
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

SoK: The Good, The Bad, and The Unbalanced:
Measuring Structural Limitations of

Deepfake Media Datasets
Seth Layton, Tyler Tucker, Daniel Olszewski, Kevin Warren,

Kevin Butler, and Patrick Traynor, University of Florida
https://www.usenix.org/conference/usenixsecurity24/presentation/layton

USENIX Security ’24 Artifact Appendix: <SoK: The Good, The Bad, and
The Unbalanced: Measuring Structural Limitations of Current Deepfake

Media Datasets>

Seth Layton, Tyler Tucker, Daniel Olszewski, Kevin Warren, Kevin Butler, and Patrick Traynor
University of Florida

A Artifact Appendix

A.1 Abstract

Deepfake media represents an important and growing threat
not only to computing systems but to society at large. Datasets
of image, video, and voice deepfakes are being created to
assist researchers in building strong defenses against these
emerging threats. However, despite the growing number of
datasets and the relative diversity of their samples, little guid-
ance exists to help researchers select datasets and then mean-
ingfully contrast their results against prior efforts. To as-
sist in this process, this paper presents the first systematiza-
tion of deepfake media. Using traditional anomaly detection
datasets as a baseline, we characterize the metrics, genera-
tion techniques, and class distributions of existing datasets.
Through this process, we discover significant problems im-
pacting the comparability of systems using these datasets, in-
cluding unaccounted-for heavy class imbalance and reliance
upon limited metrics. These observations have a potentially
profound impact should such systems be transitioned to prac-
tice - as an example, we demonstrate that the widely-viewed
best detector applied to a typical call center scenario would
result in only 1 out of 333 flagged results being a true positive.
To improve reproducibility and future comparisons, we pro-
vide a template for reporting results in this space and advocate
for the release of model score files such that a wider range
of statistics can easily be found and/or calculated. To support
this, we release every model we train, the data we use to train,
and the source code of the entire project. Furthermore, we re-
lease our scores files along with the code used to produce the
figures and tables in the paper. Our artifacts include precise
steps to train, evaluate, and reproduce our results.

A.2 Description & Requirements

We describe all of the information, data, and requirements
needed to recreate our experiments.

A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns for the
recreation of the work in this artifact.

A.2.2 How to access

Our source code is available via GitHub1 and the data we use
is available via Zenodo234. Our GitHub links to the Zenodo
and vice versa. Due to file size limitations, we separate our
datasets into three different Zenodos that all link to each other.
The GitHub repository contains data download scripts and as
such manually downloading files from Zenodo is not required,
but provided for completeness.

A.2.3 Hardware dependencies

All training and evaluation scripts require a GPU for com-
putation. We use 2x Nvidia GeForce RTX 2080 for all mod-
els except wav2vec, which uses 2x Nvidia DGX A100. The
wav2vec models require substantially more GPU memory,
thus requiring higher-performance GPUs. During training
and inference, we allocate 50GB of RAM and 4 AMD EPYC
7742 2.25GHz CPUs to the process. While we test with the
specific hardware listed, any suitable GPU and CPU combi-
nation will be sufficient.

However, it is worth noting that if simply recreating the
figures/tables with our provided scores files, there are no
GPU/CPU/memory requirements.

A.2.4 Software dependencies

Our source code has been verified to work on Ubuntu 22.04.4
LTS and Red Hat Enterprise Linux 8.9 (Ootpa). Our code
requires Python 3.7 and 3.8 (these are specifically defined
on the GitHub page). However, the operating systems are
not limited and any modern operating system that supports
Python should work for artifact evaluation.

