
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Terrapin Attack: Breaking SSH Channel Integrity
By Sequence Number Manipulation

Fabian Bäumer, Marcus Brinkmann, and Jörg Schwenk, Ruhr University Bochum
https://www.usenix.org/conference/usenixsecurity24/presentation/bäumer

USENIX Security ’24 Artifact Appendix: Terrapin Attack: Breaking SSH
Channel Integrity By Sequence Number Manipulation

Fabian Bäumer
Ruhr University Bochum

Marcus Brinkmann
Ruhr University Bochum

Jörg Schwenk
Ruhr University Bochum

A Artifact Appendix

A.1 Abstract

This document describes the artifacts to the USENIX Secu-
rity ’24 Publication Terrapin Attack: Breaking SSH Channel
Integrity By Sequence Number Manipulation.

Using these instructions, the evaluations of Sequence Num-
ber Manipulation (Sect. 4.1), Extension Downgrade Attack
(Sect. 5.2), Rogue Extension Attack (Sect. 6.1) and Rogue
Session Attack (Sect. 6.2) can be reproduced.

Also, the aggregation scripts for the internet scans are avail-
able and can be tested on a small subset of the samples.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The configuration uses the host network to allow (optional)
monitoring of the attack using Wireshark or other network
packet analysis tools on the loopback interface. During the
runtime of the evaluation, this makes the tested SSH server
and proof of concept (PoC) available to all systems with ac-
cess to the local network (TCP bind to 0.0.0.0, ports 2200
and 2201). Reviewers should take care to isolate the test sys-
tem from the internet, for example using a firewall.

A.2.2 How to access

The artifacts are publically available at https://github.c
om/RUB-NDS/Terrapin-Artifacts/tree/9907c80fa7e4
184a29ceac352947ea51a49dce6a.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

• Linux or MacOS.1 No specific distribution or version
is required. We used Manjaro (rolling release in March
2024) and MacOS 14.4 (Sonoma).

1 Windows WSL might work but is untested and not supported.

• Bash shell interpreter (typically included in the above).
No specific version is required. We used bash 5.2.26 and
3.2.57.

• Docker Engine or Docker Desktop. While Docker En-
gine suffices and is typically included in Linux distribu-
tions, Docker Desktop is a separate install on MacOS.
No specific version is required. We used Docker En-
gine 25.0.3 and Docker Desktop 4.28.0.

• Wireshark (optional), for network packet analysis.

A.2.5 Benchmarks

None.

A.3 Set-up
All required Docker images are built on demand when the
evaluation scripts are executed, so no setup is required.

The TCP ports 2200 and 2201 should be free and available.
This is the case by default on many systems. Some systems
might require a configuration of the firewall to allow the test
servers to bind 0.0.0.0 on these ports. On some systems, the
firewall will show a pop-up dialog when the first server starts
up, requiring manual confirmation.

A.3.1 Installation

Linux: Install the Docker engine under a supported Linux
distribution by following the instructions available at https:
//docs.docker.com/engine/install/.

MacOS: Install Docker Desktop available at https://ww
w.docker.com/products/docker-desktop/.

A.3.2 Basic Test

The following scripts build all required Docker images and
can be used as a basic functionality test. It will also be called
by all evaluation scripts, so this step is optional.

1 $ impl/build.sh
2 [+] Building 2.0s (15/15) FINISHED
3 [...]
4 => => naming to docker.io/terrapin-artifacts/openssh-

↪→ server:9.4p1

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 459

https://github.com/RUB-NDS/Terrapin-Artifacts/tree/9907c80fa7e4184a29ceac352947ea51a49dce6a
https://github.com/RUB-NDS/Terrapin-Artifacts/tree/9907c80fa7e4184a29ceac352947ea51a49dce6a
https://github.com/RUB-NDS/Terrapin-Artifacts/tree/9907c80fa7e4184a29ceac352947ea51a49dce6a
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/

Attack PuT
TY

0.7
9

Ope
nS

SH
9.4

p1

Ope
nS

SH
9.5

p1

Drop
be

ar
20

22
.83

Asy
nc

SSH
2.1

3.2

lib
ssh

0.1
0.5

C1 RcvIncrease ✓ - ✓ ✓ ✓ ✓
C1 RcvDecrease ✓ - R ✓ T T
C1 SndIncrease ✓ - R U T T
C1 SndDecrease ✓ - R U T T

C2 ChaCha-Poly ✓ ✓ ✓ - - -
C2 CBC-EtM

- UNKNOWN 0.0300 0.0003 0.0003 - - -
- PING 0.8383 - 0.0074 - - -

C3 Rogue Extension - - - - ✓ -

C4 Rogue Session - - - - ✓ -

- Not evaluated.
✓ Attack succeeds.
R Client terminates the connection (rollover).
T Client terminates the connection (timeout).
U Client terminates the connection (UNKNOWN message).

