é} usenix
4 THE ADVANCED

' 4

COMPUTING SYSTEMS
ASSOCIATION

SLUBStick: Arbitrary Memory Writes through
Practical Software Cross-Cache Attacks
within the Linux Kernel

Lukas Maar, Stefan Gast, Martin Unterguggenberger, Mathias Oberhuber,
and Stefan Mangard, Graz University of Technology

https://www.usenix.org/conference/usenixsecurity24/presentation/maar-slubstick

This artifact appendix is included in the Artifact Appendices to the

Proceedings of the 33rd USENIX Security Symposium and appends

to the paper of the same name that appears in the Proceedings of
the 33rd USENIX Security Symposium.

August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX
Security Symposium is sponsored
by USENIX.

ARTIFACT
EVALUATED
susenix

4

ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

AVAILABLE REPRODUCED

USENIX Security 24 Artifact Appendix: SLUBStick: Arbitrary Memory
Writes through Practical Software Cross-Cache Attacks within the Linux
Kernel

Lukas Maar
Graz University of Technology

Martin Unterguggenberger
Graz University of Technology

Stefan Gast
Graz University of Technology

Mathias Oberhuber
Graz University of Technology

Stefan Mangard
Graz University of Technology

A Artifact Appendix

A.1 Abstract

We present SLUBStick, a novel kernel exploitation technique
that elevates a limited heap vulnerability to an arbitrary mem-
ory read/write primitive. SLUBStick works in several steps:
Initially, it exploits a timing side channel of the allocator to
reliably perform a cross-cache attack with a better than 99 %
success rate on commonly used generic caches. SLUBStick
then exploits code patterns prevalent in the Linux kernel to
perform a cross-cache attack and turn a limited heap vulner-
ability into a page table manipulation, thereby granting the
capability to read and write memory arbitrarily.

The artifacts demonstrate the timing side channel and end-
to-end exploits, showing the versatility of SLUBStick. For
both, we provide an environment of a Virtual Machine (VM)
running the Linux kernel x86_64 v6.2. For the timing side
channel, the evaluation presents success rates for slab pages,
with and without noise. For the end-to-end exploits, our at-
tacks exploit an artificial Double Free (DF) vulnerability to
obtain an arbitrary physical read and write primitive. This
primitive is then used to manipulate the /etc/passwd file to
gain root privileges within the VM.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifacts do not perform any destructive steps as we ex-
ploit an artificial DF vulnerability introduced via a kernel
module within a VM. This evaluation of the artifacts demon-
strates the practicality of running SLUBStick to gain root
privileges.

A.2.2 How to access

We provide the source code (github) for performing the tim-
ing side channel and the end-to-end attacks of an artificial
DF vulnerability. For convenience, we provide a VM image
(zenodo) with all necessary programs and scripts included.

A.2.3 Hardware dependencies

A Linux system running on the x86_64 architecture with a
sound module which requires the snd kernel module.

A.2.4 Software dependencies

A Linux system that allows to run gemu with KVM enabled.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

1. Install gemu on your x86_64 Linux system, and make
sure it is allowed to run with KVM enabled.

2. Clone our github repository (github) to the /repo/path
directory.

3. Download the VM image (zenodo) and store it in
/repo/path/images. This image is the default Ubuntu
22.04 image running the Linux kernel v6.2. The user-
name to log in is 1maar, and the password is asdf. This
user is in the sudo group and, thereby, can gain root
privileges via sudo su.

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 253

https://github.com/IAIK/SLUBStick/tree/artifact-evaluation
https://doi.org/10.5281/zenodo.11943102
https://github.com/IAIK/SLUBStick/tree/artifact-evaluation
https://zenodo.org/records/11943102

A.3.2 Basic Test

1. Execute make run boots the VM, providing a terminal
login prompt and an already logged in user on a graphical
interface, i.e. Gnome.

