
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

BeeBox: Hardening BPF against
Transient Execution Attacks

Di Jin, Alexander J. Gaidis, and Vasileios P. Kemerlis, Brown University
https://www.usenix.org/conference/usenixsecurity24/presentation/jin-di

USENIX Security ’24 Artifact Appendix
BeeBox: Hardening BPF against Transient Execution Attacks

Di Jin
Brown University

Alexander J. Gaidis
Brown University

Vasileios P. Kemerlis
Brown University

A Artifact Appendix

A.1 Abstract
This is the artifact appendix for BeeBox: a new security archi-
tecture that hardens BPF against transient execution attacks.
This appendix contains instructions about how to setup, run,
and reproduce the results of BeeBox, along with information
regarding system and resource requirements.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact consists of scripts for setting up QEMU/KVM
virtual machines (VMs) for reproducing the main experiments
of BeeBox. The majority of operations on the host are un-
privileged, except for a handful required to create a Debian
Linux root file system that is shared across the VMs. These
privileged operations are all contained in syzkaller’s script,
create-image.sh. We recommend enabling password-less
sudo while running the script to streamline its execution.

A.2.2 How to access

Our artifact is publicly available on GitLab.
• Repository: https://gitlab.com/brown-ssl/beebox-ae
• Stable commit: be43784928ba43f0

The BeeBox Linux kernel is also publicly available on GitLab.
• Repository: https://gitlab.com/brown-ssl/beebox-linux
• Stable commit: 29e4d7de943cb43c

A.2.3 Hardware dependencies

The current prototype of BeeBox requires a machine equipped
with a 64-bit x86 processor and at least 32GB of storage space.
Additionally, while not a hard requirement, we recommend
the machine has at least 4 CPU cores and 8GB of RAM.

A.2.4 Software dependencies

The artifact infrastructure depends on a three main packages:
• QEMU (KVM accelerated): for virtualizing the testing

and benchmarking environment.

• SSH: for controlling the running VMs.
• Python3: for various scripting tasks.

On Debian GNU/Linux, these packages can be installed with:

$ sudo apt-get install qemu-system-x86 \
openssh-client python3

Additionally, Python packages numpy and pyparsing are re-
quired for summarizing benchmark results; these can be in-
stalled by running the following in the root of the artifact
repository:

$ pip install -r requirements.txt

To check that KVM acceleration is available, the
cpu-checker package can be installed and the kvm-ok pro-
gram should be executed, as follows:

$ sudo apt-get install cpu-checker
$ sudo kvm-ok
INFO: /dev/kvm exists
KVM acceleration can be used

When building the kernel variants from source the follow-
ing build dependencies need to be satisfied as well (on Debian
GNU/Linux):

$ sudo apt-get install build-essential bc kmod \
cpio flex libncurses5-dev libelf-dev \
libssl-dev dwarves bison

All other software dependencies—e.g., the BeeBox Linux
kernel, Katran, memtier, sysfilter, Nginx, and Redis—are
either included in the artifact repository as (stable) Git sub-
modules or installed during the setup phase of the root file
system. In both cases, everything is handled automatically
and no additional work is required.

A.2.5 Benchmarks

This artifact provides three synthetic exploits and five bench-
marks, corresponding to those found in Section 7 of the paper.
In particular:

• exploit: a set synthetic programs demonstrating the
effectiveness of BeeBox (§7.1.2); source code at
bpf_test/defense_effectiveness.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 39

https://gitlab.com/brown-ssl/beebox-ae
https://gitlab.com/brown-ssl/beebox-ae/-/tree/be43784928ba43f09eeb31f98cff70b9fc1e4a3d
https://gitlab.com/brown-ssl/beebox-linux
https://gitlab.com/brown-ssl/beebox-linux/-/tree/29e4d7de943cb43cbbe7189c50ad3825ca787846

• micro: a set of microbenchmarks (§7.2.1); source code
at bpf_test/micro_benchmark.

• katran: a real-world eBPF benchmark (§7.2.2); source
code at katran.

• filter: a packet filtering benchmark (§7.2.2); source
code at bpf_test/cbpf_socket_benchmark.

• nginx: a syscall filtering benchmark (§7.2.2); source
code at bpf_test/seccomp_benchmark/nginx_test.

