
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

SpotProxy: Rediscovering the Cloud
for Censorship Circumvention

Patrick Tser Jern Kon, University of Michigan; Sina Kamali, University of Waterloo;
Jinyu Pei, Rice University; Diogo Barradas, University of Waterloo; Ang Chen,

University of Michigan; Micah Sherr, Georgetown University; Moti Yung,
Google and Columbia University

https://www.usenix.org/conference/usenixsecurity24/presentation/kon

USENIX Security ’24 Artifact Appendix: SpotProxy: Rediscovering the
Cloud for Censorship Circumvention

Patrick Tser Jern Kon Sina Kamali‡ Jinyu Pei†

Diogo Barradas‡ Ang Chen Micah Sherr⋆ Moti Yung⋄,◦

University of Michigan ‡University of Waterloo †Rice University
⋆Georgetown University ◦Columbia University ⋄Google

A Artifact Appendix

A.1 Abstract

SpotProxy is a censorship resistance system that uses cost-
effective and high-churn cloud instances to maximize the
circumvention utility of cloud-hosted proxies. To achieve this,
SpotProxy designs a circumvention infrastructure that con-
stantly searches for cheaper VMs and refreshes the fleet for
anti-blocking. We adapt Wireguard and Snowflake for use
with SpotProxy, and demonstrate that our active migration
mechanism allows clients to seamlessly move between prox-
ies without degrading their performance or disrupting existing
connections. We show that SpotProxy leads to significant cost
savings, and that SpotProxy’s rejuvenation mechanism en-
ables proxies to be replenished frequently with new addresses.
This artifact evaluation aims to show that the SpotProxy sys-
tem is accessible and functional.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The artifact does not pose any particular risk to the evaluators’
machines, data privacy, etc., or raise any other notable ethical
concerns.

A.2.2 How to access

All artifacts can be accessed centrally through our GitHub
repository at https://github.com/spotproxy-project/spotproxy.
All instructions are provided in the README file within the
repository. The stable link for SpotProxy can be found at
https://github.com/spotproxy-project/spotproxy/
tree/1abbfe79ef8358afe81c0db491e4ec528a42773f .

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

SpotProxy has been evaluated on x86-64 Ubuntu 22.04 VMs.
It requires access to an AWS account with the ability to create
EC2 VMs and provision Elastic IPs (default AWS-assigned
quotas should be sufficient for this artifact evaluation). It also
requires numerous dependencies (e.g., django) that can be
installed by following the instructions provided in Sec. A.3.1.

A.2.5 Benchmarks

Our historical AWS SpotVM cost analysis depends on
a publicly available dataset hosted by a researcher at
https://github.com/ericpauley/aws-spot-price-history. We de-
scribe our usage of it in more detail within experiment E2 in
Sec. A.4.2.

A.3 Set-up

A.3.1 Installation

Clone our repository and follow the installation steps in
docs/INSTALLATION.md. A variety of installation proce-
dures will be performed, including: configuring access to
AWS CLI, installing Python dependencies, and building the
artifact.

A.3.2 Basic Test

Follow the steps in docs/INSTALLATION.md#basic-test.
to run a basic test. This validates if the AWS CLI was config-
ured correctly and if the required packages were installed.

A.4 Evaluation workflow

We list all our claims and the experiments we performed to
support them. For the Artifacts functional badge, we provide
minimal working examples for all our system components in
Sec. A.4.2.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 177

https://github.com/spotproxy-project/spotproxy
https://github.com/spotproxy-project/spotproxy/tree/1abbfe79ef8358afe81c0db491e4ec528a42773f
https://github.com/spotproxy-project/spotproxy/tree/1abbfe79ef8358afe81c0db491e4ec528a42773f
https://github.com/ericpauley/aws-spot-price-history
https://github.com/spotproxy-project/spotproxy/blob/main/docs/INSTALLATION.md
https://github.com/spotproxy-project/spotproxy/blob/main/docs/INSTALLATION.md#basic-test
https://github.com/spotproxy-project/spotproxy/blob/main/docs/INSTALLATION.md#basic-test

A.4.1 Major Claims

(C1): SpotProxy continuously searches for the cheapest in-
stances via cost arbitrage. This is proven by experiment
(E1) which demonstrates the functionality of cost ar-
bitrage, and experiment (E2) which demonstrates the
efficacy of cost arbitrage through historical data.