2. Either login in the terminal (with username lmaar and
password asdf) or open a terminal in the graphical in-
terface.

3. Execute uname -r should return 6.2.0-x-generic.

4. The directory /home/1maar/exploits should include
helper.c, do_eval*.sh, and eval.py.

5. The directory /home/lmaar/exploits/userspace
should include *.c.

6. Change directory to /home/lmaar/exploits and exe-
cute make init.

A.4 Evaluation workflow
A4.1 Major Claims

We provide artifacts verifying the following claims:

(C1): We demonstrate our proposed measurement primitives
allow a timing side channel on the SLUB allocator (de-
scribed in Section 4.1), leaking when a new slab is allo-
cated. This is proven by (E1/2/3) with 3 different primi-
tives.

(C2): We demonstrate that using measurement and alloca-
tion primitives, we can reliably trigger the recycling
process for a targeted memory chunk from generic
caches between kmalloc-[8,4096] (described in Sec-
tion 4.1). This is proven by (E4) for single page slabs
(i.e., kmalloc-[8,256]) and proven by (ES) for multi
page slabs (i.e., kmalloc-[512,4096]).

(C3): We demonstrate that by using buddy allocator massag-
ing (described in Section 4.2), we can reliably reclaim
the targeted memory chunk from generic caches from
kmalloc-1[8,4096]. This is proven by (E4/S).

(C4): We evaluate the reliable triggering of the recycling and
reclaiming of a targeted memory chunk under idle as
well as noisy conditions (described in Section 4.3 and
shown in Table 1). This is proven by (E6) under idle and
without CPU pinning and proven by (E7) with external
noise.

(C5): We demonstrate that persistent code pattern 1/2 and
temporal code pattern can be exploited to establish a
memory write primitive (described in Section 5.2). This
is proven by (E8/9) for persistent code pattern 1/2 and
by (E10) for temporal code pattern.

(C6): We demonstrate that FUSE can be leveraged as an
unprivileged user to gain control over the copying from
userspace, allowing us to perform the cross-cache reuse

inbetween (described in Section 5.2). This is proven by
(E8/9/10).

(C7): We demonstrate the exploitation of a memory write
primitive to obtain an arbitrary physical read/write
primitive (described in Section 6). This is proven by
(E8/9/10).

(C8): We evaluate the end-to-end SLUBStick attack using
a synthetic DF vulnerability in generic caches between
kmalloc-[8,256] (described in Section 7.1). This is
proven by (E8/9/10).

A.4.2 Experiments

Before running the experiments, please perform the set-up in

A.3 and read the note in A.5.

(E1): Basic leakage 1 [30 human-seconds + 1 computer-
second]:
How to: Execute
alloc.elf.
Cache size: Fixed with of 192 Bytes.
Results: This experiment outputs a vertical plot with
the following format: <index>: <tsc>:###, where
index is the allocated object’s index, tsc the required
time of the allocation, and ### provides a visual repre-
sentation of the tsc. Allocating a new slab will result
in a significantly larger tsc (as shown in ® from Fig-
ure 2 and described in Section 2.1) compared to that
from the CPU free list (© from Figure 2). Since one
slab (from the kmalloc-192) can include 21 objects (as
shown in Table 4), a new slab will be allocated every
21th allocation. This is seen with the significantly larger
tsc (i.e., above 2000 compared to about 1100) of every
21th index.
It is important to note that sometimes other allocations
beside each 21st will cause a higher tsc due to noise
from the system.

(E2): Basic leakage 2 [30 human-seconds + 1 computer-
second]:
How to: Execute ./userspace/timed_anon_vma_-
name_alloc.elf <cache_size>.
Cache sizes: 16, 32, 64, or 96 Bytes.
Results: Similar to (E1), this experiment indicates
larger tsc values when the SLUB allocator allocates
a new slab. Depending on the cache_size (i.e., be-
tween 16 Bytes to 96 Bytes), the new slab is allocated
within the kmalloc-[16, 96]. For larger cache_sizes,
fewer objects must be allocated to prompt the alloca-
tor to allocate a new slab. This is because fewer ob-
jects are located on one slab (as shown in Table 4). For
instance, the kmalloc-16 stores 256 objects per slab
while kmalloc-96 stores 42, indicated with significantly
larger tsc values.