• redis: a syscall filtering benchmark (§7.2.2); source
code at bpf_test/seccomp_benchmark/redis_test.

A.3 Set-up
To reproduce the paper’s major claims, we recreated the bare-
metal benchmarking environment used in the paper with vir-
tualization (i.e., QEMU/KVM). At a high-level, we first build
four custom Linux kernels, namely:

• vanilla: a stock Linux kernel with some Spectre-PHT
defenses disabled to allow Katran to run. Note that ex-
periments with the LPM also use this kernel, but with
defenses turned on.

• hardened: an implementation of BeeBox-RC.
• optimized: an implementation of BeeBox-CP and

BeeBox-RB for socket filtering and XDP, respectively.
• synthetic: an exploit showcase; modifies the kernel to

simulate an attacker’s side-channel capabilities.
Then, we create a single root file system (shared across all
VMs) that contains all of the benchmarks and scripts required
to evaluate BeeBox. Finally, we virtualize these components
to get an environment to reproduce BeeBox’s results.

A.3.1 Installation

Prebuilt. To simplify evaluating BeeBox, we pro-
vide a prebuilt benchmarking environment that can be
used as is (i.e., no building and installing). To use it,
simply download the respective archive from Zenodo
(https://zenodo.org/records/12212612/files/prebuilt.tar.gz)
and decompress it. For example:

$ wget https://zenodo.org/records/12212612/\
files/prebuilt.tar.gz
$ tar -xzf prebuilt.tar.gz

Note that the prebuilt environment contains the entirety of the
artifact repository, so if this option is chosen, there is no need
to clone the beebox-ae repository from GitLab.

From scratch. To build the three kernels from scratch, enter
the root of the artifact repository and run:

$./scripts/build_kernels.sh

Then, to build the root file system from scratch, run:

$./scripts/builds_rootfs.sh

After running these two commands, a root file system image
and four built kernels will be found in the build directory.
The installation process requires roughly 20GB of disk space;
while compilation times vary by machine, an estimate based
on our machine (8-core, 3.7GHz Intel Xeon W-2145 CPU
with 64GB of DDR4 RAM) is roughly 1–2 hours.

A.3.2 Basic test

After the installation is complete, a shell to a VM running a
stock kernel (i.e., the vanilla kernel with no hardening) can
be obtained via:

$./scripts/run.sh vanilla

Successfully entering the VM with this command will en-
sure that the environment is setup correctly. The vanilla
kernel configuration can also be swapped out for alternate
configurations—namely, lpm, hardened, and optimized—
to perform a more thorough “basic” test. Changes to the VMs
do not persist across invocations (QEMU is invoked with
-snapshot), so feel free to poke around!

A.4 Evaluation workflow
We have automated the evaluation workflow via the script
scripts/run.sh (see its “help” menu for a complete sum-
mary of options). While the experiment descriptions below
(§A.4.2) detail how to use this script to run each experiment
individually, all experiments can also be batched together and
run automatically via:

$./scripts/run.sh everything

This should take roughly 15–20 minutes to complete, produc-
ing results in both standard output and the results directory.
At the end, it will also run script/summary.py to pretty-
print tables summarizing the results.

Please note that while we use QEMU/KVM to recreate
the environment used in the paper, the benchmark numbers
presented in Section 7 of the paper were collected on bare-
metal. As a result, there might be slight discrepancies between
the reproduced results and those in the paper; however, overall
trends should remain consistent.

A.4.1 Major Claims

(C1): BeeBox mitigates speculative execution attacks
launched from BPF programs. This is demonstrated by
the experiment (E1) described in Section 7.1.2, whose
results are illustrated in Table 1. In particular, BeeBox
mitigates Spectre-PHT in BPF code and helpers, as well
as Spectre-STL in BPF code.

(C2): BeeBox is more performant than the LPM for stack
load and store operations and Spectre-STL. This is
shown by the microbenchmarks in the experiment (E2)
described in Section 7.2.1 with results shown in Figure 4.

40 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://zenodo.org/records/12212612/files/prebuilt.tar.gz

(C3): BeeBox is more performant than the LPM in real-world
eBPF programs. This is shown by benchmarking Ka-
tran’s load balancer in the experiment (E3) described in
Section 7.2.2, whose results are shown in Figure 5.

