
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Inference of Error Specifications and
Bug Detection Using Structural Similarities

Niels Dossche and Bart Coppens, Ghent University
https://www.usenix.org/conference/usenixsecurity24/presentation/dossche

USENIX Security ’24 Artifact Appendix: Inference of Error
Specifications and Bug Detection Using Structural Similarities

Niels Dossche
Ghent University

Bart Coppens
Ghent University

A Artifact Appendix

A.1 Abstract

Error-handling code is a crucial part of software to ensure
stability and security. We propose a novel approach to auto-
matically infer error specifications for system software with-
out a priori domain knowledge, while still achieving a high
recall and precision, and leverage this information to find
missing error checks, incorrect error checks, and error propa-
gation bugs. We implemented this approach in a tool called
ESSS. In our evaluation, we demonstrate the effectiveness
and efficiency of our approach on 7 well-tested, widely-used
open-source software projects: OpenSSL, OpenSSH, PHP,
zlib, libpng, freetype2, and libwebp. First, we show that ESSS
is scalable with regards to both computation time as well as
memory usage. Then, we show that the inferred error specifi-
cations are more precise than those inferred by the prior state
of the art, EESI. Then, we evaluate the effectiveness of our
tool to find bugs. On the aforementioned open source projects,
our tool reports 827 potential bugs in total for all 7 projects
combined. We manually categorised these 827 issues into 279
false positives and 541 true positives. Finally, we evaluate
false negatives on the APIMU4C dataset, and compare against
CodeQL and APISan.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There are no such concerns for the evaluators or their ma-
chines.

A.2.2 How to access

The artifact containing everything, including all benchmarks,
our own tool, CodeQL, EESI, and APISan (all where nec-
essary patched to make them work, these patches are also
included); all pre-built, is distributed as a (VirtualBox) Vir-
tual Machine image, which is available on Zenodo at https:
//zenodo.org/doi/10.5281/zenodo.10843435. The version used
during evaluation is available at https://doi.org/10.5281/

zenodo.11118948.

Important: If needed, the username and password of the
VM user are both evaluation.

If people want to use our tool outside of the VM: the source
code of our own tool for this artifact is also included separately
in the Zenodo dataset outside of the VM (it is, of course, also
included in the VM itself). The version used for the artifact
evaluation is available at https://github.com/csl-ugent/ESSS/
tree/b77210f82654dbbd8f50aea3fe3216902c86ccd1.

The ESSS repository also contains the script necessary
to build the VM image. It is located at vm/build_vm.sh. This
script reproduces the VM and should be executed on a clean
Ubuntu 22.04 LTS installation.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

VirtualBox for the virtual machine image. The virtual machine
image contains all dependencies necessary to compile and
evaluate our tool ESSS, as well as all dependencies for tools
and benchmarks we compared and evaluated against. If you
want to compile our tool ESSS yourself, you need a basic
Linux install with build-essentials and CMake. We tested this
on Ubuntu 22.04.

A.2.5 Benchmarks

The benchmarks we used to evaluate ESSS and EESI are:

• OpenSSL (commit 8d927e55)

• OpenSSH (commit 36c6c3ef)

• PHP (commit abc41c2e)

• zlib (commit 12b345c4)

• libpng (commit e519af8b)

• freetype2 (commit bd6208b7)

• libwebp (commit 233960a0)

We also used the APIMU4C bug dataset, which also con-
tains the following benchmarks that the authors of that dataset
have patched to reintroduce some bugs:

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 121

https://zenodo.org/doi/10.5281/zenodo.10843435
https://zenodo.org/doi/10.5281/zenodo.10843435
https://doi.org/10.5281/zenodo.11118948
https://doi.org/10.5281/zenodo.11118948
https://github.com/csl-ugent/ESSS/tree/b77210f82654dbbd8f50aea3fe3216902c86ccd1
https://github.com/csl-ugent/ESSS/tree/b77210f82654dbbd8f50aea3fe3216902c86ccd1

• OpenSSL (1.1-pre8)

• httpd 2.4.37

• curl 7.63.0

The APIMU4C dataset contains a patch to make curl
compilable, because the authors used C++-style comments
to mark certain parts of the code which makes compila-
tion not pass curl’s linter. The patch file is provided at
APIMU4C/APIMU4C/curl-curl-7_63_0_patched/curl-curl-7_63_0/patch.

