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A Artifact Appendix

A.1 Abstract

Trusted Execution Environments form the backbone of mo-
bile device security architectures. The GlobalPlatform Inter-
nal Core API is the de-facto standard that unites the frag-
mented landscape of real-world implementations, providing
compati- bility between different TEEs. Unfortunately, our
research reveals that this API standard is prone to a design
weakness. Manifestations of this weakness result in critical
type-confusion bugs in real-world user-space applications
of the TEE, called Trusted Applications (TAs). At its core,
the design weakness consists of a fail-open design leaving
an optional type check for untrusted data to TA devel- op-
ers. The API does not mandate this easily forgettable check
that in most cases results in arbitrary read-and-write exploita-
tion primitives. To detect instances of these type-confusion
bugs, we design and implement GPCheck, a static binary anal-
ysis system capable of vetting real-world TAs. We employ
GPCheck to analyze 14,777 TAs deployed on widely used
TEEs to investigate the prevalence of the issue. We recon-
firm known bugs that fit this pattern and discover unknown
instances of the issue in the wild. In total, we confirmed 9
known bugs, found 10 instances of silently-fixed bugs, and
discovered a surprising amount of 14 critical 0-day vulnerabil-
ities using our GPCheck prototype. Our findings affect mobile
devices currently in use by billions of users.

This artifact aims to demonstrate GPCheck’s capabilities
to detect the above mentioned type-confusion bugs.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

GPCheck is fully dockerized and should not harm the com-
puter of the artifact evaluator.

A.2.2 How to access

The code and documentation are available on GitHub:
https://github.com/HexHive/GlobalConfusion/
tree/sec-ae.

A.2.3 Hardware dependencies

We do not have special hardware requirements. Our analyzer
can be configured with a longer timeout to compensate for
slow hardware.

A.2.4 Software dependencies

We tested our setup on Ubuntu 22.04.2 using Docker version
23.0.1 and the docker-compose plugin version 1.29.2.

A.2.5 Benchmarks

Our dataset consists of proprietary TA blobs. Due to intellec-
tual property concerns, we cannot publicly share these blobs.
For research purposes, we will share our dataset on demand.

A.3 Set-up
A.3.1 Installation

Follow the SETUP steps in our README.md.

A.3.2 Basic Test

Analyze the two pre-compiled examples mentioned in
HOWTO in our README.md.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): GPCheck can detect type-confusion bugs resulting
from the design weakness of the GP TEE Core Inter-
nal API in closed-source TAs (Table 3 and Table 4).

(C2): The type-confusion vulnerability resulting from the
design weakness of the GP TEE Core Internal API is
widely prevalent in the Android mobile device ecosys-
tem.

A.4.2 Experiments

(E1): [GP Function and Type-Confusion Bug Detection] [30
human-minutes + 2 compute-hours]:
In this experiment, we provide the datasest from Table
3 and Table 4 to demonstrate GPCheck’s capability to

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium    349

https://github.com/HexHive/GlobalConfusion/tree/sec-ae
https://github.com/HexHive/GlobalConfusion/tree/sec-ae


detect GP function in stripped binaries, and its type-
confusion detection on a ground-truth dataset.
Preparation: Download the GP function detection
ground-truth dataset and the GP type-confusion ground-
truth dataset.
Execution: Run GPCheck as described on the
README.md on these datasets. Make sure to select the
correct TEE to trigger the correct function detection
logic. For instance oppo_kinibi for TAs on Oppo
Kinibi, mitee for MiTEE TAs, and qualcomm for QSEE
TAs.
Results: The function detection for the TAs in the GP
function detection ground-truth dataset should resemble
the results in Table 3. When a TA is not GP-compliant,
the report should say “not GP compliant”.
The GP type-confusion detection for the GP type-
confusion ground-truth dataset should resemble the re-
sults shown in Table 4. The results provide evidence for
C1.

(E2): [TA Type-Confusion Vulnerabilities] [30 human-
minutes + 2 compute-hours]:
In total, we found 33 unique vulnerable TAs. This exper-
iment serves to confirm these vulnerable TAs.
Preparation: Download the vulnerable TAs dataset.
Execution: Run GPCheck as described on the
README.md on this dataset.
Results: GPCheck should report all of these TAs to be
vulnerable. These TAs are distributed across 5 reputable
OEMs and affect 54 recent mobile devices employing the
5 dominant TEE implementation on the market. Given
the wide spread of the type-confusion bug, we conclude
that it is widely prevalent in the Android mobile ecosys-
tem (C2).

A.5 Notes on Reusability
Our analyzer can be used to detect GP type-confusion bugs
in future proprietary GP-compliant TAs.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.
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