é} usenix
8 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Secure Account Recovery for a
Privacy-Preserving Web Service

Ryan Little, Boston University; Lucy Qin, Georgetown University;
Mayank Varia, Boston University

https://www.usenix.org/conference/usenixsecurity24/presentation/little

This artifact appendix is included in the Artifact Appendices to the

Proceedings of the 33rd USENIX Security Symposium and appends

to the paper of the same name that appears in the Proceedings of
the 33rd USENIX Security Symposium.

August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX
Security Symposium is sponsored
by USENIX.

+ . = ——

ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security 24 Artifact Appendix: Secure Account Recovery for a
Privacy-Preserving Web Service

Ryan Little
Boston University

A Artifact Appendix

A.1 Abstract

Account recovery—the ability for users to regain access
to their accounts after losing their password—is a near-
ubiquitous feature of account-based web service. In a typical
account recovery system, the server maintains a list of user
email addresses to contact users who forgot their password.
Our paper proposes a new cryptographic protocol for account
recovery with improved privacy. On the surface, our proto-
col appears to follow the typical workflow: the user types in
their email address, receives an email containing a one-time
link, and answers some security questions. But on the back-
end, our protocol removes the need for the server to store
identifiable user information.

The core building block of our protocol is a novel primitive
that combines the characteristics of an oblivious pseudoran-
dom function (OPRF) and a partially-oblivious pseudorandom
function (pOPRF). This primitive, which we call a kaleido-
scopic partially-oblivious PRF (K-pop), is an interactive pro-
cedure between two parties (a client and a server) that allows
the client to learn an output of a pseudorandom function that
takes in with two inputs, x4, and x,,;,. The K-pop can either
be evaluated in OPRF mode, in which case both xy,; and x,,,
are secret inputs chosen by the client, or in pOPRF mode, in
which case x;, is chosen by the server and xy,; is a secret
input chosen by the client. Both OPRF mode and pOPRF
mode compute the same function.

Our artifact is an implementation of the K-pop primitive,
written in Sage. It contains code allowing a client and server
to evaluate the K-pop in both OPRF and pOPRF mode. The
implementation supports five different "ciphersuites", which
specify an elliptic curve group and hash function. The arti-
fact contains a correctness test that checks that the K-pop
computes the same function whether it is in OPRF mode or
pOPRF mode, as well as two benchmarking tests that can
re-produce the timing results in the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

Lucy Qin
Georgetown University

Mayank Varia
Boston University

A.2.2 How to access

The artifact is accessible at
github.com/ryanjlittle/kpop-oprf/tree/
ae6c354d84ed3d74d47d25¢c£31484c7d6f%edaf4.

https://

A.2.3 Hardware dependencies

Our multiprocessing benchmark test requires a CPU with (at
least) 4 cores. The benchmarks in our paper were produced
on a Lenovo ThinkPad P15s running Manjaro Linux with a
4-core 1.6GHz Intel Core i5-10210U CPU and 16GB RAM.

A.2.4 Software dependencies

Two software dependencies are required: A Python 3 instal-
lation (we used version 3.12.3), and a SageMath installation
(we used version 10.3).

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

1. Install Python. The latest source releases are available at
https://www.python.org/downloads/.

2. Install SageMath. On macOS with Home-
brew, Sage can be installed with the com-
mand brew install --cask sage. On Arch-
based Linux systems, it can be installed with
sudo pacman -S sagemath. You can check that
Sage was correctly installed by running sage from
the command line. For other operating systems and
detailed installation instructions, refer to https:
//doc.sagemath.org/html/en/installation/. Note
that a development version of Sage is required.

3. Clone the repository. The repo contains a submodule.
To ensure it gets cloned correctly, clone the repo with
git clone --recurse-submodules \
https://github.com/ryanjlittle/kpop-oprf.git.
Alternatively, clone the repository normally and run

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 133

https://github.com/ryanjlittle/kpop-oprf/tree/ae6c354d84ed3d74d47d25cf31484c7d6f9edaf4
https://github.com/ryanjlittle/kpop-oprf/tree/ae6c354d84ed3d74d47d25cf31484c7d6f9edaf4
https://github.com/ryanjlittle/kpop-oprf/tree/ae6c354d84ed3d74d47d25cf31484c7d6f9edaf4
https://www.python.org/downloads/
https://doc.sagemath.org/html/en/installation/
https://doc.sagemath.org/html/en/installation/

kpop-oprf

Figure 1: Console output of a successful basic test

git submodule update --init from inside the main
directory.

4. Build the source code by running make from inside the
main directory.

A.3.2 Basic Test

After following the installation and building instructions, the
correctness of the implementation can be checked by running
sage test_kpop.sage --test 1. This runs the K-pop in
both OPRF mode and pOPRF mode on a randomly chosen
input for all five supported ciphersuites. It checks that the
K-pop yields the same result whether it is evaluated in OPRF
mode or pOPRF mode. A successful run will complete in
a few seconds and yield the output shown in figure A.3.2.
The final input argument (the number 1) fixes the number
of random tests. For a more thorough correctness test, this
argument can be set to a higher number.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Single-core K-pop performance results, shown in fig-
ure 9 of the paper. This figure shows the average amount
of server and client time to run the K-pop in both OPRF
mode and pOPRF mode over five different ciphersuites.
This experiment is described in section 5.1 of the paper,
and can be reproduced by the experiment (E1).

(C2): Multi-core K-pop performance results, shown in figure
10 of the paper. These results measure the performance
of the server-side K-pop work in a multi-processing set-
ting, with P € {1,2,4} cores. Our results show that a
single server can scale to handle many clients simultane-
ously by running multiple processes in parallel. Our tests
show that a four-core server has amortized performance
that is 2-3 times better than a single-core server. The
experiment is described in section 5.2 of the paper, and
can be reproduced with the experiment (E2).

A.4.2 Experiments

(E1): [Single-core performance results] [5 human-minutes +
5 compute-minutes]: This experiment simulates a K-pop

interaction between a client and server (both instanti-
ated locally) in both OPRF mode and pOPRF mode,
for each of the five supported ciphersuites (ristretto255-
SHAS512, decaf448-SHAKE256, P256-SHA256, and
P521-SHAS512). It runs 1000 tests for each combination
of mode and ciphersuite, and takes the average client and
server time for each.
Preparation: Install and build the artifact, following
the instructions in section A.3.1.
Execution: From the main directory, run
sage test_kpop.sage —--figure 1000. This
will take around 5 minutes to complete.
Results: The experiment will produce a graph and con-
sole outputs. The graph should resemble figure 9 in the
paper. Exact time values will of course vary depending
on your hardware, but the relative heights of the bars
should look similar. The console output prints the mean
value and standard error for each set of measurements.
(E2): [Multi-core performance results] [5 human-minutes +
5 compute-minutes]: This experiment simulates a batch
of 512 clients simultaneously interacting with one server
that delegates each client to one of P parallel processes,
for P € {1,2,4}. The work is evenly split such that each
process handles 512/P clients. This is done for each
combination of ciphersuite and OPRF/pOPRF mode.
Preparation: Install and build the artifact, following
the instructions in section A.3.1.
Execution: From the main directory, run
sage test_kpop.sage --benchmark 512. This
will take around 5 minutes to complete.
Results: The experiment will produce console output
showing the average server evaluation time for each com-
bination of ciphersuite/mode/P combination. These val-
ues should be similar to the results in figure 10.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

134 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium

USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