1https://github.com/SethLayton/SoKTheGoodTheBadandTheUnbalanced/
tree/753d89beb64929371f7460ead16c770888c4ae4b

2https://zenodo.org/records/12090252
3https://zenodo.org/records/12089727
4https://zenodo.org/records/12007844

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 63

https://github.com/SethLayton/SoKTheGoodTheBadandTheUnbalanced/tree/753d89beb64929371f7460ead16c770888c4ae4b
https://github.com/SethLayton/SoKTheGoodTheBadandTheUnbalanced/tree/753d89beb64929371f7460ead16c770888c4ae4b
https://zenodo.org/records/12090252
https://zenodo.org/records/12089727
https://zenodo.org/records/12007844

A.2.5 Benchmarks

The artifacts described herein depend on the ASVspoof,
TIMIT, LJSpeech, WorldEnglishBible, CFAD, WenetSpeech,
CIFAKE, CIFAR, and STL10 datasets. Each dataset is at-
tributed in the paper, and linked to in the respective Zenodo
repository. Additionally, the pre-trained wav2vec-XLS-R2-
300m is used for the wav2vec model in the ASVspoof experi-
ments.

Instructions to download all datasets and models are pro-
vided in the GitHub README.

A.3 Setup
The most important setup piece is the decision of reproduc-
tion complexity. We facilitate three tiers of complexity when
reproducing our artifacts.

Maximum Complexity: This entails retraining all models
from source data, evaluating test data using these retrained
models, and producing all figures and tables from this.
Medium Complexity: This entails evaluating test data using
provided pretrained models, and producing all figures and
tables from this.
Minimum Complexity: This entails producing all figures
and tables from the provided scores files.

Maximum complexity requires upwards of a week of com-
putation time, medium complexity requires upwards of half
a day of computation time, and minimum complexity takes
upwards of an hour of computation time.

A.3.1 Installation

Complete installation steps are provided via the GitHub
README file. Additionally, the GitHub repo provides down-
load scripts for all required data for each complexity.
Stated concisely:

1. Clone the repository.
2. Decide reproduction complexity.
3. Create the conda environments.
4. Download the required data for the selected complexity.

A.3.2 Basic Test

The simplest functionality test is to follow the steps in STEP
3.3 – Generate Figures/Tables in the GitHub README. This
will produce the figures and tables for the paper using the
provided scores files and this takes minimal time.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Performance results from baseline detection models
on deepfake datasets are not reasonably reproducible.

This is proven by the experiment (E1) described in
Section 3.2.1 Reproducibility whose results are illus-
trated/reported in Section 3.2.1 and Table 3.

(C2): Limited, and often singular, metrics as the sole perfor-
mance measure do not sufficiently represent the behavior
of deepfake detection models. This is proven by the ex-
periments (E2) described in Section 3.2.2 Efficacy of
Reported Metrics whose results are illustrated/reported
in Section 3.2.2, Table 3, and Table 9 (companion web-
site).

(C3): Composition of current deepfake datasets imposes
bias on classification results. This is proven by the
experiments (E3 and E4) described in Section 3.2.3
Class Distribution in Datasets whose results are illus-
trated/reported in Section 3.2.3, Figure 2, Figure 10
(companion website), Figure 11 (companion website),
Figure 12 (companion website), Figures 8/9 (companion
website), and Table 4 (companion website).

(C4): Current deepfake datasets perform poorly in a base-
rate-aware environment. This is proven by the experi-
ments (E4) described in Section 3.2.4 Characterizing
Model Efficacy whose results are illustrated/reported in
Section 3.2.4, Figure 3, Figure 4, Figure 13 (companion
website), Table 3, and Table 4 (companion website).

A.4.2 Experiments

Our experiments are not separated in any experimental
capacity. We provide a single script to produce all figures and
tables from the paper and companion website. Our division is
defined by the complexity of reproduction as described above.

Maximum Complexity [1 human-hour + 1 compute-week]
(E1): [Reproducibility]: Produce performance metrics and

compare with reported metrics.
How to: Follow steps 1.1, 2.1, and 3.1 in the GitHub
README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Table 3 is reproduced.

