
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Practical Data-Only Attack Generation
Brian Johannesmeyer, Asia Slowinska, Herbert Bos, and

Cristiano Giuffrida, Vrije Universiteit Amsterdam
https://www.usenix.org/conference/usenixsecurity24/presentation/johannesmeyer

USENIX Security ’24 Artifact Appendix: Practical Data-Only Attack Generation

Brian Johannesmeyer Asia Slowinska Herbert Bos Cristiano Giuffrida

Vrije Universiteit Amsterdam

A Artifact Appendix

A.1 Abstract
In this artifact, we provide the means to reproduce our main
results. Specifically, we show that our exploitation pipeline,
EINSTEIN, identifies vulnerable syscalls across a range of
applications, and that it generates working data-only exploits
against nginx. We have evaluated our artifact using an AMD
Ryzen 9 3950X CPU (32 cores), with 128GB of RAM, 4 TB
storage, and running Ubuntu 22.04.3 LTS (kernel v6.2). Our
source code is available on GitHub1.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Although EINSTEIN indeed produces working exploits, they
are non-destructive proof-of-concept exploits, which write the
string "HELLO" to either a file ("/tmp/hi") or a local socket
(address "192.0.2.0"). Hence, evaluating EINSTEIN poses
no risks for machine security, data privacy, or other ethical
concerns.

A.2.2 How to access

The files for the artifact evaluation are available at the ae tag
of the EINSTEIN repository2.

A.2.3 Hardware dependencies

EINSTEIN requires an x86-64 machine (Intel recommended);
enough RAM to simultaneously load multiple program snap-
shots into memory, so EINSTEIN can post-process reports in
parallel (recommended 100 GB RAM); and enough storage
for hundreds of program snapshots (minimum 2 TB stor-
age for this evaluation). We recommend using a machine
with a high core count to speed up EINSTEIN’s report post-
processing.

1https://github.com/vusec/einstein/
2https://github.com/vusec/einstein/releases/tag/ae

A.2.4 Software dependencies
To build EINSTEIN and the target programs, we expect certain
packages to be installed. In the Section A.3, we detail the steps
to install such dependencies on Ubuntu 22.04, but similar
steps are needed for other distributions.

A.2.5 Benchmarks
We use each target application’s test suite to drive the analysis.

A.3 Set-up
To download and install dependencies, including go-task as
a task-runner, from the EINSTEIN repository, run: sudo snap

install task --classic && task init.

A.3.1 Installation

To build libdft3, the command server, the EINSTEIN
tool, and all target applications, run: task libdft-build

cmdsvr-build einstein-build apps-build.

A.3.2 Basic Test
We first make a couple notes about running EINSTEIN:

• Due to the non-deterministic nature of dynamic analysis
(from concurrency issues, system variability, etc.)4, the
actual results may slightly deviate from the expected
results.

• If the db-analyze-reports task fails, try running the
db-analyze-reports-singleproc task instead. It will be
slower, but will avoid any system load-related crashes.

Test that the different components work as follows:
(T1): libdft memory tainting [1 compute-second].

To test libdft’s “taint all memory” functionality, run
task libdft-test -- memtaint and compare its
output to the expected output.

3https://github.com/vusec/libdft64-ng
4See “Deterministic Process Groups in dOS” (OSDI 2010) and “Node.fz:

Fuzzing the Server-Side Event-Driven Architecture” (EuroSys 2017).

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 89

https://github.com/vusec/einstein/
https://github.com/vusec/einstein/releases/tag/ae
https://taskfile.dev/#/installation
https://github.com/vusec/libdft64-ng/blob/master/tests/memtaint.expected.out
https://github.com/vusec/libdft64-ng

(T2): libdft instruction tainting [1 compute-second].
To test libdft’s per-instruction taint policies, run task

libdft-test -- ins and compare its output to the
expected output.

(T3): EINSTEIN tool [1 compute-minute].
To test EINSTEIN on a simple program, run task

einstein-test. Then, compare the output of task
db-print-candidates with the expected output.

(T4): Target applications [4 compute-minutes].
To test EINSTEIN running each target application with a
simple workload (e.g., sending a simple GET request to a
web server), run task reports-clean apps-test

db-add-reports db-analyze-reports. Then,
compare the output of task db-print-candidates

with the expected output.
(T5): Target application test suites [20 compute-minutes].

