
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

When the User Is Inside the User Interface:
An Empirical Study of UI Security Properties

in Augmented Reality
Kaiming Cheng, Arkaprabha Bhattacharya, Michelle Lin, Jaewook Lee,

Aroosh Kumar, Jeffery F. Tian, Tadayoshi Kohno, and Franziska Roesner,
University of Washington

https://www.usenix.org/conference/usenixsecurity24/presentation/cheng-kaiming

USENIX Security ’24 Artifact Appendix: When the User Is Inside the
User Interface: An Empirical Study of UI Security Properties in

Augmented Reality

Kaiming Cheng, Arkaprabha Bhattacharya, Michelle Lin, Jaewook Lee, Aroosh Kumar, Jeffery F. Tian,
Tadayoshi Kohno, Franziska Roesner

Paul G. Allen School of Computer Science & Engineering, University of Washington

2023-10-24

A Artifact Appendix

A.1 Abstract
We include the test case code for our AR UI properties ex-
perimentation on five AR platforms, including ARCore (An-
droid), ARKit (Swift), Hololens (Unity), Oculus (Unity), and
WebXR (browser). Due to the variety of hardware required,
the limitation of existing simulators, and the number of plat-
form dependencies required to compile the Unity code, we
skip functionality and reproducibility badges and provide all
necessary information to be used as references.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

We do not expect any security, privacy, or ethical concerns
from executing our code.

A.2.2 How to access

All of the code can be found in https://
github.com/kaiming-uw/AR_UI_Security/tree/
5d7deddf46c3bd949972924a7028c2dd147b15e0

A.2.3 Hardware dependencies

ARKit: Requires an iOS device with an A9 or later proces-
sor.

ARCore: Requires an Android device with support for AR-
Core. The full list of ARCore-supported devices can be found
in https://developers.google.com/ar/devices.

Hololens: Requires Hololens 2.

Oculus: Requires a passthrough-enabled Oculus headset,
such as Oculus 2, Oculus Pro, or Oculus 3

WebXR: Requires a WebXR-compatible browser (Chrome)
on an ARCore-supported device.

A.2.4 Software dependencies

ARKit: We built our test cases using ARKit and RealityKit
for necessary AR functionalities.

ARCore: We built our test cases using ARCore v1.32.0
for AR functionalities and Sceneform SDK v1.20.5 for 3D
content rendering.

Hololens: We built our three test cases using Mixed Reality
Toolkit (MRTK) 2.0 and Unity 2021.3.16f1.

Oculus: We built our three test cases using Oculus Integra-
tion SDK v44.0 and Unity version 2021.3.25f1.

WebXR: We built our test cases using Three.js and WebXR
API

A.2.5 Benchmarks

None

A.3 Set-up

After clone our Github repo, there will be five folders inside
the Property Code folder. The property result refers to Table
1 in the paper.

ARCore: Download the Android Studio from this link
https://developer.android.com/studio. To run the
code for the property, import each property folder into An-
droid Studio and build on the local Android device.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 179

https://github.com/kaiming-uw/AR_UI_Security/tree/5d7deddf46c3bd949972924a7028c2dd147b15e0
https://github.com/kaiming-uw/AR_UI_Security/tree/5d7deddf46c3bd949972924a7028c2dd147b15e0
https://github.com/kaiming-uw/AR_UI_Security/tree/5d7deddf46c3bd949972924a7028c2dd147b15e0
https://developers.google.com/ar/devices
https://developer.android.com/studio

ARKit: Download the Xcode from this link https://
developer.apple.com/xcode/. To run the code for the
property, import each property folder into Xcode and build on
the local iOS device. You will need to change the developer
signing to a trusted Team in order to build the application.

WebXR: To setup an environment capable of AR
development using WebXR, please use a trusted
local server environment. For reference, we use
Web Server for Chrome https://chrome.google.
com/webstore/detail/web-server-for-chrome/
ofhbbkphhbklhfoeikjpcbhemlocgigb to host our
WebXR code. After setting up the local server, enter
chrome://inspect/#devices in the browser and enter the
folder where the WebXR code is hosted.

Oculus : Install Unity and all necessary dependen-
cies for Oculus. Then follow all the necessary steps
in https://developer.oculus.com/documentation/
unity/unity-build/

Hololens : Install Unity and all necessary dependencies for
Hololens. To deploy our code on Hololens2, here are some of
the basic requirements

1. Build using ARM-32

2. Build for Release

3. Open Project Using Visual Studio 2022

4. Set up Visual Studio 2022 for HoloLens (e.g., connect
your HoloLens to your computer and add it as target
device)

A.3.1 Installation

The reviewer can download all necessary file in
https://github.com/kaiming-uw/AR_UI_Security/
tree/5d7deddf46c3bd949972924a7028c2dd147b15e0

A.3.2 Basic Test

We provide instructions to build our invisibility cases on
ARKit as an example.

• Launches the Harness and places an anchor in the target
location.

• Launches ComponentA and verifies [Verify(1)] that it cor-
rectly launches, i.e., Cube 1 appears visible and registers
the onclick.

• Launches ComponentB and verifies [Verify(2)] that it
correctly launches, i.e., Cube 2 appears visible, registers
the onclick, and completely blocks the view of Cube 1
from ComponentA).

• Clicks “next” to launch the next sub-experiment; ob-
serves [Observe(1)] whether the cube inserted by Com-
ponentB is visible or invisible.

• Raycasts (i.e., dispatches user input) in the direction of
Cube 1 (from ComponentA) and records [Observe(2)]
which object— ComponentA’s visible cube or Compo-
nentB’s invisible cube—receives the click.

A.4 Evaluation workflow
N/A

A.4.1 Major Claims

A.4.2 Experiments

N/A

A.5 Notes on Reusability
N/A

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

180 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb
https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb
https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb
chrome://inspect/#devices
https://developer.oculus.com/documentation/unity/unity-build/
https://developer.oculus.com/documentation/unity/unity-build/
https://github.com/kaiming-uw/AR_UI_Security/tree/5d7deddf46c3bd949972924a7028c2dd147b15e0
https://github.com/kaiming-uw/AR_UI_Security/tree/5d7deddf46c3bd949972924a7028c2dd147b15e0
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

