
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

ABACuS: All-Bank Activation Counters for Scalable
and Low Overhead RowHammer Mitigation
Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel,

Haocong Luo, Steve Rhyner, Abdullah Giray Yaglikci, Geraldo F. Oliveira,
and Onur Mutlu, ETH Zurich

https://www.usenix.org/conference/usenixsecurity24/presentation/olgun

USENIX Security ’24 Artifact Appendix: ABACuS: All-Bank Activation
Counters for Scalable and Low Overhead RowHammer Mitigation

Ataberk Olgun Yahya Can Tugrul Nisa Bostanci Ismail Emir Yuksel
Haocong Luo Steve Rhyner Abdullah Giray Yaglikci Geraldo F. Oliveira Onur Mutlu

ETH Zurich

A Artifact Appendix

A.1 Abstract
Our artifact contains the data, source code, and scripts needed
to reproduce our results. We provide: 1) the source code of
our simulation infrastructure based on Ramulator and CACTI,
and 2) all evaluated workloads’ memory access traces and
all major evaluation results. We provide Python scripts and
Jupyter Notebooks to analyze and plot the results.

A.2 Description & Requirements
To facilitate the artifact evaluation process, we provide SSH
access to our internal Slurm-based infrastructure with all the
software dependencies already installed. We strongly recom-
mend using Slurm for running experiments in bulk. We de-
scribe hardware/software dependencies as well as installation
instructions for two artifact evaluation scenarios: 1) Remote
access, where the artifact evaluator remotely accesses our
infrastructure to evaluate the artifact, and 2) personal com-
puter, where the artifact evaluator evaluates the artifact using
their own personal computer. Moreover, we will happily help
artifact evaluators who want to use their own Slurm-based in-
frastructure by porting our scripts to their environment. Please
contact us through HotCRP and/or the AE committee for de-
tails.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The source code and analysis scripts are provided in
our open source repository at the following stable refer-
ence https://github.com/CMU-SAFARI/ABACuS/tree/
7491a667fd1a667b556ef81a8eaa035f69461644. We pro-
vide all evaluated workloads’ memory access traces and all
evaluation results at https://zenodo.org/doi/10.5281/
zenodo.10575682.

A.2.3 Hardware dependencies

Remote access. None.
Personal computer. We recommend using a PC with 32 GiB
of main memory. Approximately 50 GiB of disk space is
needed to store intermediate and final experimental results.

A.2.4 Software dependencies

Remote access. None.
Personal computer. Podman (we have tested Podman version
3.4.4 on Ubuntu 22.04.1) and git.

A.2.5 Benchmarks

We use workload memory traces collected from SPEC2006,
SPEC2017, TPC, MediaBench, and YCSB benchmark suites.
The used memory traces are available at https://zenodo.
org/doi/10.5281/zenodo.10575682.
Remote access. The traces are already in the project directory.
Personal computer. A provided script will download and
extract the traces.

A.3 Set-up
A.3.1 Installation

Remote access. None.
Personal computer. Clone the git reposi-
tory using $ git clone -b usenix24-ae
git@github.com:CMU-SAFARI/ABACuS.git.

A.3.2 Basic Test

Remote access. Run ./simple_test.sh in the project di-
rectory. A successful run takes around 30 seconds and will
output REF CMD energy: 8483.076 nJ to standard output
(as the last line) and put various simulation results (execution
statistics) in a file named ddr4DDR4stats.stats.
Personal computer. Run ./simple_test_podman.sh. This
will download and extract all workload execution traces as

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 103

https://github.com/CMU-SAFARI/ABACuS/tree/7491a667fd1a667b556ef81a8eaa035f69461644
https://github.com/CMU-SAFARI/ABACuS/tree/7491a667fd1a667b556ef81a8eaa035f69461644
https://zenodo.org/doi/10.5281/zenodo.10575682
https://zenodo.org/doi/10.5281/zenodo.10575682
https://zenodo.org/doi/10.5281/zenodo.10575682
https://zenodo.org/doi/10.5281/zenodo.10575682

an intermediate step, which might take around 20 minutes.
Expected results are the same as above.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Modern memory-intensive workloads and existing
RowHammer attacks activate DRAM rows with the same
row address in multiple DRAM banks (i.e., sibling rows)
at around the same time. A single shared activation
counter, which stores the highest activation count among
the activation counts of all sibling rows, can reasonably
accurately represent the activation count of all sibling
rows. This property of the shared activation counter be-
comes stronger as the RowHammer threshold reduces.
This is proven by the experiment (E1) described in Sec-
tion 3.1 whose results are illustrated in Figures 2 and
3.

(C2): ABACuS induces small system performance and
DRAM energy overheads on average across all tested
single-core and multi-core workloads for RowHammer
threshold values of 1000, 500, 250, and 125. ABA-
CuS’s performance and DRAM energy overheads are
closer to the most-performance-efficient state-of-the-art
mechanism. ABACuS outperforms and consumes less
DRAM energy than the most-area-efficient state-of-the-
art (counter-based) mechanism. This is proven by the
experiment (E2) described in Sections 8 and 9 whose
results are illustrated in Figures 7, 8, 9, 10, 11, and 12.

(C3): At the RowHammer threshold (nRH) of 125, ABACuS
performs very similarly to the best prior performance-
and energy-efficient RowHammer mitigation mechanism
while requiring 22.72× smaller chip area. This is proven
by the experiment (E3) described in Section 7.1 whose
results are illustrated in Table 1.

A.4.2 Experiments

(E1 and E2): [Ramulator simulations] [15 human-minutes
+ 77 compute-hours (assuming approx. 1280 cores avail-
able for running tasks in parallel) + 50GB disk]: Exe-
cute Ramulator simulations to generate data supporting
C1 and C2. Plot all figures that prove C1 and C2.
Execution (remote access): 1) Execute
$./run_artifact_without_podman.sh. This
will launch all Ramulator simulation jobs using Slurm.
Wait for simulations to end. The slowest multi-core
simulation takes approximately 72 hours. 2) Navigate to
scripts/ and run $ python3 create_figures.py.
The script takes approximately 5 hours to execute (a
large fraction of the execution time is spent on one-time
preprocessing of the data used for Figures 2 and 3).
Execution (personal computer): 1) Exe-
cute $./run_artifact_with_podman.sh

-personalcomputer. This will launch all Ramu-
lator simulation jobs. Wait for simulations to end. 2) run
$./create_figures_with_podman.sh. The script
takes approximately 5 hours to execute (a large fraction
of the execution time is spent on one-time preprocessing
of the data used for Figures 2 and 3). Use $ squeue -u
aevaluator to monitor the status of simulations.
Results: A PDF of every figure proving C1 and C2 is
created in scripts/ae_scripts/.

(E3): [CACTI simulations] [5 human-minutes + 1 compute-
minute + 10MB disk]: Run CACTI simulations to gener-
ate chip area estimation results.
Execution (remote access): Navigate to
abacus_cacti/ and run $ python3 results.py.
Execution (personal computer): Run
$./area_results_with_podman.sh.
Results: The area cost of ABACuS, Graphene, and Hy-
dra is printed (along with all data used to fill the cells
of Table 1). The ratio of Graphene’s “Total Area” at
“nRH:125” (5.68mm2) to ABACuS’s “Total Area” at
“nRH:125” (0.25mm2) is 22.72×.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

104 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

