
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

MultiFuzz: A Multi-Stream Fuzzer For
Testing Monolithic Firmware

Michael Chesser, The University of Adelaide and Data61 CSIRO, Cyber Security
Cooperative Research Centre; Surya Nepal, Data61 CSIRO, Cyber Security

Cooperative Research Centre; Damith C. Ranasinghe, The University of Adelaide
https://www.usenix.org/conference/usenixsecurity24/presentation/chesser

USENIX Security ’24 Artifact Appendix: MultiFuzz: A Multi-Stream Fuzzer For
Testing Monolithic Firmware

Michael Chesser
The University of Adelaide

Data61 CSIRO, Cyber Security
Cooperative Research Centre

Surya Nepal
Data61 CSIRO, Cyber Security
Cooperative Research Centre

Damith C. Ranasinghe
School of Computer Science
The University of Adelaide

A Artifact Appendix

A.1 Abstract
MULTIFUZZ is a new fuzzer for testing monolithic firmware
targets that addresses the challenges of complex interactions
between firmware and hardware in embedded devices. We
evaluate MULTIFUZZ compared to the previous state-of-the-
art monolithic firmware fuzzers Ember-IO and Fuzzware and
also demonstrate MULTIFUZZ’s ability to discover new bugs.
We provide scripts for reproducing coverage benchmarks, in-
cluding ablation studies, and for automatically running unit
tests from synthetic example programs. Additionally, we in-
clude crashing inputs, replay scripts, and detailed analyses for
all previously undiscovered bugs presented in the paper, as
well as for false-positive crashes that were triaged during this
process.

A.2 Description & Requirements
CPU Resources: In total running the full set of experiments

requires approximately 580 CPU days of compute time,
however this can be adjusted by modifying the bench-
mark configuration files to run fewer trials and/or fuzzer
configurations.

RAM: Each trial typically requires less than 1 GB of RAM,
however the exact amount may vary depending on the
target and fuzzing configuration. Configurations without
the ‘Trim’ stage enabled may use up to 8 GB of RAM.

Storage: Each trial will generate between 15 MB to 250 MB
worth of temporary files. Then, the results from each trial
are automatically compressed and copied to an output
folder for post-processing and analysis. The final storage
requirements for all experiments is approximately 1.5 to
2 GB (after temporary files are deleted).

To speed up benchmarking, our benchmark harness tool sup-
ports automatically executing multiple trials in parallel. The

required RAM usage and storage for temporary files should
be multiplied by the number of parallel workers selected for
benchmarking.

A.2.1 Comparison to prior work

To compare against past work (Ember-IO, and Fuzzware), we
followed the experimental procedures reported by the original
authors from their GitHub repositories:

• https://github.com/fuzzware-fuzzer/fuzzware
-experiments (02-comparison-with-state-of-the-art).

• https://github.com/Ember-IO/Ember-IO-Exper
iments (Fuzzing).

Generating the results needed for coverage comparison for
each of the tools requires an additional 120 CPU days.

A.2.2 Security, privacy, and ethical concerns

During the setup process, network access is required to fetch
from packages from github.com and crates.io and to download
Docker images. Docker is used to isolate and run individual
fuzzer runs, requiring the user to have Docker access.

We have already responsibly disclosed the previously un-
known bugs listed in Table 3, however if any additional bugs
are discovered during artifact evaluation, they should also be
handled appropriately.

A.2.3 How to access

All the code and data required for running the experiments is
open sourced on GitHub at:

• https://github.com/MultiFuzz/MultiFuzz-ben
chmarks/tree/usenix2024-ae

The benchmark repository uses Git Submodules to select a
specific stable version of MULTIFUZZ for artifact evaluation.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 339

https://github.com/fuzzware-fuzzer/fuzzware-experiments
https://github.com/fuzzware-fuzzer/fuzzware-experiments
https://github.com/Ember-IO/Ember-IO-Experiments
https://github.com/Ember-IO/Ember-IO-Experiments
https://github.com/MultiFuzz/MultiFuzz-benchmarks/tree/usenix2024-ae
https://github.com/MultiFuzz/MultiFuzz-benchmarks/tree/usenix2024-ae

A.2.4 Hardware dependencies

Our experiments require no specialized hardware, a generic
x86-64 machine with enough RAM and storage is sufficient
to run all benchmarks. In the paper, all experiments were
conducted on a single AMD Ryzen Threadripper 3990X CPU
with 256 GB of RAM running Ubuntu Server 20.04.

