
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Operation Mango: Scalable Discovery of Taint-Style
Vulnerabilities in Binary Firmware Services

Wil Gibbs, Arvind S Raj, Jayakrishna Menon Vadayath, Hui Jun Tay, Justin Miller,
Akshay Ajayan, Zion Leonahenahe Basque, Audrey Dutcher, and Fangzhou Dong,

Arizona State University; Xavier Maso, unaffiliated; Giovanni Vigna and
Christopher Kruegel, UC Santa Barbara; Adam Doupé, Yan Shoshitaishvili,

and Ruoyu Wang, Arizona State University
https://www.usenix.org/conference/usenixsecurity24/presentation/gibbs

USENIX Security ’24 Artifact Appendix: Operation Mango: Scalable
Discovery of Taint-Style Vulnerabilities in Binary Firmware Services

Wil Gibbs∗, Arvind S Raj∗, Jayakrishna Menon Vadayath∗, Hui Jun Tay∗, Justin Miller∗, Akshay Ajayan∗

Zion Leonahenahe Basque∗, Audrey Dutcher∗, Fangzhou Dong∗, Xavier Maso†,
Giovanni Vigna‡, Christopher Kruegel‡, Adam Doupé∗, Yan Shoshitaishvili∗, Ruoyu Wang∗

∗Arizona State University
{wfgibbs, arvindsraj, jvadayat, htay2, jmill, aajayan, zbasque, dutcher, fdong12, doupe, yans, fishw}@asu.edu

‡University of California, Santa Barbara
{vigna, chris}@cs.ucsb.edu
†contact@xaviermaso.com

A Artifact Appendix

A.1 Abstract

In this paper, we propose a scaling static analysis of firmware
binaries so that all binaries can be analyzed for command
injection or buffer overflows. To achieve this, we developed
MANGODFA, a novel binary data-flow analysis leveraging
value analysis and data dependency analysis on binary code.
Through key algorithmic optimizations in MANGODFA, our
prototype Mango achieves fast analysis without sacrificing
precision. Mango was tested on the Karonte dataset of 49
firmware to show its performance comparability to SaTC,
which we also ran on this dataset. Mango was also tested on
the 7 firmware that were handpicked by the SaTC authors
to demonstrate the versatility of Mango. We performed an
ablation study demonstrating the performance gains in Mango
come from key algorithmic improvements. Finally, we eval-
uated the scalability of Mango on 1700 firmware from the
Greenhouse dataset.

A.2 Description & Requirements

Mango can be run parallelized locally with the use of docker
containers or with Kubernetes remotely. However, we will
not give any support for running on Kubernetes, nor can we
provide access to our computing resources. Mango will spit
out many results, but for the paper, we only care about results
with a score of 7 or higher. This score is pre-pended to the
file name of every result and can easily be aggregated with
the find command.

A.2.1 Security, privacy, and ethical concerns

There are no risks to the evaluators while executing our arti-
fact. However, it should be noted that the output of our artifact
will contain potential vulnerabilities and should not be shared
with the general public.

A.2.2 How to access

Our artifacts can be accessed on our GitHub1.

A.2.3 Hardware dependencies

There are no specific hardware dependencies, but we suggest
a sufficiently powerful machine to run the experiments. Our
experiments were run on a Kubernetes cluster with access to
4000 cores. We also require at least 500GB of storage if you
run all experiments. The large dataset experiments consume
up to 400GB of disk space.

A.2.4 Software dependencies

Our artifact is consolidated into two Python packages, which
can be pip-installed along with their supporting packages. Our
artifact is functional on Ubuntu 22.04 x64, using Python 3.11
and a pip version of 24 or greater.

A.2.5 Benchmarks

Here are all of the datasets we used.
karonte dataset: https://drive.google.com/file/

d/1-VOf-tEpu4LIgyDyZr7bBZCDK-K2DHaj/view?usp=
sharing

1https://github.com/sefcom/operation-mango-public/blob/
ff15727d3d9f7016e91e3f07a983e81090a62b3d

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 447

https://drive.google.com/file/d/1-VOf-tEpu4LIgyDyZr7bBZCDK-K2DHaj/view?usp=sharing
https://drive.google.com/file/d/1-VOf-tEpu4LIgyDyZr7bBZCDK-K2DHaj/view?usp=sharing
https://drive.google.com/file/d/1-VOf-tEpu4LIgyDyZr7bBZCDK-K2DHaj/view?usp=sharing
https://github.com/sefcom/operation-mango-public/blob/ff15727d3d9f7016e91e3f07a983e81090a62b3d
https://github.com/sefcom/operation-mango-public/blob/ff15727d3d9f7016e91e3f07a983e81090a62b3d

