
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Dancer in the Dark: Synthesizing and Evaluating
Polyglots for Blind Cross-Site Scripting

Robin Kirchner, Technische Universität Braunschweig; Jonas Möller, Technische
Universität Berlin; Marius Musch and David Klein, Technische Universität
Braunschweig; Konrad Rieck, Technische Universität Berlin; Martin Johns,

Technische Universität Braunschweig
https://www.usenix.org/conference/usenixsecurity24/presentation/kirchner

USENIX Security ’24 Artifact Appendix: Dancer in the Dark:
Synthesizing and Evaluating Polyglots for Blind Cross-Site Scripting

Robin Kirchner*†, Jonas Möller‡, Marius Musch†, David Klein†, Konrad Rieck‡, Martin Johns†

† Technische Universität Braunschweig, Germany
‡ Technische Universität Berlin, Germany

{robin.kirchner, m.musch, david.klein, m.johns}@tu-braunschweig.de
{jonas.moeller.1, rieck}@tu-berlin.de

A Artifact Appendix

This artifact appendix is meant to be a self-contained docu-
ment that describes a roadmap for evaluating our artifact.

A.1 Abstract
In “Dancer in the Dark: Synthesizing and Evaluating Poly-
glots for Blind Cross-Site Scripting”, we introduced a cross-
site scripting polyglot synthesis approach based on Monte
Carlo tree search (MCTS). To achieve full coverage of our
large XSS testbed, based on the Google Firing Range (GFR),
we designed a generation approach that synthesizes a set of
complementing polyglots.

We have linked our public GitHub repository containing
our code, usage documentation, and troubleshooting. The
code includes instructions on generating polyglots with our
approaches, minimizing a polyglot, and testing polyglots on
the GFR. The repository includes our small and large testbed,
tokens, minimization, and the implementations of all gener-
ation approaches we discuss in Appendix C. To maximize
compatibility, we have containerized the implementation in
a Docker setup. Furthermore, we have added a detailed dis-
cussion of our large GFR-based testbed in Appendix D, ex-
plaining which tests were excluded and why. We have refined
our wording regarding the Minimization process in the main
paper, Section 3, thereby clarifying it.

A.2 Description & Requirements
To facilitate cross-platform support, our artifact is container-
ized with Docker and Docker Compose.

A.2.1 Security, privacy, and ethical concerns

There is no security or privacy risk to be expected when run-
ning our artifact. The generation and testing of XSS polyglots

*Corresponding author

happen on the client side in isolated Docker containers. Uti-
lizing the polyglots you synthesized for any other purposes
exceeds the scope of our research and this artifact. As for
all security testing techniques, we generally advise against
applying the polyglots outside of a controlled environment.

A.2.2 How to access

Our artifact is available on our project’s GitHub
page https://github.com/polyxss/bxss/tree/
4f5f2d1db0480c84f20206066ccf09afd937a307. Please
use git clone or download the project as a zip file. The
URL of the corresponding commit for this artifact submis-
sion is https://github.com/polyxss/bxss/commit/
4f5f2d1db0480c84f20206066ccf09afd937a307.

A.2.3 Hardware dependencies

Docker reports requiring at least 4 GB of RAM, a 64-bit
kernel, and CPU support for virtualization.

Recommendation: In our repository, see Section A.2.2,
we have prepared a compose file for the generation process.
With the given parameters, it takes approximately 5 hours to
conclude a polyglot set generation with Docker confined to 8
GB RAM, 8 CPU cores, and 30 GB of free disk space.

A.2.4 Software dependencies

Our artifact uses Docker and Docker Compose, which are
available for macOS, Linux, and Windows. If Docker is in-
stalled on your machine, you may skip this section.

Our software was tested extensively on macOS and used
productively on Linux-based servers. Below, we compile the
starting points for installing Docker and Docker Compose
on macOS and Ubuntu Linux. Detailed instructions for these
and all other supported operating systems are available on
Docker’s homepage https://docs.docker.com/engine/
install/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 427

https://github.com/polyxss/bxss/tree/4f5f2d1db0480c84f20206066ccf09afd937a307
https://github.com/polyxss/bxss/tree/4f5f2d1db0480c84f20206066ccf09afd937a307
https://github.com/polyxss/bxss/commit/4f5f2d1db0480c84f20206066ccf09afd937a307
https://github.com/polyxss/bxss/commit/4f5f2d1db0480c84f20206066ccf09afd937a307
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

macOS Docker supports the most recent version of macOS,
plus the previous two releases.

macOS with Apple silicon If your Mac runs an Apple Sili-
con chip, e.g., M1, M2, or M3 MacBooks, download the
Docker dmg image directly from Docker. Double-click
the image to start the installation process. It includes the
Docker desktop GUI and Docker Compose so that you
can continue with the next steps.

macOS with Intel chip If your Mac runs an Intel chip, e.g.,
2019, 2020 MacBooks, download the Docker.dmg im-
age from Docker. Double-click the image to start the
installation process. It includes the Docker desktop GUI
and Docker Compose so that you can continue with the
next steps.