A.2.5 Software dependencies

Our experiments require a Linux-based OS with Bash, Docker,
Rust and C compilers installed. Ghidra is optionally required
for reproducing the metadata used for coverage analysis.

A.2.6 Benchmarks

We evaluate MULTIFUZZ on a collection of 20 firmware tar-
gets used in past work and additional 3 new firmware targets
that we introduced in our evaluation. We include pre-built
binaries for all of the firmware targets used in benchmarks.
The new firmware targets can optionally be bit-for-bit repro-
duced by running the ./build_new_binaries.sh from the
benchmarks sub-directory.

To fairly compare the coverage, we normalize the cover-
age results from each fuzzer by filtering blocks according to
control-flow metadata obtained using a Ghidra script. The
control-flow metadata files can be reproduced by running the
Ghidra script (ExportCfg.java) after loading each binary into
Ghidra.

A.3 Set-up
The installation procedure has been tested on a plain Ubuntu
Server 22.04, however any modern x86-64 Linux distribution
with support for Rust and Docker is likely to work.

A.3.1 Installation

First, ensure that the current user has access to Docker
and following dependencies are installed: Rust (tested
with rustc 1.75.0), Clang, Docker, libssl-dev, pkg-config, and
libfontconfig-dev (plotting only).

On a Ubuntu 22.04 server this can be done by running the
following commands:

curl https://sh.rustup.rs -sSf | bash -s -- -y
. "$HOME/.cargo/env"
sudo apt update
sudo apt install -y clang docker pkg-config \

libssl-dev libfontconfig-dev
sudo usermod -aG docker $USER
newgrp docker

After these dependencies have been installed, run the
./build_all.sh script to compile and build MULTIFUZZ,

the benchmark harness tool, and the post-processing and anal-
ysis tool.

Optionally, if you wish to follow along with the crash anal-
ysis steps in the bug analysis experiment, you may want to
download a copy of the GNU Arm Embedded Toolchain so
that arm-none-eabi-gdb is available.

A.3.2 Basic Test

The simplest way to test that the fuzzer has been compiled and
built correctly, test that the fuzzer is able to successfully replay
a known input. This can be done by running the following
command:

./replay.sh crashes/Gateway/zero_length_sysex

The output of the script should include a line containing the
message: ‘UnhandledException(code=ReadUnmapped,
value=0x800080)’, along with additional information for
debugging.

To verify that the benchmarking tool and every fuzzer con-
figuration is fully functional, a fast benchmark profile (ap-
proximately 20 CPU minutes) is available by running:

./benchmark-test.sh [no. parallel tasks to use]

After execution, the ./bench-harness/output/multifuzz/
directory should contain several sub-directories: debug-all,
debug-extend, debug-havoc, debug-i2s, debug-trim.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): MULTIFUZZ is able to fuzz a wide-range of firmware
targets and hardware, either on par or better than existing
state-of-the-art fuzzers Ember-IO and Fuzzware. This
corresponds to evaluation in Section 5.1 and Section 5.2
of the paper, and is proven in the experiments (E1) and
(E2). The results of these experiments are used to gener-
ate Figure 11 and Table 2 in the paper.

(C2): Each of the stream-orientated input generation tech-
niques introduced by MULTIFUZZ have an impact on the
fuzzer’s effectiveness. This corresponds to Section 5.3
and Appendix A.2 of the paper, and is proven in experi-
ment (E3). The results of these experiments are used to
generate Table 1 and Figures 12, 13 and 14 in the paper.