We additionally pre-compiled musl 1.2.3 in the VM, inside
the build-musl-1.2.3 directory in the home directory.

A.3 Set-up

We have prepared an environment in the VM that has all the
necessary dependencies and configurations already applied.

A.3.1 Installation

The VM has all the software precompiled and dependencies
installed. All listed paths are relative to the home directory.

Only if you wish to compile and/or install the tools man-
ually, please perform the following instructions.

ESSS For ESSS, go to the ESSS/analyzer direc-
tory and run the make command. The only depen-
dency is LLVM 14.0.6, which can be built using the
ESSS/llvm/build-llvm.sh script. The built binary will be
located at ESSS/analyzer/build/lib/kanalyzer.

EESI For EESI, the source code is checked
out in tools/eesi. The upstream code is avail-
able at https://github.com/ucd-plse/eesi/tree/

aacbcecbb8c1f1d2e152ee4a0aa417ac92ae74bb (and is also
included in the VM). Note that this source code is patched
to make it compatible with LLVM 14.0.6, and to fix a
crash bug we encountered. The patch file is provided at
tools/eesi/0001.patch. The patched code can be obtained
directly from https://github.com/nielsdos/eesi-updated/

tree/687180d496dadb9110bbfeddb0b5353341f4933b. You can
build it by performing the following steps:

• Create a build directory build in tools/eesi

• Set the environment variable CMAKE_PREFIX_PATH to
/home/evaluation/ESSS/llvm/llvm-project/prefix

• Run cmake ../src in your build directory

The binary eesi will be placed in your build directory.

APISan For APISan, we use a Dockerfile that we made
ourselves based on a patched version to make it compatible
with the Ubuntu 18.04 that the Docker container uses. The up-
stream code is available at https://github.com/sslab-gatech/
apisan/tree/9ff3d3bc04c8e119f4d659f03b38747395e58c3e (and
is also included and patched in the VM). The patch file
is provided at deploy/apisan/0001.patch and the Docker-
file is located in deploy/apisan. The patched code can be
obtained directly from https://github.com/nielsdos/apisan/

tree/15b697819610b4dd0671c8f420a552dbf0a46e04. We prebuilt
the Docker container with the name apisan.

CodeQL CodeQL (version 2.13.3) is downloaded as-is
from https://github.com/github/codeql-action/releases/

tag/codeql-bundle-20230524. This is checked out in
tools/codeql.

Benchmarks The instructions to compile each benchmark
are included in the ESSS/evaluation/benchmark-instructions

directory. The benchmarks are already precompiled in the
VM.

A.3.2 Basic Test

To run a basic smoke test, please follow these instructions:

ESSS Run ESSS/build/lib/kanalyzer which should print the
usage of the tool.

EESI Run tools/eesi/build/eesi which should print the
usage of the tool.

APISan Run docker run --rm -it apisan bash followed by
/apisan/apisan which should print the usage of the tool.

CodeQL Run codeql which should print the usage of the
tool.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Our tool ESSS infers more specifications, and has a
higher precision and recall than the state-of-the-art EESI
tool. Furthermore, it does so in less time and uses less
memory. This corresponds to Table 1 and Table 2 in
the paper. This is proven by experiments (E1) and (E2):
(E1) has EESI infer specifications from the benchmarks,
while keeping track of its execution time and memory
usage; (E2) has our own tool ESSS infer specifications
from the benchmarks, again while keeping track of its
execution time and memory usage.

