).

A.2.3 Hardware dependencies

There is no hardware dependencies required for using
DNS-CacheFlushSimulator. During our research, we
used an Ubuntu computer or Virtual Machine (we rec-
ommend using Ubuntu 20.04 or above) which is capable
of running Docker images according to "Install Docker
Engine on Ubuntu" specification.

A.2.4 Software dependencies

1. Docker

2. WireShark (To install WireShark on Ubuntu use:
apt install wireshark).

3. Resperf (To install Resperf on Ubuntu use: apt

install resperf).

A.2.5 Benchmarks

In order to conduct the experiments described in
CacheFlushAttack paper (Section 5), the setup should
contain a BIND resolver with a new version bind9.18.21
and three authoritative servers (local root authoritative

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 147

https://www.nlnetlabs.nl/projects/nsd/about/
https://github.com/shohamda/CacheFlushSimulator/releases/tag/v1.0
https://docs.docker.com/get-docker/
https://github.com/shohamda/CacheFlushSimulator/releases/tag/v1.0
https://hub.docker.com/r/shohamd/cacheflushsimulator
https://hub.docker.com/r/shohamd/cacheflushsimulator
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://www.wireshark.org/
https://linux.die.net/man/1/resperf

and two authoritative name servers to simulate the “at-
tack.com” and “delegation.attack” authoritative in Fig-
ure 1 in the paper). For CacheFlushNS Attack, a mali-
cious zone file is required for the attacker authoritative
(i.e., “home.lan.forward” for “home.lan” server). The
malicious zone file contains malicious referral list with
1900 NS for each domain, which all delegate the resolver
to a authoritative name server IP address that is non-
responsive to DNS queries through another authorita-
tive server (the local root server can also be used to
delegate the resolver to this authoritative IP address).
For CacheFlushCNAME Attack, a malicious zone file
is required for the attacker authoritative as well (i.e.,
“home.lan.forward_CNAME” for “home.lan” server).
The malicious zone file contains a malicious CNAME
chain of 1 million records, each pointing to the next do-
main.

For instance, if the malicious request from the
client is “attacker0.home.lan”, the malicious re-
ferral response includes a 1,900 list of name
servers. In order to create such referral list the
“/env/nsd_attack_home/home.lan.forward” zone file
needs to have 1900 records per one malicious request.
That is, the malicious zone file includes 1900 records
for the malicious request which leads to a none existent
domain name (e.g., attack0 IN NS auth0.fun.lan. ...
auth1899.fun.lan.) and the “fun.lan” authoritative server,
which does not have any record to the non-responsive
domain name, includes a wildcard record delegating the
resolver to a non responsive IP address (e.g., * IN A
127.0.0.212).

A.3 Set-up

The following tree structure represent relevant folders
and file in the environment with description for each one
of them.

env
client ... (127.0.0.1)
resolver ... (127.0.0.1)
nsd_root ... (127.0.0.2) - Root authoritative

server configuration folder
lan.forward ...
Zone file for SLD server ".lan"
lan.reverse
net.forward ...
Zone file for root server ".net"
net.reverse
nsd.conf ...
Configuration file for NSD,
contains the IP address of the
root server
nsd.db ... NSD DB, for internal NSD

usage

nsd_attack_home ...
(127.0.0.200) “home.lan”
malicious authoritative server
configuration folder, (which
simulates ‘attack.com” server in
Figures 1,2 in the paper)

home.lan.forward ...
Zone file for sld ".home.lan",
with the malicious CacheFlushNS
Attack
home.lan.forward_cname ...
Zone file for sld ".home.lan",
with the malicious
CacheFlushCNAME Attack
home.lan.reverse
nsd.conf ...
Configuration file for NSD,
contains the IP address of the
malicious authoritative server
nsd.db ... NSD DB, for internal NSD usage
named.conf ...
Bind9 configuration, contains
the IP address of the local
environment

nsd_attack_fun ...
(127.0.0.100) “fun.lan”
malicious authoritative server
configuration folder, (which
simulates ‘delegation.attack”
server in Figure 1 in the paper)

fun.lan.forward ...
Zone file for sld ".fun.lan",
with the malicious CacheFlushNS
Attack
fun.lan.reverse
nsd.conf ...
Configuration file for NSD,
contains the IP address of the
malicious authoritative server
nsd.db ... NSD DB, for internal NSD usage
named.conf ...
Bind9 configuration, contains
the IP address of the local
environment

bind9_18_21 ...
Bind source code with
modification to use local root
server
nsd ... NSD source code from https:

