
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

OptiSan: Using Multiple Spatial Error Defenses to
Optimize Stack Memory Protection within a Budget

Rahul George, University of California, Riverside; Mingming Chen and
Kaiming Huang, The Pennsylvania State University; Zhiyun Qian, University
of California, Riverside; Thomas La Porta, The Pennsylvania State University;

Trent Jaeger, University of California, Riverside
https://www.usenix.org/conference/usenixsecurity24/presentation/george

USENIX Security ’24 Artifact Appendix: OPTISAN: Using Multiple
Spatial Error Defenses to Optimize Stack Memory Protection within a

Budget

Rahul George2, Mingming Chen1, Kaiming Huang1,
Zhiyun Qian2, Thomas La Porta1, Trent Jaeger2

1The Pennsylvania State University
2University of California, Riverside

A Artifact Appendix

A.1 Abstract
This artifact provides a comprehensive guide on installing and
utilizing our proposed tool, OPTISAN, for generating place-
ments of spatial memory defenses for stack objects that uti-
lizes multiple defenses (Address Sanitizer and Baggy Bounds)
where the goal is to maximize the protection of stack memory
from spatial memory errors within a cost budget. The OPTI-
SAN system includes: (1) a static analysis to compute which
stack objects may be exploited by unsafe memory operations,
which we call usable targets, to estimate the security impact ;
(2) static analyses to to save the execution profile and model
the performance of each defense, using this execution pro-
file, - the costs for the placement of metadata management
and bounds checks; and (3) a mixed-integer non-linear pro-
gram (MINLP) formulation to generate an optimal solution
for protecting usable targets within a cost budget. Within this
artifact, we outline the necessary prerequisites, requirements,
and software dependencies for OPTISAN, along with detailed
instructions on accessing, setting up, and installing the tool.

A.2 Description & Requirements
The source code of OPTISAN consists of multiple LLVM
passes for security analysis, cost estimation and instrumen-
tation. It also includes the MINLP Formulation (Matlab +
Gurobi), an implementation of Baggy Bounds (ported from
an open-source project) and several utility scripts to help
with various tasks such as generating inputs for the solver.
OPTISAN also relies on code from prior works to identify
the spatially unsafe operations and to generate the program
dependency graph along with the SVF tool (available at
https://github.com/SVF-tools/SVF). We also include
the necessary patches, inside the patches folder, to modify the
AddressSanitizer’s (ASan) and Baggy Bounds instrumenta-
tion mechanism to disable classes of operations as needed. It

is important to note that compiling and building the LLVM
source code requires CMake or the Ninja build system.

A.2.1 Security, privacy, and ethical concerns

Our evaluation includes building and running multiple pro-
grams with known vulnerabilities, many of which are taken
from the MAGMA dataset. Hence, caution must be taken
when reproducing this.

A.2.2 How to access

The source code of OPTISAN is available publicly on GitHub
at https://github.com/rahultgeorge/OptiSan with
commit e6c8a2c81d8d6a24fd0620226de10a7c05125609.
The full URL is https://github.com/rahultgeorge/Op
tiSan/tree/e6c8a2c81d8d6a24fd0620226de10a7c051
25609

A.2.3 Hardware dependencies

To compute the unsafe memory operations, using static value
range analysis from prior work, requires 48 GB of memory.

A.2.4 Software dependencies

To compile and build OPTISAN’s LLVM passes we use LLVM
10 on Ubuntu 22.04. You will need CMake version 3.20 or
higher to successfully compile and build the LLVM source
code. Further, we require Python3 for the scripts, Neo4j 3.5
(graph database) to save the results, and MATLAB along with
Gurobi to compute the defense placement. However, setting
up MATLAB and Gurobi cannot be automated as they require
licenses. We include the relevant links to obtaining both and
activating Gurobi for MATLAB. Ideally, on a system with
all the necessary prerequisites, all components should build
successfully.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 455

https://github.com/SVF-tools/SVF
https://github.com/rahultgeorge/OptiSan
https://github.com/rahultgeorge/OptiSan/tree/e6c8a2c81d8d6a24fd0620226de10a7c05125609
https://github.com/rahultgeorge/OptiSan/tree/e6c8a2c81d8d6a24fd0620226de10a7c05125609
https://github.com/rahultgeorge/OptiSan/tree/e6c8a2c81d8d6a24fd0620226de10a7c05125609

A.2.5 Benchmarks

All the datasets and source codes that have been used in our
evaluation are publicly available and listed in the paper.

A.3 Set-up
To replicate the evaluation environment for OPTISAN, we
recommend setting up an Ubuntu 22.04 distribution. We pro-
vide a convenient script called install_deps.sh which installs
all the necessary prerequisites and required components such
as LLVM, Neo4j. It also builds LLVM 10.0 and SVF from
source. If you have a fresh installation of the Ubuntu 22.04
distribution, please follow these steps from the root directory
of our repository:

1 . / i n s t a l l _ d e p s . sh
By following these steps, you can quickly set up the re-

quired environment for OPTISAN and ensure all dependen-
cies are properly installed. As noted in the previous section,
MATLAB and Gurobi need to set up manually.

A.3.1 Installation

To compile and build OPTISAN along with the LLVM source,
one needs to issue the build script (build_optisan.sh) pro-
vided in our repository. This script will build all the OPTISAN
LLVM passes.

A.3.2 Basic Test

We include a simple example which setups a program from
the MAGMA dataset and tests the core components of our
OPTISAN.

1 . / s e t u p _ e x a m p l e . sh
2 python3 run_example

This script will do four major tests - static analyses, cost
estimation, defense placement computation and the instru-
mentation.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

456 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Version

