
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

A Formal Analysis of SCTP:
Attack Synthesis and Patch Verification

Jacob Ginesin, Max von Hippel, Evan Defloor, and Cristina Nita-Rotaru,
Northeastern University; Michael Tüxen, FH Münster

https://www.usenix.org/conference/usenixsecurity24/presentation/ginesin

USENIX Security ’24 Artifact Appendix: A Formal Analysis of SCTP:
Attack Synthesis and Patch Verification

Jacob Ginesin
ginesin.j@northeastern.edu

Northeastern University

Max von Hippel
vonhippel.m@northeastern.edu

Northeastern University

Evan Defloor
defloor.e@northeastern.edu

Northeastern University

Cristina Nita-Rotaru
c.nitarotaru@northeastern.edu

Northeastern University

Michael Tüxen
tuexen@fh-muenster.de

FH Münster

A Artifact Appendix

A.1 Abstract

SCTP is a transport protocol offering features such as multi-
homing, multi-streaming, and message-oriented delivery. A re-
cent vulnerability, reported in CVE-2021-3772, showed SCTP
is not immune to attacks. The protocol was patched to address
the vulnerability in RFC 9260. In this artifact, we formally
model SCTP with and without the patch, and specify ten Lin-
ear Temporal Logic (LTL) correctness properties for it in
PROMELA. Using SPIN, we show that in the absence of an at-
tack, the protocol satisfies all ten correctness properties, with
or without the patch. We then define four attacker models,
specifying the placement and capabilities of an attacker: Off-
Path, On-Path, Evil-Server, and Replay. We modify the attack
synthesis tool KORG to support our SCTP model and use it to
show that the CVE attack can be automatically synthesized in
the version of the model without the patch, but is not possible
once the patch is applied. In the four attacker models we study
and across the ten properties we define, we find that the patch
does not introduce any new vulnerabilities. We do not find any
other Off-Path attacks besides the one reported in the CVE,
and although we do find attacks in the other attacker models,
SCTP was not designed to be secure in these, so we only
report them to understand how the security of SCTP degrades
for successively more powerful attacker types. Finally, we
identify two ambiguities in the RFC 9260 text. For each one,
consulting with the lead SCTP RFC author, we determine the
correct interpretation, and then model the incorrect version
and attack it with KORG. We find that both enable vulnerabil-
ities if misinterpreted and we suggest a textual fix for each
in the form of RFC errata, of which one was accepted so far.
Accordingly, the artifact consists of the SCTP model (with a
boolean to enable or disable the patch), ten LTL correctness
properties, four attacker models, modifications we made to
KORG to support SCTP, and scripts to reproduce our results.

A.2 Description & Requirements
Our software has been tested and confirmed to run (and repro-
duce our results) on a 16GB M1 Macbook Air (natively), a
36GB M3 Macbook Pro (in Docker, in an image with 16GB
of RAM), and on two comparable Intel Linux machines each
with >16GB of RAM (running Linux Mint and Arch Linux,
respectively). Generally, the results should be easily repro-
ducible on any modern Linux-based laptop with at least 16GB
of RAM.

A.2.1 Security, privacy, and ethical concerns

There are no risks to running the code.

A.2.2 How to access

The code is available at
https://github.com/sctpfm/sctpfm/tree/usenix.
The officially submitted version is git commit
1a0d9e5333b9c3e21de3d1682855cb2f8f1b8aa3.

A.2.3 Hardware dependencies

The the code requires at least 16GB of RAM. If the code is
run inside the Docker image, the image should be configured
with 16GB of RAM.

A.2.4 Software dependencies

The code is most easily reproducible using Docker. We pro-
vide a Dockerfile which will build an environment in which
our results can be easily reproduced. However, you can also
build and run the software by repeating the steps outlined in
the Dockerfile on your local machine.

A.2.5 Benchmarks

None.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 195

A.3 Set-up
To run using Docker, you need to install Docker on your
machine, then build the included Dockerfile. The entrypoint
for the Dockerfile is bash, which you can use to interact with
the included Makefile. The Makefile has targets to reproduce
each result.

A.3.1 Installation

Simply clone the repository and build the Dockerfile.

A.3.2 Basic Test

Upon building the Dockerfile, e.g., docker build . -t
sctpfm, run it, e.g., docker run -it sctpfm, and then in
bash inside the Docker image, run make sctpOffPath. This
will reproduce our Off-Path results. Once it terminates, you
can ls out to find folders with the output attacks.

A.4 Evaluation Workflow
Once you’ve built the Docker image and entered it, use the
following Makefile targets.

sctpOffPath: Generates the Off-Path attacks for all 10
properties, with and without the patch.

sctpEvilServer: Generates the Evil-Server attacks for all
10 properties, with and without the patch.

sctpOnPath: Generates the On-path attacks for all 10 prop-
erties, with and without the patch.

sctpReplay: Generates the Replay attacks for all 10 prop-
erties, with and without the patch.

In addition, you can generate attacks against the first ambigu-
ity by running:

python3 korg/Korg.py \
--model=demo/SCTP/ambiguity1/SCTP-9260.pml \
--phi=demo/SCTP/ambiguity1/phi.pml \
--Q=demo/SCTP/ambiguity1/Q.pml \
--IO=demo/SCTP/ambiguity1/IO.txt \
--max_attacks=10 \
--with_recovery=true \
--name=ambiguity1 \
--characterize=false

or for the second by running:

python3 korg/Korg.py \
--model=demo/SCTP/ambiguity2/SCTP-9260.pml \
--phi=demo/SCTP/ambiguity2/phi.pml \
--Q=demo/SCTP/ambiguity2/Q.pml \
--IO=demo/SCTP/ambiguity2/IO.txt \
--max_attacks=10 \

--with_recovery=true \
--name=ambiguity2 \
--characterize=false

Once you’ve produced all the attacks you can analyze them
by looking at the resulting attacker code saved in out inside
the Docker image.

A.4.1 Major Claims

(C1): We find the CVE attack using the Off-Path model when
the patch is disabled. We do not find any other Off-Path
attacks with or without the patch.

(C2): When the patch is enabled, no attacks are found which
were not found with it disabled.

(C3): We find an attack with each ambiguity.

A.4.2 Experiments

Running all of the targets in the Makefile, inside the Docker
image, should reproduce the results saved in the results di-
rectory of our artifacts (or produce equivalent outputs). Doing
this from start to finish might take 24 hours. Note, the targets
cannot be run simultaneously; you must wait until one finishes
before running the next. This is for two reasons. First, SPIN
creates intermediary files, and if two SPIN instances are run
at once in the same folder, one can gobble the files created by
the other, leading to crashes or unsound results. And second,
model checking involves constructing and storing a large state
space in memory, an operation that is inherently difficult and
out of the scope of this project to parallelize.

A.5 Notes on Reusability
The improvements we made to KORG, included in the
korg-changes folder, will be merged into the main KORG
codebase in a pull request following the publication of this
paper. KORG has been used in multiple research projects and
so this contribution helps improve its functionality for future
work.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

196 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

