
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

With Great Power Come Great Side Channels:
Statistical Timing Side-Channel Analyses

with Bounded Type-1 Errors
Martin Dunsche, Marcel Maehren, and Nurullah Erinola, Ruhr University Bochum;

Robert Merget, Technology Innovation Institute; Nicolai Bissantz, Ruhr University Bochum;
Juraj Somorovsky, Paderborn University; Jörg Schwenk, Ruhr University Bochum

https://www.usenix.org/conference/usenixsecurity24/presentation/dunsche

USENIX Security ’24 Artifact Appendix:
With Great Power Come Great Side Channels:

Statistical Timing Side-Channel Analyses with Bounded Type-1 Errors

Martin Dunsche1, Marcel Maehren1, Nurullah Erinola1, Robert Merget2, Nicolai Bissantz1,
Juraj Somorovsky3, and Jörg Schwenk1

1Ruhr University Bochum
2Technology Innovation Institute

3Paderborn University

A Artifact Appendix

A.1 Abstract

In our paper, we propose a test to statistically evaluate tim-
ing measurements with a type-1 error bounded by an input
parameter α, which we implemented in a new tool called
R-Time-Leak-Finder (RTLF). Initially, we compared RTLF
with different competitors by evaluating them based on arti-
ficial timing side channels (ground truth). Subsequently, we
performed a large-scale and longitudinal real-world timing
evaluation of eleven TLS libraries in 823 versions across
three vulnerabilities. Artifact users can reproduce the results
of our analysis of the artificial side channels and our analysis
of TLS libraries by running RTLF and the competitors. It is
further possible to collect measurements for TLS libraries to
reproduce our datasets.

A.2 Description & Requirements

Our artifact contains the timing measurements obtained in
our study as well as the tools used to analyze the measure-
ments. These tools consist of our proposed statistical approach
(RTLF) and open-source frameworks previously used for tim-
ing analyses (Mona, dudect, and tlsfuzzer). We provide Dock-
erfiles that allow the user to run all tools on our measurements
and confirm the results we present in the paper. These re-
sults are crucial as we use them to argue that RTLF generally
performs better than previous tools with regard to timing
side-channel detection. We split the measurements into three
datasets: measurements of artificial side channels (ground
truth), measurements obtained for our quantitative analysis of
823 TLS server implementations/versions, and measurements
obtained for the most recent versions of eleven TLS libraries
(qualitative analysis). We further provide the tools used to
collect these measurements. The experiments described here

cover specific parts for our study. While we outline how to
reproduce the other results, doing so is expected to take weeks
on multiple dedicated desktop computers.

A.2.1 Security, privacy, and ethical concerns

We are not aware of any exploitable issues in our artifacts.

A.2.2 How to access

Our artifact is split into a GitHub repository1 and a Zenodo
record2 for our datasets. The repository includes Dockerfiles
to execute RTLF and the competitors to reproduce our results
and collect own measurements. The repository also includes
multiple README.md files that provide additional details.

A.2.3 Hardware dependencies

Parts of the code used for experiment E3 rely on assembly
instructions, which may cause the Docker image build to fail
on ARM CPUs (e.g. Apple Silicon).

A.2.4 Software dependencies

Running the experiments requires Git and Docker. Further,
we tested this artifact on Kubuntu 22.04, but any Linux system
should work.

A.2.5 Benchmarks

Running the experiments requires a minimum of around
55 GB of disk space. 40 GB of this disk space account for
downloaded zip files containing our measurements and results.

1https://github.com/RUB-NDS/Artifacts-With-Great-Power
-Come-Great-Side-Channels/tree/e1cb08804029775cc0f19a2ace2
fd2d65d8a8eff

2https://zenodo.org/records/10817685

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 421

https://git-scm.com/
https://docs.docker.com/engine/install/
https://github.com/RUB-NDS/Artifacts-With-Great-Power-Come-Great-Side-Channels/tree/e1cb08804029775cc0f19a2ace2fd2d65d8a8eff
https://github.com/RUB-NDS/Artifacts-With-Great-Power-Come-Great-Side-Channels/tree/e1cb08804029775cc0f19a2ace2fd2d65d8a8eff
https://github.com/RUB-NDS/Artifacts-With-Great-Power-Come-Great-Side-Channels/tree/e1cb08804029775cc0f19a2ace2fd2d65d8a8eff
https://zenodo.org/records/10817685

Unzipping all files to verify results beyond the scope of the
experiments described in this artifact appendix will require
additional 210 GB of disk space. The compute-hours stated
in for experiments are approximate values for a CPU that can
handle eight threads in parallel.

