
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

GlobalConfusion: TrustZone Trusted
Application 0-Days by Design

Marcel Busch, Philipp Mao, and Mathias Payer, EPFL
https://www.usenix.org/conference/usenixsecurity24/presentation/busch-globalconfusion

USENIX Security ’24 Artifact Appendix: GlobalConfusion: TrustZone
Trusted Application 0-Days by Design

Marcel Busch Philipp Mao Mathias Payer
EPFL, Lausanne, Switzerland

A Artifact Appendix

A.1 Abstract

Trusted Execution Environments form the backbone of mo-
bile device security architectures. The GlobalPlatform Inter-
nal Core API is the de-facto standard that unites the frag-
mented landscape of real-world implementations, providing
compati- bility between different TEEs. Unfortunately, our
research reveals that this API standard is prone to a design
weakness. Manifestations of this weakness result in critical
type-confusion bugs in real-world user-space applications
of the TEE, called Trusted Applications (TAs). At its core,
the design weakness consists of a fail-open design leaving
an optional type check for untrusted data to TA devel- op-
ers. The API does not mandate this easily forgettable check
that in most cases results in arbitrary read-and-write exploita-
tion primitives. To detect instances of these type-confusion
bugs, we design and implement GPCheck, a static binary anal-
ysis system capable of vetting real-world TAs. We employ
GPCheck to analyze 14,777 TAs deployed on widely used
TEEs to investigate the prevalence of the issue. We recon-
firm known bugs that fit this pattern and discover unknown
instances of the issue in the wild. In total, we confirmed 9
known bugs, found 10 instances of silently-fixed bugs, and
discovered a surprising amount of 14 critical 0-day vulnerabil-
ities using our GPCheck prototype. Our findings affect mobile
devices currently in use by billions of users.

This artifact aims to demonstrate GPCheck’s capabilities
to detect the above mentioned type-confusion bugs.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

GPCheck is fully dockerized and should not harm the com-
puter of the artifact evaluator.

A.2.2 How to access

The code and documentation are available on GitHub:
https://github.com/HexHive/GlobalConfusion/
tree/sec-ae.

A.2.3 Hardware dependencies

We do not have special hardware requirements. Our analyzer
can be configured with a longer timeout to compensate for
slow hardware.

A.2.4 Software dependencies

We tested our setup on Ubuntu 22.04.2 using Docker version
23.0.1 and the docker-compose plugin version 1.29.2.

A.2.5 Benchmarks

Our dataset consists of proprietary TA blobs. Due to intellec-
tual property concerns, we cannot publicly share these blobs.
For research purposes, we will share our dataset on demand.

A.3 Set-up
A.3.1 Installation

Follow the SETUP steps in our README.md.

A.3.2 Basic Test

Analyze the two pre-compiled examples mentioned in
HOWTO in our README.md.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): GPCheck can detect type-confusion bugs resulting
from the design weakness of the GP TEE Core Inter-
nal API in closed-source TAs (Table 3 and Table 4).

(C2): The type-confusion vulnerability resulting from the
design weakness of the GP TEE Core Internal API is
widely prevalent in the Android mobile device ecosys-
tem.

A.4.2 Experiments

(E1): [GP Function and Type-Confusion Bug Detection] [30
human-minutes + 2 compute-hours]:
In this experiment, we provide the datasest from Table
3 and Table 4 to demonstrate GPCheck’s capability to

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 349

https://github.com/HexHive/GlobalConfusion/tree/sec-ae
https://github.com/HexHive/GlobalConfusion/tree/sec-ae

detect GP function in stripped binaries, and its type-
confusion detection on a ground-truth dataset.
Preparation: Download the GP function detection
ground-truth dataset and the GP type-confusion ground-
truth dataset.
Execution: Run GPCheck as described on the
README.md on these datasets. Make sure to select the
correct TEE to trigger the correct function detection
logic. For instance oppo_kinibi for TAs on Oppo
Kinibi, mitee for MiTEE TAs, and qualcomm for QSEE
TAs.
Results: The function detection for the TAs in the GP
function detection ground-truth dataset should resemble
the results in Table 3. When a TA is not GP-compliant,
the report should say “not GP compliant”.
The GP type-confusion detection for the GP type-
confusion ground-truth dataset should resemble the re-
sults shown in Table 4. The results provide evidence for
C1.

(E2): [TA Type-Confusion Vulnerabilities] [30 human-
minutes + 2 compute-hours]:
In total, we found 33 unique vulnerable TAs. This exper-
iment serves to confirm these vulnerable TAs.
Preparation: Download the vulnerable TAs dataset.
Execution: Run GPCheck as described on the
README.md on this dataset.
Results: GPCheck should report all of these TAs to be
vulnerable. These TAs are distributed across 5 reputable
OEMs and affect 54 recent mobile devices employing the
5 dominant TEE implementation on the market. Given
the wide spread of the type-confusion bug, we conclude
that it is widely prevalent in the Android mobile ecosys-
tem (C2).

A.5 Notes on Reusability
Our analyzer can be used to detect GP type-confusion bugs
in future proprietary GP-compliant TAs.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

350 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