//github.com/NLnetLabs/nsd,
this folder relevant in case
of changes to the original NSD
code (In our experiment we didn’t
change this code)

148 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/NLnetLabs/nsd
https://github.com/NLnetLabs/nsd

A.3.1 Installation

1. Pull the docker image from Docker Hub (docker
pull shohamd/cacheflushsimulator:latest).

2. Run the docker image as a container interactively
so you can control the environment (docker
container run --dns 127.0.0.1 --mount type
=bind,source=<local_folder_path>,target=/
app -it shohamd/cacheflushsimulator:latest /

bin/bash).
It is important to use the dns 127.0.0.1 flag so
the environment DNS will be local, changing
the resolv.conf file inside a Docker container
is not enough. Note that we are mounting <

local_folder_path> to the folder /app inside the
docker container so it will be easier to copy files to
and from the docker container.

3. Now you have a terminal inside the environment.

4. In order to open another terminal for the environ-
ment first run sudo docker container ls, look for
cacheflushsimulator docker image name and copy
its <CONTAINER ID>.
Then, run sudo docker exec --privileged -it <

CONTAINER ID> bash.
To open more terminals in the environment, repeat
this process.

To conduct the experiments described in
CacheFlushAttack paper, the setup needs to include a
resolver and at least three authoritative servers.

Environment IP address:

1. 127.0.0.1 – Client

2. 127.0.0.1 – Our own Resolver (The client and re-
solver have the same IP address)

3. 127.0.0.2 – Root authoritative

4. 127.0.0.100 – “fun.lan” TLD authoritative (which
simulates “delegation.attack” server in Figure 1).

5. 127.0.0.200 – “home.lan” TLD authoritative (which
simulates “attack.com” server in Figure 1).

6. 127.0.0.53 – The default resolver – This is used to
install software by connecting to the Internet. DO
NOT USE IT WHILE TESTING!

Authoritative Servers: Our authoritative servers are
located at “/env/nsd_root”, “/env/nsd_attack_home” and
“/env/nsd_attack_fun”. To use them, first configure their
zone files which are located inside their folder and called
“ZONE_NAME.forward”. After changing the zone file
restart the authoritative in order to apply the changes.

Resolver: Go to the resolver implementation folder
“/env/bind9_18_21” and run: make install.

Starting the environment: Open four terminals in the
Docker container: First, turn on the Resolver using the
following commands:

cd /etc
named -g -c /etc/named.conf

If there is a key-error run rndc-confgen -a and try to
start it again. If you are getting the error: “loading con-
figuration: Permission denied”, use the following com-
mands to correct the error:

chmod 777 /usr/local/etc/rndc.key
chmod 777 /usr/local/etc/bind.keys

Now, turn on the Authoritative name servers in a differ-
ent environment terminal: Navigate to the Authoritative
server folders (“/env/nsd_root”, “/env/nsd_attack_home”
and “/env/nsd_attack_fun”.), then run in each authorita-
tive server folder: nsd -c nsd.conf -d -f nsd.db

If there is an error stating that the port is already in
use, run service nsd stop and start it again.

A.3.2 Basic Test

To make sure that the setup is ready and well configured,
the following steps are required:

1. Run another shell inside the docker container us-
ing docker exec -ti <container id> bash and
run tcpdump -i lo -s 65535 -w /app/dump.pcap

2. Query the resolver from within the docker container
dig firewall.fun.lan and make sure that the cor-
rect IP address is received, you should see Address:

127.0.0.207

3. Stop tcpdump (you can use ^C), Open WireShark,
load the file <local_folder_path>/dump.pcap and
filter DNS requests. You should observe the whole
DNS resolution route for the domain name re-
quested (firewall.fun.lan).

(a) firewall.fun.lan query from client to re-
solver (ip 127.0.0.1 to ip 127.0.0.1)

(b) Resolver query the root server (from
127.0.0.1 to 127.0.0.2)

(c) Root server returns the SLD address (from
127.0.0.2 to 127.0.0.1)

(d) Resolver queries the SLD (from 127.0.0.1 to
127.0.0.100)

(e) SLD returns the address for the domain name
(127.0.0.207)

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 149

https://www.wireshark.org/

(f) Resolver return the address to the client
(127.0.0.207)

NOTE: The address firewall.fun.lan is configured in
/env/nsd_attack/fun.lan.forward and performing the
above test ensures that the resolver accesses the authori-
tative through the root server.

