
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Web Platform Threats: Automated Detection
of Web Security Issues With WPT

Pedro Bernardo and Lorenzo Veronese, TU Wien; Valentino Dalla Valle and
Stefano Calzavara, Università Ca’ Foscari Venezia; Marco Squarcina, TU Wien;

Pedro Adão, Instituto Superior Técnico, Universidade de Lisboa, and
Instituto de Telecomunicações; Matteo Maffei, TU Wien

https://www.usenix.org/conference/usenixsecurity24/presentation/bernardo

USENIX Security ’24 Artifact Appendix: Web Platform Threats:
Automated Detection of Web Security Issues With WPT

Pedro Bernardo*†, Lorenzo Veronese*†, Valentino Dalla Valle‡,
Stefano Calzavara‡, Marco Squarcina†, Pedro Adão§, Matteo Maffei†

† TU Wien
‡ Università Ca’ Foscari Venezia

§ Instituto Superior Técnico, Universidade de Lisboa, and Instituto de Telecomunicações

A Artifact Appendix

A.1 Abstract
We present a practical framework to formally and automati-
cally detect security flaws in client-side security mechanisms.
In particular, we leverage Web Platform Tests (WPT), a popu-
lar cross-browser test suite, to automatically collect browser
execution traces and match them against Web invariants, i.e.,
intended security properties of Web mechanisms expressed
in first-order logic. We demonstrate the effectiveness of our
approach by validating 9 invariants against the WPT test suite,
discovering violations with clear security implications in 104
tests for Firefox, Chromium and Safari. This artifact includes
the source code of all the components of the trace verification
pipeline and the execution traces and outputs for all exper-
iments presented in the paper. In particular, all violations
discovered in the WPT tests (Sec 5.1) and the new testing
suite used to assess the impact of the comprehensiveness of
tests on the pipeline results (Sec 5.3). To support the indepen-
dent validation of the results, the artifact includes scripts to
re-execute the pipeline on the violating tests.

A.2 Description & Requirements
We provide in this section all the information necessary to
download the artifact and recreate the same experimental
setup used to run the trace verification pipeline.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is available at the following stable URL:
https://github.com/SecPriv/
web-platform-threats/tree/
201bda9cca58064e61c3d13cae592e4688585f94

*Shared first authorship

A.2.3 Hardware dependencies

The artifact does not require any specific hardware features.
As the execution of the pipeline includes running a browser
and the Z3 theorem prover, we recommend using a computer
with at least 8 CPU cores/threads and 8 GB of RAM. Further-
more, we suggest having at least 10GB of disk space as the
required docker images have a size of approximately 5GB
and the browser execution may create additional temporary
files.

A.2.4 Software dependencies

All software dependencies of the artifact are packaged as
Docker containers. Hence, a working Docker Engine installa-
tion is required to test the artifact. Additionally, running the
scripts to reproduce the experiments requires a recent version
of bash, python and GNU make. All the components of the
artifact have been tested on Linux.

For licensing reasons, the artifact does not include a
copy of the MacOS virtual machine containing Safari;
thus, the experiments in A.4.2 use the traces collected
for the paper. However, the repository includes a guide
(runner/safari/README.md) for installing the required
components on an existing MacOS installation to obtain new
execution traces.

A.2.5 Benchmarks

The repository of the artifact provides, in the results folder,
the execution traces and the verification results for all experi-
ments where a violation was discovered.

A.3 Set-up

We describe in the following the steps required for the instal-
lation and the basic functionality test of the artifact.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 53

https://github.com/SecPriv/web-platform-threats/tree/201bda9cca58064e61c3d13cae592e4688585f94
https://github.com/SecPriv/web-platform-threats/tree/201bda9cca58064e61c3d13cae592e4688585f94
https://github.com/SecPriv/web-platform-threats/tree/201bda9cca58064e61c3d13cae592e4688585f94

A.3.1 Installation

The environment to run the trace verification pipeline is pack-
aged into three Docker containers that can be downloaded
using the wpt-check script or the make command as follows.

./wpt-check pull # or make pull

Note that the wpt-check command requires the current user
to be in the docker group. Refer to the README.md file in
the root folder of the repository for additional instructions,
e.g., how to build from sources, and a description of each
container.

A.3.2 Basic Test

The functionality of the pipeline can be checked by executing
it on one WPT test:

./wpt-check run firefox ’/cookies/secure/set-from-dom.https.sub.
html’

The output of the script should include the WPT run output,
the parsed trace and the Z3 output. In particular, for each
invariant and trace, it should print unsat as in the following.

(error "line 1 column 28: sort already defined List")
===== trace1 =====
host-invariant
unsat
(error "line 1 column 28: sort already defined List")
===== trace1 =====
http-only-invariant
unsat
(error "line 1 column 28: sort already defined List")
===== trace1 =====
samesite-cookies-confidentiality
unsat
...

Note that the error message printed by z3 refers to the fact that
the solver already provides a built-in List datatype, which
we define to retain compatibility with multiple solvers. The
error does not have any impact on the solutions as the built-in
datatype is identical to our definition.