7 Firmware dataset: https://www.dropbox.com/scl/fi/
v7k3c2ech20l5hh6dxhdf/7_firmware.tar.gz?rlkey=
lo74bd7wcgf1jmxmxlwv6j4v3&dl=0
ablation dataset: https://www.dropbox.com/scl/fi/
zz04neglh9d4ycsqa2c0j/ablation-firmware.tar.gz?
rlkey=hwhf9tt21f7hsuzcrbrjkg08t&dl=0
greenhouse dataset: https://www.dropbox.com/scl/
fi/2ndob4flx6sn3a53fln83/large_dataset.tar.gz?
rlkey=frgjlhwh244mqb4ua1om9atqd&dl=0
additional experiment dataset: https://www.
dropbox.com/scl/fi/girnzmyjaterigijmls87/
additional_experiment.tar.gz?rlkey=
4okv6ivbsyer6df0nc70tzz73&dl=0

A.3 Set-up
You will need to install Python 3.11 or later and pip version 24
or later on your machine. You will also need either Docker or
Kubernetes to run the experiments. We also advise installing
the artifact packages in a Python virtual , using Python 3.11
and a pip version of 24 or greaterenvironment.

A.3.1 Installation

First, git clone the repository. Next, cd into the repository and
run the following commands:
pip install -e .
cd pipeline
pip install -e .

This will install the base package ’argument_resolver’ and
the ’mango_pipeline’ package which is used to run the exper-
iments.

A.3.2 Basic Test

To run a simple functionality test, navigate to the root of the
git repo and run the following commands:
pip install pytest pytest-cov
pytest

This will run the tests for the base package and all of the
tests should pass.

A.4 Evaluation workflow
All of the reproduction steps are also available on our
GitHub1.

A.4.1 Major Claims

(C1): Operation Mango achieves a greater amount of vulner-
abilities found than prior workflow in a similar amount
of analysis time spent. This is proven by the comparison

experiment (E1) described in section 11.3 on the Karonte
Dataset illustrated in table 1.

(C2): Operation Mango finds more vulnerabilities by analyz-
ing more binaries than prior work (E2) in the same time
or less as shown in section 11.4 and table 3.

(C3): Operation Mango’s core contributions of assumed non-
impact and sink-to-source analysis are proved in the ab-
lation experiment (E3) from section 11.5 and illustrated
in table 5.

(C4): Operation Mango is extremely scalable. Section 11.6
performs a large-scale evaluation (E4) across 1700
firmware, whose results are found in table 6.

A.4.2 Experiments

Please note that we cannot provide support for running any of
the experiments on Kubernetes or using any of the compute
resources we used for the paper.
(E1): [Karonte Dataset Comparison] [10 human-minutes

+ 930 compute-hour + 5GB disk + 10GB RAM]: 49
firmware are used to evaluate the efficacy of Operation
Mango’s analysis compared to prior work.
Preparation: Have both docker and python3.11 in-
stalled in a Ubuntu 22.04 environment. Download the
karonte-dataset.tgz and unpack it.
How to: Please refer to the Table 1 replication steps on
our github1.
Results: Run the show_table.py script from our
GitHub1 to interpret the results.
Depending on your compute power, your run-time may
be longer than in Table 1, but the amount of TruPoCs
and binaries analyzed should be similar.
To differentiate between command injection and overflow
results, use the –status flag on mango-pipeline.

(E2): [7 Manual Firmware Analysis] [10 human-minutes +
8 compute-hour + 5GB disk + 10GB RAM]: In this ex-
periment, we analyzed 7 firmware from the SaTC Paper2

and showed we found vulnerabilities in binaries they did
not analyze.
Preparation: Have both docker and python3.11 in-
stalled in a Ubuntu 22.04 environment. Download the
7_firmware.tar.gz and unpack it.
How to: Please refer to the Table 3 replication steps on
our github1.
Results: Run the show_table.py script from our github1

with the flag –show-firmware to interpret the results. The
results should be similar to those in Table 3 of the paper,
but depending on the combination of computer power
and timeout length, the results may differ slightly.