A.3 Set-up
A.3.1 Installation & Basic Test

1. Clone the GitHub repository using git:
git clone https://github.com/RUB-NDS/Artifacts-\
With-Great-Power-Come-Great-Side-Channels.git
git checkout e1cb08804029775cc0f19a2ace2fd2d65d8a8eff

2. Enter the cloned repository and run the shell script

sh setup.sh

This will build the Docker images of the artifacts, download
our datasets (labeled a to f), extract the datasets required for
the experiments, and perform basic tests. The Docker images
will also contain the other statistical open-source tools used in
our comparison. Our experiments E1b, E2b, and E3 require a
total of around nine hours of computation time on a computer
capable of handling eight threads in parallel. You can run
these experiments beforehand to perform the computational
tasks using

sh experiments/run_lengthy_experiments.sh

To interpret the results, follow the description of the exper-
iments (subsubsection A.4.2). The computational steps per-
formed before should be skipped automatically.

A.4 Evaluation workflow
For the evaluation of our major claims, we mostly rely on the
measurements and analysis results we collected and provide.
Reproducing our entire evaluation requires extensive com-
putational effort. We hence limit the experiments to specific
results but outline how to adapt the experiments to confirm
our other results. Additionally, we describe how a user can
reproduce our measurements for the considered TLS libraries.

A.4.1 Major Claims

(C1): Based on the analysis of artificial side channels
(ground truth), we claim that RTLF remains within the
configured type-1 error threshold. Furthermore, we claim
that dudect shows a constant type-1 error rate of 0% but
also fails to achieve (high) statistical power for our mea-
surements. In the case of Mona, the type-1 error rate
decreases steadily with increasing sample size, and the
t-test only manages to remain within its type-1 error rate

for large sample sizes. We present our results in E1a.
The steps to reproduce them are outlined in E1b.

(C2): Through the qualitative analysis based on the results
of RTLF, we identified seven vulnerabilities in recent
versions. Notably, some of these identified leaks go un-
noticed with Mona, dudect, the t-test, and tlsfuzzer. We
present our results in E2a. The steps to reproduce them
are outlined in E2b.

A.4.2 Experiments

The following experiments assume that the user starts in the
directory of the cloned repository.
(E1a): (10 human-minutes) This experiment focuses on the

results of our tool comparison for artificial side channels
(ground truth). The comparison evaluates how often each
tool successfully detected a timing difference (statistical
power) and how often each tool wrongfully reports a
non existing timing difference (type-1 error rate or false
positives rate).
Execution: Run the shell script

sh experiments/experiment1a.sh

This will run a Docker container that collects the results
of the individual tools and prints them to console. The
container will first print the results of Table 2 from our
paper. After pressing enter, the container will print the
results for Table 3.
Results: In the first batch of results, a detected differ-
ence is a correct test result. In the second batch, a de-
tected difference is an incorrect test result (type-1 error).
The output generally indicates the claimed weaknesses
of dudect, Mona, and the t-test: dudect shows low statis-
tical power, especially for small sample sizes (see results
for measurements-30k-tail, for example). In the type-
1 error analysis (the second batch of outputs), Mona and
the t-test both show a high type-1 error that only declines
with an increasing sample size. RTLF remains within
its configured type-1 error threshold of 9% (except for
statistically expected fluctuations).

(E1b): (5 human-minutes + 4 compute-hours) This experi-
ment shows how to reproduce our results from E1a for a
limited dataset. Specifically, we chose the same-xy artifi-
cial side channel with sample size 15k from Table 3, as
it is the smallest self-contained dataset.
Execution: Run the shell script

sh experiments/experiment1b.sh

This will run a Docker container for each of the
statistical tools to analyze the measurements of the
measurements-15k-same-xy directory. For each tool,
we store the result in a file with file extension
.result-[tool-name]. The final Docker run com-
mand starts the container that reads these results and

422 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

prints them to console.
Results: The results should match those from E1a
for the measurements-15k-same-xy directory. There
may be slight deviations for RTLF due to the non-
deterministic empirical bootstrap we employ.
Reproducing Additional Results: To reproduce
additional analysis results, unzip any direc-
tory of a_measurements_ground_truth.zip
to the data_sets directory and adjust the
TARGET_DIRECTORY variable in the shell script.