(C4): BeeBox exhibits < 1% throughput degradation in end-
to-end, real-world settings that involve packet filtering
and seccomp-BPF. This is shown by the experiments
(E4 and E5) described in Section 7.2.2, whose results
are illustrated in Table 2.

A.4.2 Experiments

(E1): [Exploit Mitigation] [5 human-minutes + ≈ 0 compute-
hours + < 1GB disk]: demonstrates the defense effec-
tiveness of BeeBox by showing it stops three synthetic
exploits making speculative, out-of-bound accesses.
How to: This experiment demonstrates the effective-
ness of BeeBox via three synthetic exploits that run on
the synthetic and optimized kernel configurations
against no defenses, the LPM, and BeeBox. The exploits
rely on a custom kernel module that simulates an at-
tacker making speculative out-of-bounds accesses. This
experiment corresponds to the description presented in
Section 7.1.2. The source code for the test can be found
in bpf_test/defense_effectiveness, which should
already be copied in the root file system image.
Preparation: None.
Execution: First, run all exploits on an undefended ker-
nel. To do this, enter the synthetic kernel with exploits
initialized by running the following:

$./scripts/run.sh synthetic exploit

This will drop you into a shell. Verify that the exploit-
helper kernel module, named ctest, is loaded:

(vm)$ lsmod
Module Size Used by
ctest 16384 0

Then, enter the bpf_test/defense_effectiveness
directory and run the three exploits without any defenses:

(vm)$ sudo ./pht_exp
(vm)$ sudo ./stl_exp
(vm)$ sudo ./pht_helper_exp

Save the output of these three commands, and then run
them again without sudo to enable the LPM defenses:

(vm)$./pht_exp
(vm)$./stl_exp
(vm)$./pht_helper_exp

Save the output of these three commands, and poweroff
the VM. Next, run the exploits against a BeeBox-
hardened kernel by booting into a BeeBox VM:

$./scripts/run.sh optimized exploit

As before, check that the kernel mod-
ule is installed, and then navigate to the
bpf_test/defense_effectiveness directory
and run the exploits:

(vm)$./pht_exp
(vm)$./stl_exp
(vm)$./pht_helper_exp

Save the output of these three commands.
Result: When a synthetic exploit succeeds (i.e., de-
fenses fail), it means that out-of-bounds memory is ac-
cessed speculatively, which is determined by timing the
reload of the memory. The corresponding output should
look like:

(vm)$ sudo ./pht_exp
[+] reload takes 64 cycles,

in-cache reload takes 66 cycles
[+] Speculative out-of-bound access succees!

If a defense successfully blocks an exploit, the corre-
sponding output should look like:

(vm)$./pht_exp
[+] reload takes 318 cycles,

in-cache reload takes 56 cycles
[-] Speculative out-of-bound access fail!

An undefended kernel fails to block all three exploits;
against LPM only pht_helper_exp succeeds; and
against BeeBox all exploits are defeated. Note that the
Spectre-PHT attacks have a high probability of success,
while Spectre-STL attacks may need to run multiple
times to succeed. To get more consistent results, try to
run the experiments multiple times. For example:

(vm)$ for i in {1..100}; do sudo ./stl_exp; \
done | grep -q "succeed" && \
echo "succeed" || echo "fail"

(E2): [Microbenchmarks] [1 human-minute + 0.1 compute-
hour + < 1GB disk]: run a suite of microbenchmarks
across four kernel configurations. Expect the LPM over-
head for the stack benchmark to be more than 250%.
How to: This experiment runs a microbenchmark
across the vanilla, LPM, BeeBox-RC, and BeeBox-CP
kernel configurations, corresponding to the description
in Section 7.2.1 and results presented in Figure 4.
The source code for the benchmarks can be found in
bpf_test/micro_benchmark, which should already be
copied into the root file system image.
Preparation: Enter the repository root and ensure that
the host machine is sufficiently quieted.
Execution: Select the micro test option of the run.sh
script for each kernel configuration to run the benchmark
and store the results:

$./scripts/run.sh vanilla micro
$./scripts/run.sh lpm micro
$./scripts/run.sh hardened micro
$./scripts/run.sh optimized micro

Each command will print raw results to standard output.
Results: To summarize and pretty-print the results, run:

$./scripts/summary.py micro

The results should show that LPM for the stack bench-
mark has significant overhead (> 250% in our testing),

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 41

much higher than the other schemes, while BeeBox’s
overhead is higher in other benchmarks, but of smaller
magnitude. Further, optimized kernel configuration
(BeeBox-CP) should have less (average) overhead when
compared to the hardened configuration (BeeBox-RC).