(C3): MULTIFUZZ has been used to uncover 18 new bugs
across 8 binaries (Table 3 in the paper). This is demon-
strated in the Section 5.4

A.4.2 Experiments

(E1): P2IM unit-tests [5 human-minutes + 8 CPU Hours]:
This experiment runs MULTIFUZZ on the 46 unit test
binaries from P2IM for a short period of time (10 mins

340 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/MultiFuzz/MultiFuzz-benchmarks/tree/usenix2024-ae/scripts/ExportCfg.java
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://github.com/MultiFuzz/MultiFuzz-benchmarks/tree/usenix2024-ae/p2im-unittests

per binary) and verifies that the fuzzer is able to find
inputs that satisfy each unit test.
Preparation: Ensure that the setup script from A.3.1
has been executed. Navigate to the p2im-unittests
directory.
Execution: From within the p2im-unittests direc-
tory run the ./run.sh script. The script accepts an op-
tional argument that controls how many tests to run in
parallel across multiple cores.
Results: On successful completion, the string: “66
successes, 0 errors” will be printed to stdout and
additional logging information is printed to stderr de-
scribing which inputs satisfy each unit test. Additionally,
the workdir-p2im-unittests sub-directory contains
fuzzer metadata for each trial.

(E2): Code-coverage Evaluation [20 human-minutes + 130
CPU days]: This experiment uses MULTIFUZZ to fuzz
23 real-world ARM firmware for 24 hours (repeated
for 5 times) and evaluates the code-coverage reached
over-time.
Preparation: Ensure that the setup script from A.3.1
has been executed.
Execution: Run the ./multifuzz-coverage.sh
script. The script accepts an optional argument that
controls how many tests to run in parallel across
multiple cores.
Results: On successful completion of the benchmark
the message “All tasks complete” is printed to
stderr, and the results of the benchmark are saved
to ./bench-harness/output/multifuzz-all.
The results can then be post-processed and an-
alyzed by running ./analyze-results.sh. A
coverage graph similar to Figure 11 from the paper
is saved to ./analysis/output/coverage.svg,
and Table 2 can be reproduced using the data from
./analysis/output/total_blocks_per_trial.csv.

(E3): Ablation Study [20 human-minutes + 470 CPU days]:
This experiment tests the fuzzing ability of MULTIFUZZ
with various features disabled1 on the same set of bina-
ries as E2.
Preparation: Ensure that the setup script from A.3.1
has been executed.
Execution: Run the ./multifuzz-ablation.sh
script. The script accepts an optional argument that
controls how many tests to run in parallel across
multiple cores.
Results: On successful completion of the bench-
mark the message “All tasks complete”
is printed to stderr, and several new sub-
directories containing the results are located
at ./bench-harness/output/multifuzz-*.

1Note: The configurations where the ‘trim’ stage is disabled may use a
large amount of RAM (e.g., 8 GB), so care should be taken when running
multiple trials in parallel.

Table 1 of the paper can be reproduced from
./analysis/output/median_coverage.csv which
is generated by running ./analyze-results.sh.

(E4): Previously Undiscovered Bugs [1 to 2 human-hours]:
This experiment validates that MULTIFUZZ finds new
previously undiscovered bugs, and that the bugs discov-
ered are real bugs and not false-positives.
Preparation: Ensure that the setup script from A.3.1
has been executed.
Execution: Executing this experiment involves using
the ./replay.sh script to replay crashing inputs cor-
responding to each bug in the paper, and following the
analysis described in the analysis.md document to verify
each crash. Additionally, MULTIFUZZ supports attach-
ing a debugger (GDB) to perform more fine-grained
analysis on the exact reason for each crash.
Results: Replaying each input should re-
sult in the fuzzer reporting a crash (e.g.
UnhandledException(code=ExecViolation,
value=0x3f3e3d3c)) along with additional metadata
for debugging the crash including an approximate stack
trace (GDB is required be used to obtain a precise
stack trace) and a list of the last 10 blocks executed.
The output should match the analysis described in the
analysis.md document.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 341

https://github.com/MultiFuzz/MultiFuzz-benchmarks/tree/usenix2024-ae/p2im-unittests
https://github.com/MultiFuzz/MultiFuzz-benchmarks/tree/usenix2024-ae#code-coverage-evaluation
https://github.com/MultiFuzz/MultiFuzz-benchmarks/tree/usenix2024-ae#ablation-study
https://github.com/MultiFuzz/MultiFuzz-benchmarks/tree/usenix2024-ae/crash-analysis.md
https://github.com/MultiFuzz/MultiFuzz-benchmarks/tree/usenix2024-ae/crash-analysis.md
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Comparison to prior work
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