122 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/ucd-plse/eesi/tree/aacbcecbb8c1f1d2e152ee4a0aa417ac92ae74bb
https://github.com/ucd-plse/eesi/tree/aacbcecbb8c1f1d2e152ee4a0aa417ac92ae74bb
https://github.com/nielsdos/eesi-updated/tree/687180d496dadb9110bbfeddb0b5353341f4933b
https://github.com/nielsdos/eesi-updated/tree/687180d496dadb9110bbfeddb0b5353341f4933b
https://github.com/sslab-gatech/apisan/tree/9ff3d3bc04c8e119f4d659f03b38747395e58c3e
https://github.com/sslab-gatech/apisan/tree/9ff3d3bc04c8e119f4d659f03b38747395e58c3e
https://github.com/nielsdos/apisan/tree/15b697819610b4dd0671c8f420a552dbf0a46e04
https://github.com/nielsdos/apisan/tree/15b697819610b4dd0671c8f420a552dbf0a46e04
https://github.com/github/codeql-action/releases/tag/codeql-bundle-20230524
https://github.com/github/codeql-action/releases/tag/codeql-bundle-20230524

(C2): ESSS has been used to detect new bugs in all 7
benchmarks (OpenSSL, OpenSSH, PHP, zlib, libpng,
freetype2, libwebp). We categorised these bug reports
ourselves into false positives, true positives, and un-
knowns. This corresponds to Table 3 in the paper. This
is proven by experiment (E3).

(C3): Evaluating ESSS, APISan, and CodeQL on the
APIMU4C dataset, shows that ESSS outperforms the
prior art in number of bugs found in almost all cases.
Furthermore, it does so in less time and uses less mem-
ory. This corresponds to Table 4 in the paper. This is
proven by experiment (E4).

(C4): Of all the bugs ESSS detected, we submitted patches
for 46 of them, which were all confirmed by the devel-
opers and accepted. We evaluated how well APISan and
CodeQL are able to find these 46 bugs. This corresponds
to Table 5 in the paper. This is proven by experiment
(E5).

A.4.2 Experiments

(E1): EESI specifications [1 human-hour + 100 compute-
minutes (for 10 runs) + 22GiB RAM]: This experiment
reproduces the specifications for the state-of-the-art ex-
isting tool EESI.
How to: We need to run EESI for all benchmarks, except
PHP for which it goes out of memory even of a machine
with 128 GiB memory. A single run will take about 10
compute-minutes. We used 10 runs to obtain the time
and memory statistics.
Preparation: Go to the ESSS/evaluation directory. This
contains the scripts necessary to evaluate both EESI and
ESSS.
Execution: The evaluation directory contains a script
run-eesi-<program>.sh for each program. Execute them
all (except for PHP, which will not finish as described
above). This will output to stdout the error specifications
inferred by EESI and the time it took and the memory
usage in KiB. We recommend saving the results to a file
for each benchmark.
Results: You can average the time and memory usage
over the 10 runs to obtain the statistics. When we eval-
uated the specifications, we randomly sampled using
the random_sampling_of_lines.py script. The annotated
precision (prefixed with T (true) / F (false)) is in the
file eesi-<program>-precision. The sample for recall (for
both EESI and ESSS) is in <program>-recall-sample. Our
output from EESI (with the memory and time stripped)
is located in eesi-<program>-output, and this file will be
used by the statistics script. You can compute the statis-
tics using compute_eesi_stats.py eesi-<program>-output

eesi-<program>-precision <program>-recall-sample.
(E2): ESSS specifications [1 human-hour + 10 compute-

minutes + 2GiB RAM]: This experiment reproduces the

specifications for our tool ESSS.
How to: We need to run ESSS for all benchmarks. A
single run will take about 1 compute-minute. We used 10
runs to obtain the time and memory statistics.
Preparation: Go to the ESSS/evaluation directory.
Execution: The evaluation directory contains a script
run-my-<program>.sh for each program. Execute them all.
This will output to stdout the error specifications (and
bug reports) inferred by ESSS and the time it took and
the memory usage in KiB. We recommend saving the
results to a file for each benchmark.
Results: You can average the time and memory usage
over the 10 runs to obtain the statistics. When we eval-
uated the specifications, we randomly sampled using
the random_sampling_of_my_specs.py script. The ground
truth for precision is for a subset sampled of ESSS,
available in the file <program>-precision-ground-truth.
The random sampling itself is located in the
file <program>-random-functions-for-precision-my-tool.
The sample for recall (for both EESI and ESSS) is
in <program>-recall-sample. Our output from ESSS
(with the memory and time stripped) is located in
esss-<program>-output, and this file will be used by the
statistics script. You can compute the statistics using
compute_my_stats.py <program>.