A.4 Evaluation workflow
As explained in Appendix A.2.5, in order to test
CacheFlushAttack using DNS-CacheFlushSimulator a
client, a resolver (Bind 9.18.21 which was the version
tested in CacheFlushAttack paper) and three authoritative
servers with pre-configured zone files are required. See
Appendix A.2.5 for detailed example of such zone file
configuration.

A.4.1 Major Claims

(C1): As part of CacheFlushNS, the entire referral list
is stored in the benign cache along with the IP ad-
dresses of the first 20 NS in the list. This is proven
by experiment (E1) below, as described in Section
4 in the paper and whose results are reported in Fig-
ure 1 in the paper. The reproduction (proof) of this
claim does not require significant resources of any
sort, neither compute nor memory.

(C2): As part of CacheFlusCNAME, a chain of 17
records is stored in the benign cache. This is proven
by experiment (E2) below, as described in Section
4 in the paper and whose results are reported in Fig-
ure 2 in the paper. The reproduction (proof) of this
claim does not require significant resources of any
sort, neither compute nor memory.

(C3): Each CacheFlushNS malicious request may insert
at least 60KB into the benign cache (The CAF de-
fined in Section 4 in the paper). This is proven by
experiment (E3) below, as described in Section 5 in
the paper and whose results are reported in Figure 1
in the paper. The reproduction (proof) of this claim
does not require significant resources of any sort,
neither compute nor memory.

(C4): The resolver exhibited a significant performance
degradation in its throughput measurements during
the CacheFlushAttack. This is proven by experi-
ment (E4) below, as described in Section 5 in the
paper and whose results are reported in Figure 8 in
the paper.

(C5): When the benign and the attacker querying rates
are at a constant uniform rate. A cache miss would
occur iff, the benign rate is lower than the flushing
rate (Equation 1 in the paper). This is proven by
experiment (E5) below, as described in Section 5 in

the paper and whose results are reported in Figure 5
in the paper.

(C6): All benign domains with lower rate than the border
rate, will suffer with high probability cache miss
under attack rate (Equation 2 in the paper) This is
proven by experiment (E6) below, as described in
Section 5 in the paper and whose results are reported
in Figure 7 in the paper.

(C7): The resolver average cache miss percentage can
be calculated for a given distribution (Equation 3 in
the paper) This is proven by experiment (E7) below,
as described in Section 5 in the paper and whose
results are reported in Table 1 in the paper.

(C8): The proposed CacheFlushAttack mitigation
greatly reduce the attacks effectiveness (see Section
6 in the paper). This is proven by experiment (E8)
below.

A.4.2 Experiments

The paper’s main claim is that a single malicious DNS
query can store a significant amount of data in the re-
solver’s benign cache. Claims 1-3, which are the core
claims of the paper, can be precisely reproduced using
the lab environment provided.

Statements 4-7 in the paper refer to the resolver’s
throughput during the attack. The resolver’s throughput
is affected by several factors, including the size and type
of the machine on which it is installed, its distance to
authoritative name servers (latency), available resources,
the size of the resolver’s queue, etc.

The Docker environment, which is a simulated lab
setup on one machine, has internal communication be-
tween clients, resolvers, and authoritative servers. This
setup reduces latency and minimizes the load on the
resolver. This is because TCP communications are ex-
tremely fast and efficient, as the resolver does not need
to maintain a state for each malicious DNS query. Conse-
quently, the throughput results in this environment differ
from those in the paper.

Experiment 4 demonstrates a significant decrease in re-
solver throughput, closely matching the results observed
in the cloud environment presented in the paper. Experi-
ment 5 shows how benign domains are removed from the
cache when attack domains flush it. Experiments 6 and
7 cannot be accurately reproduced because they require
continuous high-load conditions on the resolver, which
the lab environment does not simulate.