(E3): [Katran Benchmark] [1 human-minute + 0.1 compute-
hour + < 1GB disk]: benchmark Katran’s load balancer
across four kernel configurations. Expect the LPM con-
figuration to exhibit higher than 100% overhead, the
hardened configuration around 50–80% overhead, and
the optimized configuration exhibits 15–30% overhead.
How to: This experiment benchmarks Katran’s load
balancer XDP eBPF program across the vanilla, LPM,
BeeBox-RC, and BeeBox-RB kernel configurations, cor-
responding to the description in Section 7.2.2 and results
presented in Figure 5. The source code for the bench-
marks can be found in katran, which should already be
copied into the root file system image and built.
Preparation: Enter the repository root and ensure that
the host machine is sufficiently quieted.
Execution: Select the katran test option of the run.sh
script for each kernel configuration to run the benchmark
and store the results:

$./scripts/run.sh vanilla katran
$./scripts/run.sh lpm katran
$./scripts/run.sh hardened katran
$./scripts/run.sh optimized katran

Each command will print raw results to standard output.
Results: To summarize and pretty-print the results, run:

$./scripts/summary.py katran

The results should show that the LPM configuration
incurs around 100% overhead, the hardened configu-
ration incurs (BeeBox-RC) around 50% overhead, and
the optimized configuration (BeeBox-RB) exhibits less
than 20% overhead.

(E4): [Filter Benchmark] [1 human-minute + 0.2 compute-
hour + < 1GB disk]: benchmark the performance of raw
socket filtering using cBPF with the BeeBox-CP scheme.
Expect to see overhead < 1%.
How to: This experiment benchmarks the performance
of raw socket filtering using cBPF for the BeeBox-
CP scheme. It corresponds to the description in
Section 7.2.2 and the results in Table 2a. The
source code for this experiment can be found in
bpf_test/cbpf_socket_benchmark, which should al-
ready be copied into the root file system.
Preparation: Enter the repository root and ensure that
the host machine is sufficiently quieted.
Execution: Select the filter test option of the run.sh
script for the vanilla and optimized kernel configura-
tions to run the benchmark and store the results:

$./scripts/run.sh vanilla filter
$./scripts/run.sh optimized filter

Each command will print raw results to standard output.

Results: To summarize and pretty-print the results, run:
$./scripts/summary.py filter

The results should show that the optimized version of
BeeBox (BeeBox-CP) incurs < 1% overhead across the
benchmark programs.

(E5): [Seccomp-BPF Benchmark] [1 human-minutes +
0.3 compute-hours + < 1GB disk]: benchmark BeeBox’s
performance impact on seccomp-BPF for Nginx and
Redis. Expect the throughput degradation of both appli-
cations to be < 1%.
How to: This experiment benchmarks the performance
of syscall filtering with seccomp-BPF across Nginx
and Redis for the optimized BeeBox scheme. It cor-
responds to the description in Section 7.2.2 and the
results in Table 2b. The source code for this experi-
ment can be found in bpf_test/seccomp_benchmark,
which should already be copied into the root file system.
Preparation: Enter the repository root and ensure that
the host machine is sufficiently quieted.
Execution: Select the nginx and redis test options
of the run.sh script for the vanilla and optimized
kernel configurations to run the benchmark and store the
results:

$./scripts/run.sh vanilla nginx
$./scripts/run.sh optimized nginx
$./scripts/run.sh vanilla redis
$./scripts/run.sh optimized redis

Each command will print raw results to standard output.
Results: To summarize and pretty-print the results, run:

$./scripts/summary.py seccomp

The results should show that the optimized version of
BeeBox incurs < 1% throughput degradation across the
benchmark programs.

A.5 Notes on Reusability
To drop into a shell in one of the running kernels, the following
command can be used:

$./scripts/run.sh [config] shell

where config is one of ‘vanilla’, ‘lpm’, ‘hardened’,
‘optimized’, or ‘synthetic’.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

42 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