(E3): ESSS found bugs [1 human-hour + 10 compute-
minutes]: This experiment reproduces the bug reports
for our tool ESSS.
How to: We need to run ESSS for all benchmarks. If you
have saved the results from E2 you can reuse those files.
Preparation: Go to the ESSS/evaluation directory.
Execution: The evaluation directory contains a script
run-my-<program>.sh for each program. Execute them all.
This will output to stdout the bug reports inferred by
ESSS. We recommend saving the results to a file for each
benchmark as my-<program>-output.
Results: If you saved the output as the recommended file
name, you can execute check_found_bugs.py <program>

to get the statistics of found bugs. This uses the
<program>-bugs file to check for bugs. That file contains
for each filename and line number the category to which
the reports belongs. The header of that file described
each category.

(E4): APIMU4C evaluation [2 human-hours + 5 compute-
hour + 27 GiB RAM]: This experiment reproduces the
results for APIMU4C.
How to: We need to run CodeQL, APISan, ESSS for all
3 APIMU4C benchmarks (curl, OpenSSL, httpd).
Preparation: The APIMU4C benchmarks are in the
APIMU4C/APIMU4C/ directory.
For each benchmark in APIMU4C, go inside the source
directory of said benchmark and create a CodeQL
database using codeql database create --language=cpp

-- db.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 123

To run (and prepare) APISan, go inside the source di-
rectory and run docker run -it --rm -v "$(pwd)":/mnt

apisan bash. The next commands take place in
the Docker container. Then run /apisan/apisan

build -- ./configure [options] using the config-
uration options and instructions as described in
ESSS/evaluation/benchmark-instructions. For example,
to build httpd you should follow the instructions in
ESSS/evaluation/benchmark-instructions/httpd-instructions.
This will require installing dependencies that are re-
quested by the configure script. Dependencies can be
installed using apt install liblua5.1-dev pkg-config

libjansson-dev libssl-dev libcurl4-openssl-dev time

uuid-dev. Then run /apisan/apisan build -- make.
The source code is already precompiled for ESSS.
Execution: To run the tests for CodeQL, execute codeql

database analyze db --format=csv --output=<filename>

<query> for each of the 3 benchmarks. We recom-
mend running it twice because the first time a query
executes, it needs to be compiled. The <query> pa-
rameter is the path to the query file. The queries
we used in our evaluation are: MissingNullTest,
ReturnValueIgnored, InconsistentNullnessTesting,
InconsistentCheckReturnNull, MissingNegativityTest.
To run the tests for APISan, execute /apisan/apisan

check --checker=rvchk for each of the 3 benchmarks.
This will output the bug reports to stdout. Save the
results to a file.
To run the tests for ESSS, execute
ESSS/evaluation/run-my-<program>-apimu4c.sh for
each of the 3 benchmarks.
For all tests, you can use /usr/bin/time -v to measure
memory and run time.
Results: The results need to be checked against
APIMU4C/APIMU4C/bug-location.xlsx that correspond to
the missing or incorrect error check cases (the spread-
sheet contains other error types too).

(E5): CodeQL, APISan, and ESSS for new bugs [2 human-
hours + 16 compute-hours + 60 GiB RAM]: This eval-
uates CodeQL, APISan, and ESSS on the 46 bugs we
submitted patches for.
How to: We need to run CodeQL and APISan for
OpenSSL, OpenSSH, and PHP. The results for ESSS were
already obtain in an earlier experiment, and as such no
extra steps are needed for ESSS.
Preparation: Follow the same steps as in (E4) to pre-
pare the OpenSSL and OpenSSH benchmark for CodeQL
and APISan. In contrast to (E4), we will not use the ver-
sion from APIMU4C, but we will use the version on
which we evaluated ESSS. These are available in the
benchmarks directory in the home directory.
Execution: Follow the same steps as in (E4) to run
APISan and CodeQL for the OpenSSL, OpenSSH, and
PHP benchmarks. For CodeQL, we use the same queries

as in (E4).
For all tests, you can use /usr/bin/time -v to measure
memory and run time.
Results: Compare the bug reports that are outputted
against the bug reports from Table 6 in the paper’s Ap-
pendix. For ESSS, you can use the check_found_bugs.py

script as in (E3).

A.5 Notes on Reusability
None.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2024/.

124 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