(C2): Both of SpotProxy’s rejuvenation mechanisms func-
tion and are capable of refreshing the fleet. This is proven
by experiment (E3) where we perform actual rejuvena-
tions on the cloud.

(C3): SpotProxy’s active migration works on both Snowflake
and Wireguard with little additional overhead. This is
proven by experiment (E4) where we perform periodic
migration over cloud-hosted proxies.

(C4): SpotProxy is capable of facilitating circumvention ef-
forts against two main types of simulated censor attacks.
This is proven by experiment (E5) where we simulate
the effects of these attacks against periodic rejuvena-
tion/relocation by SpotProxy.

A.4.2 Experiments

We now provide minimal working examples for each of our
major claims.
(E1): [Cost arbitrage] [a few minutes]: creates 1 instance of

the cheapest VM currently available.
How to: Follow the steps provided in
docs/instance_manager_setup.md.
Preparation: This assumes that the installation step in
Sec. A.3.1 has already been executed.
Results: The script will return the instance ID that was
created. Note that while the script continuously checks
for cheaper instances, we only perform this once in this
experiment due to unpredictable cost fluctuations. In-
stead, we defer to experiment E2 to measure the effects
of continuous cost arbitrage.

(E2): [Cost arbitrage efficacy] [a few minutes]: analyzes
AWS SpotVM historical pricing data to determine the
cost savings afforded by SpotProxy’s cost arbitrage
mechanism.
How to: Follow the steps provided in
docs/historical_cost_analysis.md.
Preparation: This assumes that the installation step in
Sec. A.3.1 has already been executed.
Results: The script will return a JSON file containing a
month-by-month breakdown of various metrics includ-
ing cost arbitrage intervals throughout the month. The
source data is extracted from the dataset mentioned in
Sec. A.2.5.

(E3): [Rejuvenation functionality test] [a few minutes]: per-
forms instance and live IP rejuvenation periodically until
the script is stopped.
How to: Follow the steps provided in
docs/instance_manager_setup.md.

Preparation: This assumes that the installation step in
Sec. A.3.1 has already been executed.
Results: The script will return the instance/NIC IDs
details produced in each rejuvenation period.

(E4): [Active migration functionality test] [a few minutes]:
this is essentially a minimal working example that incor-
porates our cost arbitrage and rejuvenation functional-
ities presented in the earlier experiments, but with the
addition of clients connected to the system, and using ac-
tive migration to maintain seamless connectivity despite
rejuvenation.
How to: Follow the steps provided in
docs/controller_setup.md to instantiate
the controller. Then, instantiate the instance manager at
docs/instance_manager_setup.md , and the
client at docs/client_setup.md. Our minimal
working example assumes the use of a Wireguard
implementation throughout.
Preparation: This assumes that the installation step in
Sec. A.3.1 has already been executed.
Results: This test will produce various logs including
instance/NIC details, client-to-proxy assignments, and
client access logs.

(E5): [Circumvention efficacy test] [a few minutes]: sim-
ulates the connectivity effects of two censor attacks
against periodic rejuvenation/relocation by SpotProxy,
across time.
How to: Follow the steps provided in
docs/circumvention_efficacy_setup.md.
Preparation: This assumes that the installation step in
Sec. A.3.1 has already been executed.
Results: This script will produce the connectivity ratios
across time for a specific censoring agent ratio.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

178 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/spotproxy-project/spotproxy/blob/main/docs/instance_manager_setup.md
https://github.com/spotproxy-project/spotproxy/blob/main/docs/historical_cost_analysis.md
https://github.com/spotproxy-project/spotproxy/blob/main/docs/instance_manager_setup.md
https://github.com/spotproxy-project/spotproxy/blob/main/docs/controller_setup.md
https://github.com/spotproxy-project/spotproxy/blob/main/docs/instance_manager_setup.md
https://github.com/spotproxy-project/spotproxy/blob/main/docs/client_setup.md
https://github.com/spotproxy-project/spotproxy/blob/main/docs/circumvention_efficacy_analysis.md
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