(E2a): (5 human-minutes) This experiment focuses on the
analysis results for our measurements of the MatrixSSL
TLS library version 4.6.0. Specifically, we present the
results of the statistical analysis of the different tools for
the Bleichenbacher attack.
Execution: Run the shell script

sh experiments/experiment2a.sh

This will run a Docker container that collects the results
of the individual tools and prints measurement pairs with
timing differences to console.
Results: The output shows the results illustrated for
MatrixSSL in Figure 5, 6, and 7 of our paper. Specifi-
cally, only RTLF identified a timing leak based on the
collected Bleichenbacher measurements (BxBy measure-
ment pairs, see Section 5.1 for the vector labels). In
Algorithm 3 of our paper, we discuss why timing leaks
are indeed expected here to confirm RTLF’s result. Note
that tlsfuzzer employs a test that is not based on pairwise
comparison (Friedman test) and does not specify which
vectors exhibit timing variations. Therefore, we print all
vectors categorized as either with or without differences
to represent the boolean analysis results.

(E2b): (5 human-minutes + 2 compute-hours) This experi-
ment reproduces our results from E2a for the Bleichen-
bacher measurements.
Execution: Run the shell script

sh experiments/experiment2b.sh

Analogue to E1b, this will perform the analysis of the
measurements for each of the statistical tools and print
the results to console.
Results: The results should match those from E2a,
i.e only RTLF should indicate any timing differences.
Again, there may be slight deviations for RTLF due to
the non-deterministic empirical bootstrap we employ.
Reproducing Additional Results: To reproduce addi-
tional analysis results, unzip any directory of any of the
measurements zip files (b to d) to the data_sets direc-
tory and adjust the TARGET_DIRECTORY variable in the
shell script accordingly.

(E3): (10 human-minutes + 3 compute-hour (2 hours to col-
lect measurements, 1 hour to analyze)) In this experi-
ment, we describe how to reproduce the measurements

of the TLS Docker images using our measurement tool
(TLS-Docker-Timer). We use one TLS implementation
(NSS v3.87) and one attack type (Bleichenbacher) from
our qualitative analysis as an example. Running this ex-
periment requires the user to pass their Docker socket
to the Docker container that collects the measurements
as the container will build and manage the image of the
tested TLS implementation.3

Execution: Run the shell script

sh experiments/experiment3.sh

The script runs a Docker container that first checks the
Docker environment for the required TLS library im-
age. Then, it launches a proxy process for measurements
alongside our TLS-Docker-Timer tool, which creates the
Docker container for NSS and establishes the TLS ses-
sions for the attack. Finally, the script will again analyze
the measurements with all considered statistical tools
before printing the results to console.
Results: The measurements should be stored in the
newly created own_measurements directory of the
repository directory. The results printed to console
should generally align with those of Figure 4, 6, and
7 from our paper. Specifically, the tools should detect
a timing leak for all NSS Bleichenbacher measurement
pairs except B1B3, B2B4, B2B5, and B4B5. Note that tls-
fuzzer will again only yield one combined test result (see
E2a). Significant deviations are possible for measure-
ments due to user system dependencies, leading to false
negatives and false positives. Additionally, the Docker
container will conduct 100,000 measurements for each
attack vector (as opposed to the 500,000 measurements
from our study).
Reproducing Additional Results: By adjusting the
variables of the shell script, the user can test for timing
leaks with different attacks and implementations. For
further details, we refer to the measuring/README.md
in our artifact repository.

A.5 Notes on Reusability
Further development of RTLF will continue at https://
github.com/tls-attacker/RTLF. TLS-Docker-Timer is
available at https://github.com/tls-attacker/TLS-D
ocker-Timer.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

3Note that these images will be added to the Docker instance of the host
system.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 423

https://github.com/RUB-NDS/Artifacts-With-Great-Power-Come-Great-Side-Channels/blob/e1cb08804029775cc0f19a2ace2fd2d65d8a8eff/README.md
https://github.com/tls-attacker/RTLF
https://github.com/tls-attacker/RTLF
https://github.com/tls-attacker/TLS-Docker-Timer
https://github.com/tls-attacker/TLS-Docker-Timer
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation & Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