(E2): [Performance Metrics]: Produce dataset-suggested per-
formance metrics and compare with additional perfor-
mance metrics.
How to: Follow steps 1.1, 2.1, and 3.1 in the GitHub
README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Table 3, and Table 9 (companion website) are
reproduced.

(E3): [Dataset Composition]: Produce TP,FP,TN,FN perfor-
mance metrics for different training class distributions
and evaluate against different test dataset class distribu-
tions.
How to: Follow steps 1.1, 2.1, and 3.1 in the GitHub

64 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Figure 2, Figure 10 (companion website), Fig-
ure 11 (companion website), Figure 12 (companion web-
site), Figures 8/9 (companion website), and Table 4 (com-
panion website) are reproduced.

(E4): [Base-Rate Environment Evaluation]: Evaluate model
performance metrics in a base-rate-aware environment
for different training class distributions.
How to: Follow steps 1.1, 2.1, and 3.1 in the GitHub
README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Figure 3, Figure 4, Figure 13 (companion web-
site), Table 3, and Table 4 (companion website) are re-
produced.

Medium Complexity [1 human-hour + 0.5 compute-days]
(E1): [Reproducibility]: Produce performance metrics and

compare with reported metrics.
How to: Follow steps 2.2 and 3.2 in the GitHub
README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Table 3 is reproduced.

(E2): [Performance Metrics]: Produce dataset-suggested per-
formance metrics and compare with additional perfor-
mance metrics.
How to: Follow steps 2.2 and 3.2 in the GitHub
README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Table 3, and Table 9 (companion website) are
reproduced.

(E3): [Dataset Composition]: Produce TP,FP,TN,FN perfor-
mance metrics for different training class distributions
and evaluate against different test dataset class distribu-
tions.
How to: Follow steps 2.2 and 3.2 in the GitHub
README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Figure 2, Figure 10 (companion website), Fig-
ure 11 (companion website), Figure 12 (companion web-
site), Figures 8/9 (companion website), and Table 4 (com-
panion website) are reproduced.

(E4): [Base-Rate Environment Evaluation]: Evaluate model
performance metrics in a base-rate-aware environment
for different training class distributions.
How to: Follow steps 2.2 and 3.2 in the GitHub
README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Figure 3, Figure 4, Figure 13 (companion web-

site), Table 3, and Table 4 (companion website) are re-
produced.

Minimum Complexity [1 human-hour + 1 compute-hour]
(E1): [Reproducibility]: Produce performance metrics and

compare with reported metrics.
How to: Follow step 3.3 in the GitHub README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Table 3 is reproduced.

(E2): [Performance Metrics]: Produce dataset-suggested per-
formance metrics and compare with additional perfor-
mance metrics.
How to: Follow step 3.3 in the GitHub README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Table 3, and Table 9 (companion website) are
reproduced.

(E3): [Dataset Composition]: Produce TP,FP,TN,FN perfor-
mance metrics for different training class distributions
and evaluate against different test dataset class distribu-
tions.
How to: Follow step 3.3 in the GitHub README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Figure 2, Figure 10 (companion website), Fig-
ure 11 (companion website), Figure 12 (companion web-
site), Figures 8/9 (companion website), and Table 4 (com-
panion website) are reproduced.

(E4): [Base-Rate Environment Evaluation]: Evaluate model
performance metrics in a base-rate-aware environment
for different training class distributions.
How to: Follow step 3.3 in the GitHub README.
Execution: Run the scripts defined in the aforemen-
tioned GitHub README sections.
Results: Figure 3, Figure 4, Figure 13 (companion web-
site), Table 3, and Table 4 (companion website) are re-
produced.

A.5 Notes on Reusability
All of the model architectures we use in our experiments are
direct replications of the source material. Thus, following
the procedures defined in the source material it is possible
to train and evaluate any of these models on any number of
datasets. This is evident in the fact that our experiments use
new/unseen data through training and testing phases for every
model.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 65

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Setup
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

