
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

YPIR: High-Throughput Single-Server PIR
with Silent Preprocessing

Samir Jordan Menon, Blyss; David J. Wu, UT Austin
https://www.usenix.org/conference/usenixsecurity24/presentation/menon

USENIX Security ’24 Artifact Appendix: YPIR: High-Throughput
Single-Server PIR with Silent Preprocessing

Samir Jordan Menon
Blyss

David J. Wu
UT Austin

A Artifact Appendix

A.1 Abstract
We implement YPIR (from Section 3) and YPIR+SP (from
Section 4.3) in a single open-source Rust library. We provide
a benchmarking binary that runs a YPIR client and server, and
outputs the server runtime and the query and response sizes.

A.2 Description & Requirements
A.2.1 Security, Privacy, and Ethical Concerns

Our implementation is not production-ready.

A.2.2 How to Access

The implementation is available at https://github.com/
menonsamir/ypir/tree/b980152. The permanent DOI is
https://doi.org/10.5281/zenodo.13117988.

A.2.3 Hardware Dependencies

The recommended hardware platform is an AWS
r6i.16xlarge machine. The implementation should
run well on any machine with a modern server CPU that sup-
ports AVX-512. The implementation will run with reduced
performance on machines without AVX-512 support1. The
YPIR experiments described here require 64 GB of memory
and the HintlessPIR experiments require 512 GB.

A.2.4 Software Dependencies

We provide a self-contained Docker image at https://
ghcr.io/menonsamir/ypir:latest.2 Building the code
directly requires Rust and a C/C++ compiler. The
rust-toolchain.toml file fixes the Rust compiler version
to nightly-2024-02-07, and standard Rust installations will
automatically download and use this compiler version. The
code was tested on Ubuntu 22.04.
1Add --features server to cargo build commands to build without
AVX-512.

2The permanent URL for the specific Docker image used for
this evaluation is https://ghcr.io/menonsamir/ypir@sha256:

cf41936974074679bc3f08b582a8417b65cd957aa5d716a1daca61fd2d365006.

A.2.5 Benchmarks

None.

A.3 Set-up

In Ubuntu 22.04, install Docker and GCC 11.

A.3.1 Installation

No installation step is required (beyond installing Docker).

A.3.2 Basic Test

The basic test can be run using the command: sudo docker
run --security-opt seccomp:unconfined --cpus=1
ghcr.io/menonsamir/ypir:latest 2147483648 1.
This downloads the Docker container and runs it. The
arguments correspond to running YPIR on a 256 MB
database with 231 1-bit entries. We provide more details
about the basic test in evaluation.md.

A.4 Evaluation Workflow

A.4.1 Major Claims

We make a major claim for each key figure and table in Sec-
tion 4 of our paper.
(C1): For retrieving a single bit from an 8 GB database, YPIR

achieves roughly 50% higher throughput, similar (within
10%) query size, and over 100× reduction in response
size compared to HintlessPIR. This is an outcome of
experiment (E1), whose results are presented in Table 1.

(C2): For retrieving a single bit from a 32 GB database,
YPIR has slightly (within 5%) lower throughput, 50%
larger query size, and the same response size as Dou-
blePIR* (our DoublePIR implementation). Moreover,
YPIR spends less than 5% of its server time on the LWE-
to-RLWE translation. This is an outcome of experiment
(E2), whose results are presented in Fig. 2 and Table 2.3

3The query and response sizes for DoublePIR* are included in Table 8 of the
full version of this paper.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 379

https://github.com/menonsamir/ypir/tree/b980152
https://github.com/menonsamir/ypir/tree/b980152
https://doi.org/10.5281/zenodo.13117988
https://ghcr.io/menonsamir/ypir:latest
https://ghcr.io/menonsamir/ypir:latest
https://ghcr.io/menonsamir/ypir@sha256:cf41936974074679bc3f08b582a8417b65cd957aa5d716a1daca61fd2d365006
https://ghcr.io/menonsamir/ypir@sha256:cf41936974074679bc3f08b582a8417b65cd957aa5d716a1daca61fd2d365006
https://docs.docker.com/engine/install/ubuntu/
https://github.com/menonsamir/ypir/blob/artifact/evaluation.md

(C3): When considering cross-client batching with 4 clients
and a 32 GB database, YPIR achieves up to a 40% in-
crease in effective throughput. This is an outcome of
experiment (E3), whose results are presented in Fig. 3.

(C4): For retrieving a 32-KB record from an 8 GB database,
YPIR+SP achieves similar (within 10%) server through-
put, similar (within 10%) query size, and over 5× reduc-
tion in response size compared to HintlessPIR. This is an
outcome of experiment (E4), whose results are presented
in Table 5.