(E3): Basic leakage 3 [30 human-seconds + 1 computer-
second]:

./userspace/timed_ppdev_-

254 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium

USENIX Association

How to: Execute ./userspace/timed_msg_alloc-
.elf <cache_size>.

Cache sizes: 64,96, 128, 192, 256, 512, 1024, 2048, or
4096 Bytes.

Results: Similar results to (E2), but for the
kmalloc-cg-[64,4096] depending on the
cache_size (i.e., between 16 Bytes to 96 Bytes).

(E4): Single page slab reclaiming [30 human-seconds + 1
computer-second]:
How to: Execute
<cache_size>.
Cache sizes: 8, 16, 32, 64, 96, 128, 192, or 256 Bytes.
Results: This experiment outputs which slab page was
reclaimed as a Page Upper Directory (PUD), success-
fully performing the cross-cache attack from the kernel
heap to a PUD. If the correct slab page is reclaimed as a
PUD, this experiment outputs [+] SUCCESS, while [!]
FAIL indicates a failed experiment. [!] RETRY (start
not found) indicates that the side channel did not find
suitable slabs for cross-cache reuse. This output repre-
sents neither a failure nor a success, but the experiment
should be repeated.

(ES): Mutli page slab reclaiming [30 human-seconds + 1
computer-second]:
How to: Execute
<cache_size>.
Cache sizes: 512, 1024, 2048, or 4096 Bytes.

Results: Same results as (E4).

(E6): Reclaiming on idle and without cpu pinning [30 human-
seconds + 2 computer-hours]:

How to: Execute ./do_eval.sh and then eval.py.
Execution: ./do_eval.sh internally executes all
./eval_*.elf with and without CPU pinning and out-
puts log files in the . /eval directory. ./eval.py reads
all log files in . /eval.

Results: ./eval.py ouputs a table similar to Table 1,
but without the standard deviation.

(E7): [Optional] Reclaiming with external noise [10 human-
minutes + 2 computer-hours]:

How to: Execute ./do_eval_p(u,m)d_noise.sh
<cache_size> and then eval.py, with pud using
objects between 8 Bytes to 256 Bytes and pmd using
objects between 512 Bytes to 4096 Bytes

Execution: This experiment is similar to (E6), but
it requires rebooting the VM after each run for the
./do_eval_pmd_noise.sh script.

Results: Same results as (E6).

(E8): End-to-end exploit with persistent code pattern 1 [30
human-seconds + 1 computer-minutes]:

How to: Execute ./userspace/exploit_-
signal.elf.

Cache size: Fixed with of 8 Bytes.

Results: Tampers the /etc/passwd such that unprivi-
leged users can elevate their privilege level by calling su

./userspace/eval_pud.elf

./userspace/eval_pmd.elf

without authentication.

(E9): End-to-end exploit with persistent code pattern 2 [30
human-seconds + 30 computer-seconds]:
How to: Execute ./userspace/exploit_snd.elf
<cache_size>.
Cache sizes: 16, 32, 64, 96, 128, 192, or 256 Bytes.
Results: Same results as (ES8).

(E10): End-to-end exploit with temporal code pattern [30
human-seconds + 30 computer-seconds]:
How to: Execute ./userspace/exploit_key.elf
<cache_size>
Cache sizes: 16, 64, 96, or 128 Bytes.
Results: Same results as (E8).

A.5 Notes on Reusability

For this artifact evaluation, we evaluate generic caches that
allocate memory in chunks of 8, 16, 32, 64, 96, 128, 192,
256, 512, 1024, 2048, and 4096 Bytes. Some experiments
only work on certain generic cache sizes, while others work
generically on more.

We want to note that the success rate of the end-to-end
exploit (E8-10) varies depending on the cache size. More-
over, since these exploits corrupt the memory, (successfully)
triggering them multiple times may cause the VM to crash.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 255

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