The tests may generate multiple traces if they are composed
of multiple sub-tests: the parsed trace printed by the SMT-LIB
generator includes the name of each test, as exemplified in
the following output:

% ’secure’ cookie visible in HTTP request
1710759552459=’net-request’("3","http://web-platform.test:8000/

testharness_runner.html",’M-GET’,’type-main_frame’,"http://
web-platform.test:8000/testharness_runner.html",some("http://
web-platform.test:8000/testharness_runner.html"),nil,nil,’
request-headers’(none,none),none)

...

A.4 Evaluation workflow

We describe below the steps to reproduce and validate the
results of the paper.

A.4.1 Major Claims

(C1): We show the effectiveness of our trace verification
pipeline by verifying our 9 invariants against the WPT
test suite, discovering violations with clear security im-
plications in 104 tests (Sec. 5.1). These violation can be
validated by experiment (E1), which verifies that all SAT
results in Table 2 can be reproduced.

(C2): We show that employing a more comprehensive test
suite has the potential to identify additional violations;
while our focus for this paper is WPT, our pipeline can
be applied to alternative testing suites, potentially im-
proving its efficacy (Sec. 5.3). The new violations can
be validated by experiment (E2), which runs the pipeline
on the testing suite presented in Table 5, verifying that
the discovered SAT results are reproducible.

A.4.2 Experiments

(E1): WPT violations. This set of experiments validates the
SAT results of Table 2 for each browser by executing the
runner and the Z3 solver for each violation. We split the
experiment into 3 sub-experiments, one for each browser,
that require the same preparation and execution steps.
How to: From the results/wpt folder, execute the
check-result.py script. Refer to (E1.A, E1.B, E1.C)
for the required parameters. The script executes
wpt-check for all SAT results, displaying for each
browser the number of tests and the successfully val-
idated results (i.e., the SAT that are still SAT af-
ter re-executing the pipeline). The optional argument
--no-runner will not run a new instance of Fire-
fox/Chromium and use the trace collected for the pa-
per experiments. Refer to the README.md file in the
results/wpt folder for additional information.
Preparation: The experiment requires a working instal-
lation of the pipeline Docker containers obtained after
executing the steps described in A.3.
Results: After executing all tests, the script will output
for each invariant its name and the number of SAT results
that could be reproduced as exemplified in the following.

blockable-mixed-content-filtered: 21/21 SAT

These results match the corresponding (browser, invari-
ant) cell of Table 2.

(E1.A): WPT violations (Firefox) [5 human-minutes + 70
compute-minutes].
Execution: Execute the following command in the
results/wpt directory.

./check-results.py -b firefox --no-runner

(E1.B): WPT violations (Chromium) [5 human-minutes + 50
compute-minutes].
Execution: Execute the following command in the
results/wpt directory.

54 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

./check-results.py -b chromium --no-runner

Note that the execution of the Chromium browser (with-
out --no-runner) is not always deterministic and may
be affected by the available resources, potentially re-
sulting in unexpected output. The check-results.py
script implements a retry mechanism that re-executes
the runner up to 20 times. In case the experiment fails
we suggest re-running the check-results.py script.

(E1.C): WPT violations (Safari) [5 human-minutes + 5
compute-minutes].
Execution: Execute the following command in the
results/wpt directory.

./check-results.py -b Safari

The script will run Z3 on the traces collected for the
paper experiments. Refer to the README.md file in the
runner/safari folder for instructions on how to run
an instrumented Safari and obtain new JSON execu-
tion traces. These traces can be validated using the
./wpt-check verify command.

(E2): Comprehensiveness of Tests: additional tests [5 human-
minutes + 10 compute-minutes]. This experiment vali-
dates the SAT results of Table 5 by executing the runner
and the Z3 solver for each violation.
How to: From the results/beyond_wpt folder, exe-
cute the check-results.py script. Similarly to test
(E1), the script executes wpt-check verify on the
traces obtained by running each test, displaying the
solver results. Refer to the README.md file in the
results/beyond_wpt folder of the repository for ad-
ditional information.
Preparation: The experiment requires a working instal-
lation of the pipeline Docker containers obtained after
executing the steps described in A.3.
Execution: Execute the following command in the
results/beyond_wpt directory.

./check-results.py

Results: After executing all tests, the script will output
for each browser and invariant its name, the expected
result and the obtained result as in the following.

[webspec_host_frames - firefox] host-invariant expected: "sat
" got: "sat"

Each line corresponds to a non-empty cell (test, browser,
invariant) of Table 5.

A.5 Notes on Reusability
Updating Browser or WPT versions. The trace verifica-
tion pipeline presented in this paper can be applied to newer
versions of the browsers or WPT by updating the respective
lines of the runner/Dockerfile file. In particular,

• Commenting line 24 of the Dockerfile and rebuilding
the container will make wpt download the latest stable
version of Firefox;

• removing -revision 1185653 from line 26 will make
wpt download the latest stable version of Chromium.

• The WPT repository can be updated by changing the
URL passed to start.sh in line 18 of the Docker-
file. Note that some modifications are required for
the instrumentation to detect the start and end of each
test. These changes can be obtained by comparing the
wpt-security branch with the upstream main.

Adding new invariants. New invariants can be added to the
trace_matching/trace_matching.smt file as functions
(define-fun) from Trace to Bool and are automatically
added to the checks for each parsed execution trace by the
SMT-LIB generator.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 55

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