A.4.2 Experiments

In the following commands, we use $YPIR to
refer to the command prefix sudo docker run
--security-opt seccomp:unconfined --cpus=1
-it ghcr.io/menonsamir/ypir:latest. Similarly,
we use $HINTLESSPIR to refer to sudo docker run
--security-opt seccomp:unconfined --cpus=1 -it
ghcr.io/menonsamir/hintlesspir:latest. We measure
the server computation time of YPIR averaged over 5 trials.4

(E1): [15 human-minutes + 2 compute-hours]: Runs YPIR
and HintlessPIR to retrieve a bit from an 8 GB database.
Preparation: Run sudo docker image pull
ghcr.io/menonsamir/hintlesspir to pre-download
a Docker image for HintlessPIR we have created. The
build specification for this container is available in
hintlesspir-patch.patch.
Execution: Run YPIR with $YPIR 68719476736 1,
and save the final “Measurement” output (15 minutes).
Then, run HintlessPIR with $HINTLESSPIR 8GB (1.5
hours). Note the final value under “Time” in nanosec-
onds, and confirm that “Iterations” is 1.
Results: The throughput of each scheme is the database
size in GB (8 in this case) divided by the server com-
putation time in seconds. The server computation time
for YPIR is in milliseconds in the measurement data
in online under server_time_ms. Ensure you are us-
ing the server_time_ms value from the online sec-
tion of the measurement data. The query and response
sizes for YPIR are also in the online section, under
upload_bytes and download_bytes, respectively. The
HintlessPIR server computation time is reported under
“Time”, in nanoseconds. The HintlessPIR implementa-
tion does not output query and response sizes by default,
so we use Lemma 7 from the HintlessPIR paper to cal-
culate these in hintlesspir-notes.md.
Expected: YPIR should have a throughput of about
11 GB/s, and HintlessPIR should have a throughput of
about 4.9 GB/s. Query and response sizes should match
Table 1.

4Because HintlessPIR runs take longer (generally hours), we only run a single
trial for these experiments. This does not appear to impact measurements
significantly.

(E2): [30 human-minutes + 1 compute-hour]: Runs YPIR
and DoublePIR* to retrieve a bit from a 32 GB database.
Execution: Run $YPIR 274877906944 1.
Results: Compute the throughput and query and
response size for YPIR as in (E1). For Dou-
blePIR*, the server response time (in millisec-
onds) is the sum of first_pass_time_ms and
second_pass_time_ms from the online section
of the measurement. The query and response sizes
for DoublePIR* are doublepir_query_bytes and
doublepir_resp_bytes. The fraction of the YPIR
server computation time for performing LWE-
to-RLWE is ring_packing_time_ms divided by
server_time_ms.
Expected: YPIR and DoublePIR* should have a
throughput of about 12 GB/s. Query and response sizes
should match Table 8 of the full version of this paper.

(E3): [15 human-minutes + 1 compute-hour]: Runs YPIR
with cross-client batching across 4 clients.
Execution: Run $YPIR 274877906944 1 4.
Results: The effective throughput is the product of the
number of clients (4) by the database size in GB (32
GB), divided by the server computation time in seconds.
Expected: YPIR with cross-client batching across 4
clients should achieve an effective throughput of roughly
16 GB/s.

(E4): [30 human-minutes + 1 compute-hour]: Runs
YPIR+SP and HintlessPIR to retrieve a 32 KB record
from a 8 GB database.
Execution: Run YPIR+SP with $YPIR 131072
524288 --is-simplepir. Then, run HintlessPIR with
$HINTLESSPIR 8GB.
Results: Compute the throughput and query and re-
sponse sizes of each scheme as in (E1).
Expected: YPIR+SP and HintlessPIR should have a
throughput of roughly 4.9 GB/s, and query and response
sizes should match Table 5.

A.5 Notes on Reusability
The YPIR implementation is a Rust crate that can be reused
by an existing Rust project by running cargo add --git
"https://github.com/menonsamir/ypir.git". The im-
plementation can also be compiled to WebAssembly and
run directly in a webpage. A demo of YPIR for retrieval of
breached passwords in in the demo/ folder of the repository.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

380 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/menonsamir/ypir/blob/artifact/rodeo/data/extra/hintlesspir-patch.patch
https://eprint.iacr.org/2023/1733.pdf
https://github.com/menonsamir/ypir/blob/artifact/rodeo/data/extra/hintlesspir-notes.md
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