Claim 8 reproduces successfully, as the resolver’s
throughput does not decrease after mitigation.
(E1): Fill the benign cache with one CacheFlushNS do-

main. (5 human minutes + 1 compute minutes):
Preparation: First, make sure that your resolver is
configured to use Bind9.18.21 resolver (first run: cd

150 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

/env/bind9_18_21 and then run: make install).
Turn on the resolver with the following commands:
cd /etc

named -g -c /etc/named.conf

In addition, the malicious referral response
should include a long list of name servers,
in order to create such referral list the “/en-
v/nsd_attack_home/home.lan.forward” zone file
needs to have 1900 records per one malicious
request. For example, you can create one mali-
cious request using a short script we provided (/en-
v/reproduction/CacheFlushNS_zone_file.py) that
generates the malicious request configuration.
For your convenience we uploaded our “/en-
v/nsd_attack_home/home.lan.forward” zone file
which includes our attack.
Execution: Reload the cache using rndc reload

. Query the resolver with a malicious query (e.g.,
“dig attack0.home.lan”).
Results: Dump the cache using rndc dumpdb -

cache. Open the Cache file using less /etc/bind/
named_dump.db and see the “attack0.home.lan” do-
main with 1900 NS referral list along with the IP
addresses of the first 20 NS in the list at the end of
the cache file.

(E2): Fill the benign cache with one CacheFlushC-
NAME domain. (5 human minutes + 1 compute
minutes):
Preparation: Turn on the resolver with the
following command
named -g -c /etc/named.conf. In addition,
the malicious referral response should in-
clude a long CNAME chain, in order
to create such CNAME chain the “/en-
v/nsd_attack_home/home.lan.forward_cname”
zone file needs to have a long chain per one
malicious request. For example, you can cre-
ate one malicious request using a short script
we provide (/env/reproduction/CacheFlushC-
NAME_zone_file.py) that generates the malicious
request configuration and copy its output into the
zone file. For your convenience we uploaded our
“/env/nsd_attack_home/home.lan.forward_cname”
zone file which includes our attack. You can change
the authoritative configuration to use this zone
file or copy it to the configured zone file name
(home.lan.forward).
Execution: Query the resolver with a malicious
query (e.g., “dig attack1.home.lan”).
Results: Dump the cache using rndc dumpdb -

cache. Open the Cache file using less /etc/bind/
named_dump.db and a CNAME chain of 17 domains
starting with the name “attack1.home.lan” is shown
in the benign part of the cache file.

(E3): Insert at least 60KB into the benign cache (the
CAF). (5 human minutes + 1 compute minutes):
Preparation: Same as for (E1)
Execution: Same as for (E1)
Results: Check the cache size using ls -l /etc/

bind/named_dump.db before and after querying the
malicious domain. Cache size has been increased
by 60KB. Reminder: the increase depends on the
length of the domain names.

Note: Since this is a lab environment rather than the
cloud environment described in the paper, the
outcomes of the following experiments (E4, E5, E6,
E7 and E8) may differ as there are no delays and all
virtual machines run on a single physical machine.

(E4): Resolver throughput. (40 human minutes + 20
compute minutes):
Preparation: Turn on the resolver with the
following command
named -g -c /etc/named.conf. In addi-
tion, configure the authoritative name
servers zone files, for CacheFlushNS use
“/env/nsd_attack_home/home.lan.forward”
and for CacheFlushCNAME use “/en-
v/nsd_attack_home/home.lan.forward_cname”. In
“nsd” folders, run the authoritative name servers
using the command: nsd -c nsd.conf -d -f nsd.

db. You can create a malicious domains file and a
benign file using a short script we provided (/en-
v/reproduction/Resperf_Benign_Domains.py and
/env/reproduction/Resperf_Attack_Domains.py).
For your convenience we uploaded an attack
file at: “/env/reproduction/Attack_domains.txt”
and a benign file at: “/env/reproduction/Be-
nign_domains.txt”. To change the resolver cache
size (“max-cache-size <size><k/m/g>”) in the
resolver configuration, use the following command:
vi /etc/named.conf

Execution: Run the benign client without the
attacker client:
resperf -d /env/reproduction/Benign_domains.
txt -s 127.0.0.1 -v -R -C 1000 -q 640000 -r

100 After completing this run, save the “Maximum
throughput” value from the resperf statistics results,
restart the resolver, and execute the following steps:
Open two clients, at the attacker client run:
resperf -d /env/reproduction/Attack_domains.
txt -s 127.0.0.1 -v -m <attack_rate> -C 1000

-q 640000 -r 0 -c 100 -R. At the benign client
run:
resperf -d /env/reproduction/Benign_domains.
txt -s 127.0.0.1 -v -R -C 1000 -q 640000 -r

100

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 151

Results: Compare between the “Maximum
throughput” in the benign client resperf statistics
results.

