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A Artifact Appendix

A.1 Abstract
This artifact contains (i) our three datasets; (ii) the imple-
mentation code for PFS as well as the algorithms to which
we compare, BDK, MVMD-D, and PwoD; and (iii) the code
needed to reproduce the results presented in our paper. The
source code for each algorithm is provided in separate Python
scripts and each experiment is provided as a Jupyter notebook.
This document describes how to obtain our artifact, setup the
needed packages, and reproduce our results.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

PFS leverages the Gurobi Optimizer package for Python,
which requires a license to activate after downloading. If an
evaluator does not already have access to a licensed instance
of Gurobi, then a free academic license can be obtained after
registering an account with Gurobi. Aside from this poten-
tial privacy consideration, our artifact has no other security,
privacy, or ethical concerns.

A.2.2 How to access

Our artifact can be accessed on GitHub at https://github.
com/pranay-jain/constrained-padding-sequences/
releases/tag/1.0.0 or via DOI at https://doi.org/
10.5281/zenodo.13119687.

A.2.3 Hardware dependencies

We recommend that our artifact be run on a computer with
a multi-core CPU and at least 16GB of RAM. As a point of
reference, this artifact was developed on an Apple MacBook
Pro with an M1 CPU (8 cores) and 16GB of RAM.

A.2.4 Software dependencies

All of the Python packages that are required to use our datasets
and code are listed in the requirements.txt file that is in-

cluded in our artifact. This file is formatted so that it can be
run with either the pip or pip3 command to install all needed
packages (see Sec. A.3.1 for more information).

A.2.5 Benchmarks

The datasets required to reproduce our results are provided as
part of this artifact.

A.3 Set-up

A.3.1 Installation

We recommend the following steps to install our artifact.

1. Create and activate a new Python virtual environment,
e.g., conda, virtualenv, or venv.

2. Navigate to our artifact (see Sec. A.2.2), download the
ZIP file, and extract all files. Alternatively, you can clone
the entire GitHub repository for an up-to-date version.

3. Navigate into constrained-padding-sequences/
and install the required Python packages using the fol-
lowing command (replace pip with pip3 for python3
environments):
pip install -r requirements.txt

4. If you do not already have access to Gurobi, then you
will need to activate the instance of gurobipy with a
license. In that case, our recommendation is to obtain an
Academic Named-User License.1

A.3.2 Basic Test

Perform the following steps to verify that installation was
successful.

1Instructions for how to obtain a Gurobi academic li-
cense can be found at https://www.gurobi.com/academia/
academic-program-and-licenses/. Note that the final step of ob-
taining a Gurobi license requires you to activate the license while connected
to your academic network. The README included with our artifact provides
additional details for this step.
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1. From a command line, navigate into:
constrained-padding-sequences/experiments/

2. Start Jupyter Notebook with the following command:
jupyter notebook

3. Within Jupyter Notebook, open the following notebook:
fig2.ipynb

4. Once the notebook opens, run the notebook with:
Kernel > Restart Kernel and Run All Cells

5. Verify that the resultant figures match Fig. 2 in our paper.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Compared to BDK, PFS provides better I
(
~S;~Y

)
for a

much lower cmax. This is proven by experiment (E1) de-
scribed in Sec. 5.3 whose results are illustrated in Fig. 2.

(C2): Compared to MVMD-3, PFS provides roughly the
same, and in some cases much better, `avg for a much
lower cmax. This is proven by experiment (E2) described
in Sec. 5.3 whose results are illustrated in Fig. 3.

(C3): Compared to both BDK and MVMD-3, PFS provides
better I∞

(
~S;~Y

)
for a much lower cmax. Compared to

PwoD, PFS generally provides better I∞

(
~S;~Y

)
for the

same ctgt (on the Wikipedia dataset, PwoD and PFS

provide comparable I∞

(
~S;~Y

)
). This is proven by ex-

periment (E3) described in Sec. 5.4 whose results are
illustrated in Fig. 4 and Fig. 5.

(C4): When assessing an adversary’s precision and recall
as it predicts sequences of objects by observing their
padded sizes, PFS is consistently either among the top
performers or beats the other algorithms by a wide mar-
gin. This is proven by experiment (E4) described in
Sec. 5.5 whose results are illustrated in Fig. 6, Fig. 7,
and Fig. 8.

(C5): PFG is a competitive alternative to PFS in those in-
stances where an object store is unable to generate ~S
or doing so is too costly. This is proven by experiment
(E5) described in Sec. 6.2 whose results are illustrated
in Fig. 11.

A.4.2 Experiments

(E1): [2 human-minutes + 5 compute-minutes]:
How to: Run fig2.ipynb within Jupyter notebook.
Preparation: None.
Execution: Once the notebook opens, run it with:
Kernel > Restart Kernel and Run All Cells
Results: The resultant figures should match Fig. 2.

(E2): [10 human-minutes + 20 compute-minutes]:

How to: Run fig3.ipynb three times within Jupyter
notebook (once for each dataset).
Preparation: Prior to running the notebook, locate the
cell where datasets are set. Uncomment only the dataset
you plan to evaluate.
Execution: After the correct dataset has been uncom-
mented, run the notebook with:
Kernel > Restart Kernel and Run All Cells
Results: The resultant figures should match Fig. 3.

(E3): [10 human-minutes + 20 compute-minutes]:
How to: Run fig4-5-11.ipynb four times within
Jupyter notebook (once for each dataset).
Preparation: Prior to running the notebook, locate the
cell where datasets are set. Uncomment only the dataset
you plan to evaluate.
Execution: After the correct dataset has been uncom-
mented, run the notebook with:
Kernel > Restart Kernel and Run All Cells
Results: The resultant figures should match Fig. 4 and
Fig. 5.

(E4): [2 human-minutes + 10 compute-minutes]:
How to: Run fig6-7-8.ipynb within Jupyter note-
book.
Preparation: None.
Execution: Once the notebook opens, run it with:
Kernel > Restart Kernel and Run All Cells
Results: The resultant figures should match Fig. 6,
Fig. 7, and Fig. 8.

(E5): [5 human-minutes + 10 compute-minutes]:
How to: Run fig4-5-11.ipynb two times within
Jupyter notebook (once for each dataset).
Preparation: Prior to running the notebook, locate the
cell where datasets are set. Uncomment only the dataset
you plan to evaluate. For this experiment, use the Auto-
complete and Wikipedia datasets.
Execution: After the correct dataset has been uncom-
mented, run the notebook with:
Kernel > Restart Kernel and Run All Cells
Results: The resultant figures should match Fig. 11.

A.5 Notes on Reusability
Our artifact contains the files load_dataset.py and pfs.py
which provide access to our three datasets and to PFS, re-
spectively. We encourage others to use them in their own
research.2

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

2Our artifact is licensed under the MIT License.
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