Table 1: Expected outcomes for attacks against clients

5 [...]
6 $ pocs/build.sh
7 [...]

The output shows the progress on downloading base images
and building the evaluation images. If there is no output, all
docker images are already built.

A.4 Evaluation workflow

A.4.1 Major Claims

We evaluated our attacks against several clients using an
OpenSSH 9.5p1 (C1, C2) or AsyncSSH 2.13.2 (C3, C4) server.
For an overview of the expected outcomes, see also Table 1.
(C1): Sequence Number Manipulation (Sect. 4.1). We ver-

ified all techniques successfully against PuTTY 0.79. Ad-
ditionally, our experiments show that OpenSSH 9.5p1
recognizes a rollover of sequence numbers and termi-
nates the connection, thus not affected by any technique
but RcvIncrease. AsyncSSH 2.13.2 and libssh 0.10.5 al-
low for RcvIncrease but terminate the connection due to
handshake timeouts before any advanced technique con-
cludes. Dropbear 2022.83 disconnects on UNKNOWN
messages instead of responding with UNIMPLEMENTED
but allows Rcv to roll over, therefore being affected by
RcvIncrease and RcvDecrease only.

(C2): Extension Downgrade (Sect. 5.2). We successfully
evaluated the attack in 10,000 trials on ChaCha20-
Poly1305 and CBC-EtM against OpenSSH 9.5p1 and
PuTTY 0.79 clients, connecting to OpenSSH 9.4p1

Shortcut Description

q Quit
h Help
S Wrap long lines on/off
/ Search
:n Next file
:p Previous file

Table 2: Common keyboard shortcuts of less.

(UNKNOWN only) and 9.5p1. For CBC-EtM, our suc-
cess rate in practice was 0.0003 (OpenSSH) resp. 0.0300
(PuTTY), improved to 0.0074 (OpenSSH) resp. 0.8383
(PuTTY) when sending PING instead of UNKNOWN.

(C3): Rogue Extension Negotiation (Sect. 6.1). We success-
fully evaluated the attack against AsyncSSH 2.13.2 as a
client, connecting to AsyncSSH 2.13.2.

(C4): Rogue Session Attack (Sect. 6.2). We successfully
evaluated the attack against AsyncSSH 2.13.2 as a server,
connecting to AsyncSSH 2.13.2.

Internet Scan (Sect. 7) We are also including sample data,
aggregated data, and evaluation scripts on the Internet scan.

A.4.2 Experiments

The evaluation scripts (in the directory scripts) are inter-
active and self-describing. Some of them have several out-
put files. In that case, the files (as described below) are all
opened in the text file viewer less at the same time, requir-
ing keyboard-based navigation to see all of the results. As a
gentle introduction to less, see Table 2 for a quick reference
of useful keyboard shortcuts.
(E1): test-sqn-manipulation.sh [≈ 1 − 3 hours per

client/variant combination]: Run one of the four se-
quence number manipulation attacks to prove (C1).
RcvIncrease is very fast; the others can be slow.
Execution: After starting the script, choose a client, one
of the four attack options, and input the manipulation
offset N. To prove (C1), input N = 1.
Results: The attack is complete once the progress bar
fills. After that, there will be an error message because
the secure channel is broken, as the script does not im-
plement any prefix truncation to complete the attack.