(E5): Equation 1. (40 human minutes + 20 compute
minutes):
Preparation: In addition to the preparations
described in (E4), both clients and authoritative
name servers should have a WireShark installed. Al-
ternatively, tshark can be used for more streamlined
analysis, facilitating straightforward data parsing
and processing with the following command:
(docker container run --dns 127.0.0.1 --cap

-add=NET_ADMIN --mount type=bind,source=<
local_folder_path>,target=/app -it shohamd/

cacheflushsimulator:latest /bin/bash). Create
a benign file with only one domain, you can
use the short script we provided (/env/repro-
duction/Resperf_Benign_Domains.py) by set
DOMAINS_NUM=1. To change the resolver cache
size (“max-cache-size <size><k/m/g>”) in the
resolver configuration, use the following command:
vi /etc/named.conf

Execution: Record the benign packets using this
command:
tshark -i any -T fields -e frame.number

-e frame.time -e ip.src -e ip.dst -e tcp

.srcport -e tcp.dstport -e udp.srcport

-e udp.dstport -e dns.id -e dns.qry.name

-e dns.flags.rcode > /env/reproduction/
tshark_benign_client.txt

At the attacker client run:
resperf -d /env/reproduction/Attack_domains.
txt -s 127.0.0.1 -v -m <attack_rate> -C 1000

-q 640000 -r 0 -c 100 -R.
and at the benign client run:
resperf -d /env/reproduction/Benign_domains.
txt -s 127.0.0.1 -v -m <benign_rate> -C 1000

-q 640000 -r 0 -c 100 -R.
Results: Analyze the output files using the script in
“/env/reproduction/CacheMiss.py”. There is a cache
miss for each domain included in the script result.

(E6): Equation 2. (40 human minutes + 20 compute
minutes):
Preparation: Same as (E5)
Execution: Same as (E5). Using the “University-
Domain.txt” file for the benign client. using this
command:
resperf -d /env/reproduction/
University_domains.txt -s 127.0.0.1 -v -

R -C 1000 -q 640000 -r 100

Results: Same as (E5)
(E7): Equation 3. (40 human minutes + 20 compute

minutes):
Preparation: Same as (E6)

Execution: Same as (E6).
Results: The last row in the “/env/reproduction/Ca-
cheMiss.py” output is the average.

(E8): Mitigation. (40 human minutes + 20 compute min-
utes):
Preparation: First, make sure that your re-
solver is configured to use Bind9.18.21 resolver
(first run: cd /env/bind9_18_21 and then run:
make install). Turn on the resolver with the
following command: named -g -c /etc/named

.conf. For CacheFlushNS attack, the mitigate
referral response should include 20 records per
one malicious request. You can create such a zone
file using a short script we provided (/env/repro-
duction/CacheFlushNS_mitigation.py) For your
convenience we uploaded an example in “/en-
v/nsd_attack_home/home.lan.forward_NS_mitigation”.
For CacheFlushCNAME attack, the mitigation
response should include a CNAME chain
with a length of 8 for each malicious re-
quest. You can create such a zone file using
a short script we provided (/env/reproduction/-
CacheFlushCNAME_mitigation.py) For your
convenience we uploaded an example in “/en-
v/nsd_attack_home/home.lan.forward_CNAME_mitigation”.
To change the resolver cache size (“max-cache-size
<size><k/m/g>”) in the resolver configuration, use
the following command: vi /etc/named.conf

Execution: Same as (E5)
Results: Same as (E4) and (E7).

A.5 Notes on Reusability

The simulator above was built based on a simulator that
was created for NRDelegationAttack [1], and it was mod-
ified to meet our needs. Those who conduct research
on DNS can use this simulator as it contains all of the
necessary components, and it can be easily modified by
adding authoritative name servers, updating resolver ver-
sions, modifying authoritative zone files, and modifying
all component configurations.

A.6 Version
Based on the LaTeX template for Artifact Evalua-
tion V20231005. Submission, reviewing and badging
methodology followed for the evaluation of this artifact
can be found at https://secartifacts.github.io/
usenixsec2024/.

References
[1] AFEK, Y., BREMLER-BARR, A., AND STAJNROD, S. Nrdelega-

tionattack: Complexity ddos attack on DNS recursive resolvers. In
32nd USENIX Security Symposium, USENIX Security 2023, Ana-

152 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://www.wireshark.org/
https://secartifacts.github.io/usenixsec2024/
https://secartifacts.github.io/usenixsec2024/

heim, CA, USA, August 9-11, 2023 (2023), J. A. Calandrino and
C. Troncoso, Eds., USENIX Association, pp. 3187–3204.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 153

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