Ubuntu Linux For Ubuntu, please follow the installation
instructions from the docker docs. For Linux-based systems,
the software requirements entail:

• KVM virtualization support,
• QEMU version 5.2 or later,
• Gnome, KDE, or MATE Desktop environment.
• Refer to Docker’s complete list of requirements.

A.2.5 Benchmarks

None.

A.3 Set-up
Once you have Docker and Docker Compose installed, you
are ready to go. See Section A.3.1 to learn how to download
the repository and build the project.

A.3.1 Installation

1 a) Installing our project is as easy as cloning a Git repository.
See Figure 1 for the corresponding bash code.

#!/bin/bash
git clone git@github.com:polyxss/bxss.git
cd bxss
mkdir -p data/out/runs
git reset --hard e8c22be

Figure 1: Clone our repository, move into its directory, create
the output folder, and switch to the specific commit.

1 b) If you don’t have Git installed, download the repository
as a .zip file, unpack it, and cd into it. See Figure 2 for the
corresponding commands.

2) You can build the project with Docker Compose. Use
our build script for this task. Building should be fast, but it
depends on your download speed.

#!/bin/bash
Define the repository URL and the commit hash
REPO_URL="https://github.com/polyxss/bxss"
COMMIT_HASH="4f5f2d1db0480c84f20206066ccf09afd937a307"

Download the commit as a zip file
curl -L "${REPO_URL}/archive/${COMMIT_HASH}.zip" -o commit.zip

Unzip the downloaded file
unzip commit.zip

Change directory into the unzipped folder
cd "bxss-${COMMIT_HASH}"

Figure 2: Download our repository as a zip, unpack it, and
move into it.

#!/bin/bash
./scripts/build.sh

A.3.2 Basic Test

Now that you have downloaded and built our repository, you
can start with the functionality tests. We prepared an easy-to-
use starting script in the scripts directory. Call the scripts from
the project’s root directory (where you should be currently in).
For a first basic test, use our ./scripts/1-basic-test.sh
script. This will generate one single polyglot in approxi-
mately a minute. The current run’s output directory is to
data/out/runs/run-<timestamp>/. In the run’s output di-
rectory, a run-<timestamp>/summary/ folder will be cre-
ated, containing the final polyglot set, which consists of one
polyglot in this test.

#!/bin/bash
Quickly create a first polyglot
./scripts/1-basic-test.sh

Note that the actual runtime depends on your available
resources and allocated to Docker. This first test is limited
in its purpose of demonstrating the approach. Our synthe-
sis approach runs MCTS, which inherently has a random
component. The polyglot you are generating is built step by
step and changes (improves) over time. Intermediary steps
and the final step are logged in the run’s output directory
under run-<timestamp>/try-1/best-polyglot/. A fin-
ished synthesis creates a final-polyglots.json file in
run-<timestamp>/summary/. See Figure 3 for the data di-
rectory structure.

To evaluate how good the quickly created polyglot already
is, run the next test and select the run-<timestamp> folder
corresponding to your run, i.e., likely the most recent times-
tamp.

Please confirm that you have at least one final polyglot in
the output directory before continuing with the next steps.

428 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://desktop.docker.com/mac/main/arm64/Docker.dmg?utm_source=docker&utm_medium=webreferral&utm_campaign=docs-driven-download-mac-arm64
https://desktop.docker.com/mac/main/amd64/Docker.dmg?utm_source=docker&utm_medium=webreferral&utm_campaign=docs-driven-download-mac-amd64
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://docs.docker.com/desktop/install/linux-install/#general-system-requirements

#!/bin/bash
Evaluate the created polyglot; follow the

CLI instructions and select the timestamp
of your run

↪→

↪→

./scripts/5-eval.sh

data
example.json
gfr_tests.csv
out

runs
example-run

summary
final-polyglots.json
final-polyglots0-eval.json

run-2023-08-28T13-49-11.354Z
meta.json
summary

final-polyglots.json
final-polyglots0-eval.json
final-polyglots1-eval.json

try-1
best-polyglot

bestOutput-0000000000
bestOutput-0000000050
...
bestOutput-0000000450
bestOutput-00000final

Figure 3: The data directory.

A.4 Evaluation workflow
Now that you have generated a basic polyglot, you could allo-
cate more time to the generation process. We have prepared
four configurations (1) and estimated the required time on a
machine with 8GB RAM and 8 CPU threads.

We prepared an evaluation script (2) that runs polyglots
from the data/out/runs/* directory against the full range
of relevant Google Firing Range (GF) tests. The evaluation
then returns a score.