(E2a): test-ext-downgrade.sh [≈ 1 minute]: Run the ex-
tension downgrade attack to prove (C2) for ChaCha20-
Poly1305.
Execution: After starting the script, choose an arbitrary
client and server combination. Afterward, choose attack
variant 1 to select ChaCha20-Poly1305.
Results: The script will conclude by opening the fol-
lowing files simultaneously in less:

1. diff of files 3 and 4

460 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

2. diff of files 5 and 6
3. Server log (unmodified connection)
4. Server log (tampered connection)
5. Client log (unmodified connection)
6. Client log (tampered connection)
7. PoC proxy log

Navigate to the second file. The file compares the out-
put of the selected SSH client in the case of an ex-
tension downgrade attack to the output of an unmod-
ified connection. The diff will indicate the presence of
SSH_MSG_EXT_INFO and absence of SSH_MSG_IGNORE
in the unmodified connection only, thus proving (C2) for
ChaCha20-Poly1305.

(E2b): bench-ext-downgrade.sh [≈ 1−2 hours per clien-
t/variant combination]: Run the extension downgrade
attack 10,000 times to prove (C2) for CBC-EtM
(UNKNOWN and PING).
Execution: After starting the script, choose between
UNKNOWN and PING variants of the attack, then select
between OpenSSH and PuTTY client. A progress bar
will show the current trial.
Results: After finishing all trial connections, the num-
ber of successful trial runs will be outputted to the con-
sole. The relative success rate will be close to the values
claimed in (C2), thus proving the functionality and suc-
cess probability claims in (C2) in the case of CBC-EtM.

(E3): test-asyncssh-rogue-ext-negotiation.sh [≈ 1
minute]: Run rogue extension attack to prove (C3).
Execution: The attack is automatic.
Results: The script will conclude by opening a set of
seven files in less. Refer to the results of (E2a) for
a list of files opened. Navigate to the second file. The
diff will indicate the presence of the server-sig-algs
extension with an attacker-chosen value in the tampered
connection, thus proving (C3).

(E4): test-asyncssh-rogue-session-attack.sh [≈ 1
minute]: Run the rogue session attack to prove (C4).
Execution: The attack is automatic.
Results: The script will conclude by opening a set of
seven files in less. Refer to the results of (E2a) for a list
of files opened. Navigate to the first file. The diff will
indicate successful authentication for the victim (unmod-
ified connection) and attacker (tampered connection),
respectively. Afterward, navigate to the second file and
examine the output of each client connection at the end
of the file. In the unmodified connection, the server will
respond with the username victim, while in the attacked
connection, the server will respond with the username
attacker. This proves (C4).

(E5): scan_util.py [≈ 1 minute]: Run the script to aggre-
gate a set of zgrab2 scan results. Note that this script
is in the sub-directory scans. Without the full data, we
can not prove the statistics in our paper. However, we
can demonstrate how we aggregated the scan results and

classified the algorithms.
Execution: Build the docker image by running the fol-
lowing command inside the scans directory:

1 $ docker build . -t terrapin-artifacts/scan-util

Now aggregate the sample.json file which can be
found in the sample sub-directory by running the fol-
lowing command inside the scans directory:

1 $ docker run --rm -v ./sample:/input terrapin-
↪→ artifacts/scan-util evaluate -i /input/
↪→ sample.json -o /input/sample-ae.acc.json

Results: The aggregation result will become avail-
able as sample-ae.acc.json inside the sample sub-
directory. The total number of clients, status and ver-
sion distribution, offered key exchange algorithms, com-
ment strings, and other evaluation criteria will match the
data present within the sample.json file. Also, there
is no difference between the sample-ae.acc.json and
sample.acc.json files (aside from the evaluation start
and end timestamps).

A.4.3 Troubleshooting

Address already in use. If an attack script is interrupted,
some docker containers may not be cleaned up properly, block-
ing the server port permanently or for the duration of TIME-
WAIT (1 min. on Linux, 30 sec. on MacOS).

Please follow these steps in this case:

1. Run the script cleanup-system.sh. This will stop and
remove any pending Docker containers.

2. If the problem persists, wait for up to 4 minutes.

System Reset. To fully clean up the Docker containers and
images, you can run cleanup-system.sh --full.

A.5 Notes on Reusability
The proof-of-concept code (pocs/) has been kept short for
simplicity and is thus not modularized for reusability. How-
ever, the artifacts may serve as a template for other MitM
attacks on network protocols like SSH.

The Docker files for the evaluated SSH implementations
(impl/) may be generally useful in other research on SSH.

Improvements to Wireshark for better dissection of SSH
protocols (not included in these artifacts) have been submitted
and accepted upstream and will be available in a future version
of Wireshark.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 461

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments
	Troubleshooting

	Notes on Reusability
	Version