To test EINSTEIN running each target ap-
plications’ test suites for 2 minutes each
(rather than the entire test suites), run
task reports-clean apps-eval-brief

db-add-reports db-analyze-reports. Then,
compare the output of task db-print-candidates

with the expected output.
(T6): Exploit confirmation [2 compute-minutes].

To test EINSTEIN’s exploit con-
firmation for nginx, run task

reports-clean einstein-nowrite-config

nginx-eval-custom db-add-reports

db-analyze-reports db-analyze-candidates.
Then, compare the output of task

db-print-exploits with the expected output.

A.4 Evaluation workflow

A.4.1 Major Claims

We make the following claims:
(C1): EINSTEIN identifies thousands of vulnerable syscalls

in common server applications. This is proven by Exper-
iment (E1).

(C2): EINSTEIN generates hundreds of working exploits
against nginx. This is proven by Experiment (E2).

A.4.2 Experiments

We prove the above claims using the following experiments:
(E1): Vulnerable syscall identification [24 compute-hours].

How to: We will run each application with EINSTEIN,
then analyze the reports to identify vulnerable syscalls.
Preparation: Run task reports-clean to remove
past reports.
Execution: Run task apps-eval

db-add-reports db-analyze-reports.
Results: Compare the output of task

db-print-candidates to the expected output.
The output contains thousands of vulnerable gadgets,

broken down by: (i) syscall and argument type (i.e., Ta-
ble 3), and (ii) target application (i.e., Table 4)—thereby
proving Claim (C1).

(E2): Exploit generation [12 compute-hours].
How to: We will run nginx with EINSTEIN, then an-
alyze the reports to identify vulnerable syscalls, then
confirm candidate exploits as working exploits.
Preparation: Run task reports-clean to remove
past reports.
Execution: Run task nginx-eval

db-add-reports db-analyze-reports

db-analyze-candidates.
Results: Compare the output of task

db-print-exploits to the expected output. The
output contains hundreds of confirmed exploits for
nginx (i.e., Table 5)—thereby proving Claim (C2).

A.5 Notes on Reusability
This prototype may be expanded in a few directions:

• To modify EINSTEIN’s taint policies (e.g, to target more
syscalls, or to target syscall-guard variables), modify the
EINSTEIN tool in src/einstein.

• To run the target applications (e.g., nginx) with
other workloads, first start the application with
EINSTEIN (cd apps/nginx-1.23.0 && RUN_EINSTEIN=1

./serverctl restart), then run the custom workload
(e.g., echo 'Hello!' | netcat 127.0.0.1 1080).

• To run EINSTEIN on other applications:

1. Add the application to the apps/ directory;

2. Copy the files serverctl and clientctl from an-
other application’s directory into its directory, and
modify them to start the application’s server and a
client for it; and

3. Ensure that the application’s build script generates
position-independent code (i.e., the default on most
compilers).

• To write another Pin tool that uses libdft:

1. Copy the EINSTEIN tool, e.g.: cp -r

src/einstein src/my-tool;

2. Modify MY_TOOL and MY_OBJS in the Makefile;

3. Modify the source code to suite your analysis;

4. Build it: cd src/my-tool && -DLIBDFT_TAG_PTR

-DLIBDFT_PTR_32 -DLIBDFT_TAG_SSET_MAX=16'

make obj-intel64/my-tool.so; and

5. Run it on some target ap-
plication: setarch x86_64 -R

./src/misc/pin-3.28-98749-g6643ecee5-gcc-linux/pin

-t src/my-tool/obj-intel64/my-tool.so --

echo 'Hello!'.

90 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/vusec/libdft64-ng/blob/master/tests/ins.expected.out
https://github.com/vusec/einstein/blob/master/apps/tests/src/tainted-syscall.expected.out
https://github.com/vusec/einstein/blob/master/results/reports/expected/apps-test-candidates.expected.out
https://github.com/vusec/einstein/blob/master/results/reports/expected/apps-brief-candidates.expected.out
https://github.com/vusec/einstein/blob/master/results/reports/expected/nginx-custom-exploits.expected.out
https://github.com/vusec/einstein/blob/master/results/reports/expected/apps-candidates.expected.out
https://github.com/vusec/einstein/blob/master/results/reports/expected/nginx-exploits.expected.out
https://www.usenix.org/conference/usenixsecurity23/presentation/ye

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 91

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