A.4.1 Polyglot Generation

You can try out the different scripts if you want to spend the
required time. We recommend letting the basic test (a) and
maybe the extended test (b) finish generating polyglot. Thus,
your new polyglots will be evaluated in Section A.4.2.

(a) Basic Test

• Approximate runtime one minute

• Generates a proof-of-concept polyglot

• ./scripts/1-basic-test.sh

(b) Extended Test

• Approximate runtime 15 minutes

• Generated a single polyglot

• ./scripts/2-extended-test.sh

(c) Long Test*

• Approximate runtime 5 hours

• Generated a useable single polyglot

• ./scripts/3-long-test.sh

(d) Polyglot Set*

• Approximate runtime multiple days (2-5 days)

• Generates a polyglot set

• ./scripts/4-set-generation.sh

* Please note that the long test and polyglot set generation
process can take significantly longer than we calculated.

A.4.2 Polyglot Evaluation

Now that you have generated polyglots on the fast testbed,
you can evaluate them on the GFR. The test runs a polyglot
against the GFR tests and counts a test as solved if the polyglot
manages to print xss to the console.

• Approximate runtime <2 minutes

• Evaluates a polyglot against the GFR and prints a score

• ./scripts/5-eval.sh

A.4.3 Cleanup

You may call this script once you have completed the entire
artifact evaluation. It will stop the Docker services.

• Approximate runtime <2 minutes

• Stops the corresponding docker services of this project.

• ./scripts/6-stop.sh

A.4.4 Major Claims

(C1): We propose a method for automatically synthesizing
a small set of XSS polyglots using Monte Carlo tree
search. Allocating sufficient time, this can be reproduced
with Experiment (E1). We show the general approach
in Algorithm 1 of the “Dancer in the Dark” paper and
publish our code with this artifact.

(C2): We show that our polyglots cover all currently known
injection contexts. Allocating sufficient time, this can be
reproduced with Experiment (E1) using the script (4).
However, for the sake of this artifact, it is sufficient to
spend less time on the polyglot generation, which should

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 429

still generate one usable polyglot. The results from our
polyglots are displayed in Figure 4 of the “Dancer in the
Dark” paper.

Please note that, due to ethical reasons, our synthesized
polyglots are not public. However, we open-sourced our
generation technique to facilitate making your own.

A.4.5 Experiments

Here, we provide instructions for an experimental generation
of a polyglot and a polyglot set.
(E1): [Polyglot Generation] [5 human-minutes + 15

compute-minutes]:
How to: Follow Section A.4.1(b) for the approximately
15-minute generation task. Once finished, a polyglot is
written to the run’s summary directory. This step can
be replaced by A.4.1(a-d), depending on the time allo-
cated for this evaluation. Even the shortest generation,
A.4.1(a), will work for the next step.
Preparation: After following the installation instruc-
tions from Section A.3, no further preparation is required.
Per default, the data/run/ directory exists. Make sure
it still exists.
Execution: Run ./scripts/2-extended-test.sh
or another of the scripts in Section A.4.1.
Results: A final-polyglots.json fill will be cre-
ated under run-<timestamp>/summary/. See Figure
4 for an example.

{
"data": [
{
"id": 0,
"payload": "<sVg;;<ScRiPt

sRc=`http://testbed:8080/xss.js`>....)"↪→

}
]

}

Figure 4: Example for final-polyglots.json

(E2): [Polyglot Evaluation] [10 human-minutes + 5
compute-minutes]: ...
How to: Follow Section A.4.2 to evaluate your newly
created polyglot on the GFR.
Preparation: After following the installation instruc-
tions from Section A.3, no further preparation is required.
Per default, the data/run/ directory exists. Make sure
it still exists.
Execution: Run ./scripts/5-eval.sh. Follow the
instructions in the console and select the correspond-
ing run.
Then, wait for the evaluation to finish.

$./scripts/5-eval.sh
Please select a run to evaluate:
1. example-run
2. run-2023-08-28T13-49-11.354Z
3. run-2024-06-13T12-58-44-635Z
4. run-2024-06-17T16:52:15.414Z
Enter the number of your choice: 1

Results: Once finished, the score will be printed to the
console.

Enter the number of your choice: 1
Reading

...example-run/summary/final-polyglots.json↪→

Writing to ...example-run/summary/

[+] Running 3/3
runner-1 | Successful tests: 65/175
runner-1 | Done

An extended evaluation is in a file next to the
final-polyglots.json file in your run’s summary
folder.

A.5 Notes on Reusability
Our generation process is flexible, as Section 7 of the paper
indicates. The provided inputs influence the generated poly-
glots. This includes the tests of the test bed and the token
set. Changing both can shift the generation’s focus to other
areas beyond the scope of our work. For instance, tests can
be narrowed down to a specific vulnerability or expanded to
support specific web frameworks.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

430 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Polyglot Generation
	Polyglot Evaluation
	Cleanup
	Major Claims
	Experiments

	Notes on Reusability
	Version