(E3): [Ablation Study] [10 human-minutes + 3 compute-
hour + 1GB disk + 10GB RAM]: In this experiment, we
analyze the R6400V2 firmware, turning on and off dif-

2https://www.usenix.org/system/files/
sec21fall-chen-libo.pdf

448 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://www.dropbox.com/scl/fi/v7k3c2ech20l5hh6dxhdf/7_firmware.tar.gz?rlkey=lo74bd7wcgf1jmxmxlwv6j4v3&dl=0
https://www.dropbox.com/scl/fi/v7k3c2ech20l5hh6dxhdf/7_firmware.tar.gz?rlkey=lo74bd7wcgf1jmxmxlwv6j4v3&dl=0
https://www.dropbox.com/scl/fi/v7k3c2ech20l5hh6dxhdf/7_firmware.tar.gz?rlkey=lo74bd7wcgf1jmxmxlwv6j4v3&dl=0
https://www.dropbox.com/scl/fi/zz04neglh9d4ycsqa2c0j/ablation-firmware.tar.gz?rlkey=hwhf9tt21f7hsuzcrbrjkg08t&dl=0
https://www.dropbox.com/scl/fi/zz04neglh9d4ycsqa2c0j/ablation-firmware.tar.gz?rlkey=hwhf9tt21f7hsuzcrbrjkg08t&dl=0
https://www.dropbox.com/scl/fi/zz04neglh9d4ycsqa2c0j/ablation-firmware.tar.gz?rlkey=hwhf9tt21f7hsuzcrbrjkg08t&dl=0
https://www.dropbox.com/scl/fi/2ndob4flx6sn3a53fln83/large_dataset.tar.gz?rlkey=frgjlhwh244mqb4ua1om9atqd&dl=0
https://www.dropbox.com/scl/fi/2ndob4flx6sn3a53fln83/large_dataset.tar.gz?rlkey=frgjlhwh244mqb4ua1om9atqd&dl=0
https://www.dropbox.com/scl/fi/2ndob4flx6sn3a53fln83/large_dataset.tar.gz?rlkey=frgjlhwh244mqb4ua1om9atqd&dl=0
https://www.dropbox.com/scl/fi/girnzmyjaterigijmls87/additional_experiment.tar.gz?rlkey=4okv6ivbsyer6df0nc70tzz73&dl=0
https://www.dropbox.com/scl/fi/girnzmyjaterigijmls87/additional_experiment.tar.gz?rlkey=4okv6ivbsyer6df0nc70tzz73&dl=0
https://www.dropbox.com/scl/fi/girnzmyjaterigijmls87/additional_experiment.tar.gz?rlkey=4okv6ivbsyer6df0nc70tzz73&dl=0
https://www.dropbox.com/scl/fi/girnzmyjaterigijmls87/additional_experiment.tar.gz?rlkey=4okv6ivbsyer6df0nc70tzz73&dl=0
https://www.usenix.org/system/files/sec21fall-chen-libo.pdf
https://www.usenix.org/system/files/sec21fall-chen-libo.pdf

ferent combinations of assumed nonimpact and sink-to-
source analysis to show the impact of our contributions.
The results should be similar to Table 5 in the paper, but
depending on the combination of computer power and
timeout length, the results may differ slightly.
Preparation: Have both docker and python3.11 in-
stalled in a Ubuntu 22.04 environment. Download the
ablation-firmware.tar.gz and unpack it.
How to: Please refer to the Table 5 replication steps on
our github1.
Results: Run the ablation.py script from our github1 to
interpret the results.

(E4): [Large Scale Analysis] [10 human-minutes + 8157
compute-hour + 400GB disk + 10GB RAM]: In this
experiment, we analyze 1700 firmware from the green-
house dataset from a wide variety of different vendors.
The results should be similar to those in Table 6 of the
paper, but depending on the combination of computer
power and timeout length, the results may differ slightly.
Preparation: Have both docker and python3.11 in-
stalled in a Ubuntu 22.04 environment. Download the
large_dataset.tar.gz and unpack it.
How to: Please refer to the Table 5 replication steps on
our github1.
Results: Run the show_table.py script from our github1

to interpret the results.

A.5 Notes on Reusability
Operation Mango is built upon angr and can be extended for
other static analysis tasks. The base mango can be used for
non-firmware static analysis out of the box.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 449

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

